Umgang mit Extremwerten und Ausreißern

Michael Höfler

Hintergrund

 In der Psychologie wird das Problem oft ignoriert, und es herrscht Unsicherheit im Umgang damit:

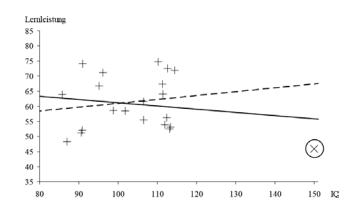
Ausreißer versus Extremwerte

- Statistische Definition: Ein Ausreißer stammt aus einer anderen Population als die anderen Werte
- Ein Ausreißer trägt somit nicht zu richtigen Schlüssen über eine Zielpopulation bei.
- Daher prinzipiell Ausreißer bei Auswertung weglassen.

- Extremwerte dagegen stammen aus <u>derselben</u>
 Population → nicht pauschal weglassen.
- Sind aber extrem groß bzw. klein

Auswirkungen von Extremwerten und Ausreißern

- Ergebnis kann stark vom Ein- oder Ausschluss abhängen ("influential outliers")
- Z.B. in linearer Regression durch Methode der kleinsten Quadrate



... führt dazu, dass **kein Datenpunkt** extrem weit von Regressionsgerade entfernt ist. Problem dabei: Durch Extremwerte sind womöglich viele Punkte weit von Gerade entfernt.

- ◆ Ergebnisse mit geringerer Anwendungsbreite ("little scope of analysis"): sagen nicht über viele Individuen etwas aus (Beispiel für sinnlose Durchschnittsbildung: Ein Jäger schießt einmal zehn Meter links, einmal zehn Meter rechts am Hasen vorbei. Im Durchschnitt ist der Hase tot.)
- Durch Einschluss von Extremwerten wird oft Varianz größer (obwohl ausgewertete Stichprobe größer)

Immer primär durchführen:

Inhaltliche Ausreißeridentifikation

- Sind (mit demselben oder ähnlichem Messinstrument) bereits **ähnlich hohe Werte** (in ähnlicher Population) gefunden worden?
- Ist ein Wert aufgrund der Werte glaubwürdig , die die Person <u>in anderen Variablen</u> hat?

Wert nicht plausibel ("error outlier")

- → Fall mit dem Wert herauslassen (= auf "missing" umkodieren)
- → oder durch **plausiblen Wert ersetzen**

falls Grund zur Annahme, dass Person tatsächlich sehr hohen, wenn auch nicht so hoch wie angegeben, Wert hat "**Winsorization**": ersetze mit k-tem Perzentil; z.B. k = 1: Wert, wo 99% der Stichprobe drunter liegen; k wiederum willkürlich.

Wert plausibel

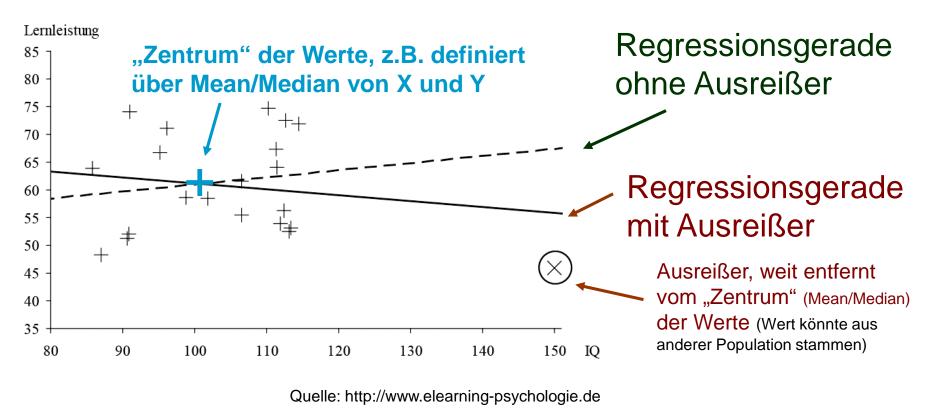
- → Wert prinzipiell belassen
- → Aber bei der Auswertung beachten, s.u.

Univariate Ausreißer = Ausreißer hins. einer Variable

- Einer oder mehrere Werte einer Variable kommen einem ungewöhnlich hoch (niedrig) vor.
- Nur Werte dieser einen Variable bei der Frage herangezogen, ob es sich um einen Ausreißer handelt.

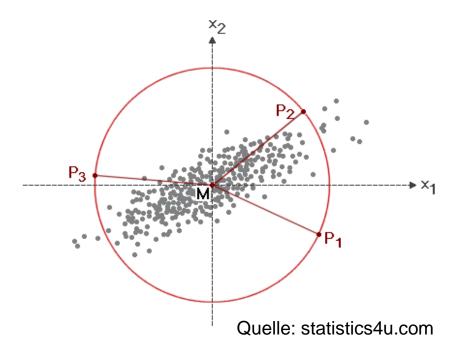
Multivariate Ausreißer

- Individuen, die bzgl. ihrer **Merkmalskombination** aus anderer Population stammen
- Fiktives Beispiel: Lernleistung und IQ



Mahalanobis-Abstand

Zwei Dimensionen (x_1, x_2) , drei Datenpunkte (P_1, P_2, P_3)



Problem:

Varianzen und Kovarianzen sind bereits sehr anfällig gegenüber Extremwerten und Ausreißern Euklidische Distanz: Summe der quadratischen Abstände vom Zentrum der Werte (Mittelwertsvektor M auf den beiden Dimensionen)

Mahalanobis-Abstand:

Gewichtet die Abstände durch die Varianzen von x_1 , x_2 und deren Kovarianz, S (größere Varianz, kleineres Gewicht; x_1 , x_2 sind i.a. nicht gleich skaliert)

Berechne dann für ieden Probanden:

$$D_i^2 = (x_i - \bar{x})' S^{-1} (x_i - \bar{x})$$

Ein Kriterium dazu: lasse solange Probanden weg, bis die Verteilung von D_i² nicht mehr sign. von Chi²-Verteilung abweicht (sehr abhängig von Stichprobengröße).

Gute Übersicht über auch andere multivariate Verfahren zur Untersuchung von Ausreißern:

PMCID: PMC3389806

PMID: 22783214

Front Psychol. 2012; 3: 211.

Published online 2012 Jul 5. Prepublished online 2012 Jan 17.

doi: 10.3389/fpsyg.2012.00211

Distribution of Variables by Method of Outlier Detection

W. Holmes Finch 1,*

Author information
 Article notes
 Copyright and License information <u>Disclaimer</u>

Robustheitsmaß breakdown point einer statistischen

Größe: Welchen Anteil der Werte kann man durch ∞ ersetzen, ohne dass die Größe sich ändert?

Beispiele:

- Mean: 0 (jeder Wert hat Einfluss auf mean)

- **Median**: 0.5 (generell maximal möglicher breakdown point)

Multivariat (Wert jeder Variable durch ∞ ersetzen)

- Steigung einer Regressionsgerade* **β**: 0

- Pearson-Korrelation: 0

- Spearman-Korrelation: max. 0.5

- Mahalanobis-Abstand: 0

Alle Standardverfahren (Normalverteilungsannahme) verändern ihre Ergebnisse, wenn man einen einzigen Wert ändert.

^{*} Falls, wie üblich, mit "ordinal least squares" geschätzt.

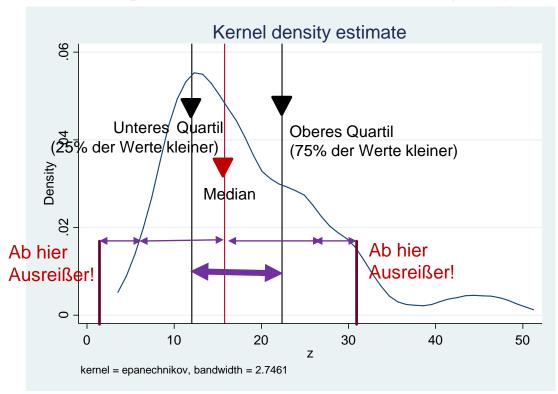
Statistische Ausreißeridentifikation

- Nützlich, um auffällige Werte zu entdecken
- sollte aber nicht alleinige Grundlage für Entscheidung sein, ob sie herauszulassen sind.
- benötigt immer ein **Referenzmodell**, das mittels Verteilungstyp die Norm festlegt.
- **Annahme**: Werte, die aufgrund dieser Verteilung äußerst unwahrscheinlich sind, stammen wahrscheinlich aus <u>anderer</u> Population
- Z.B. Ausreißerkriterium bei Normalverteilung: Werte, die größer (kleiner) als Mittelwert + (-) 3 * SD (Standardabweichung) sind. Wahrscheinlichkeit, dass ein Wert so groß ist, beträgt (unter Normalverteilungsannahme) 0.3%
 - Der Wert 3 ist willkürlich!
 - Bei anderen, v.a. sehr schiefen, Verteilungen ist SD als Streuungsmaß ungeeignet!
 - und ggf. selbst von Ausreißern stark beeinflusst!

Standardized Regression Coefficients: A Further Critique and Review of Some

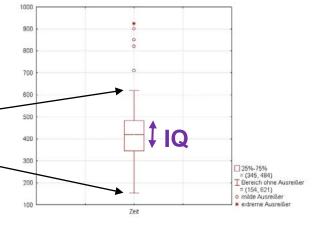
Sander Greenland, Malcolm Maclure, James J. Schlesselman, Charles Poole

Nonparametrische Alternative zur Standardabweichung: Interquartilsabstand (IQ)



Box-Plot, obere und untere Abschlusslinie ("Whisker")

Als Ausreißer gilt z.B. jeder Punkt außerhalb von Median – 1.5 * IQ, Median + 1.5 * IQ (1.5 ist wiederum willkürlich)



Replikationskrise/p-hacking

- Variation in möglichen Ergebnissen durch Umgang mit Extremwerten → für p-hacking missbrauchbar
- Default-Vorgehen: lasse Extremwerte drin!
- Rauslassen dann = Methode des p-hacking: kommt dadurch erwünschtes Ergebnis heraus?
- Dabei ist im Sinne der Anwendungsbreite das Rauslassen oft besser

Vorabregistrierung des Umgangs mit Extremwerten:

→ so genau, dass Variation in Ergebnissen durch Ein-/Ausschluss

nicht missbraucht werden kann

→ Rohdaten und Syntax bereitstellen

Aber welcher Umgang konkret?

- Beim manuellen Herauslassen kann man das willkürliche Kriterium selber bestimmen! (wenn man es nicht per Registrierung festgelegt hat)
- Lieber vorgegebenes Kriterium einer Software verwenden.

Vorgehen, das das Problem umgeht

- Neben Standardanalyse Verfahren verwenden, das robust gegenüber Extremwerten ist.
- Falls anderes Ergebnis (= Text der Interpretation ändert sich),
 ziehe Ergebnis des robusten Verfahrens vor, egal wie es aussieht!
- Begründung: robustes Verfahren macht schwächere Annahmen

Robust statistical methods: A primer for clinical psychology and experimental psychopathology researchers

Andy P. Field a, *, Rand R. Wilcox b

a School of Psychology, University of Sussex, Falmer, Brighton, BN1 9QH, UK

b Department of Psychology, University of Southern California, 618 Seeley Mudd Building, University Park Campus, Los Angeles, CA 90089-1061, USA

Alternativverfahren zur linearen Regression

Alternativverfahren	Robust gegenüber Ausreißern/verändert Punktschätzung	Nachteile
Verfahren mit Rangstatistiken (U-Test, Rangkorrelation u.a.)	Ja	Nicht möglich in komplexen Stichproben (z.B. gewichtete/geclusterte Daten)
Sandwich-Methode zur Schätzung der Standardfehler	Nein	Nur in großen Stichproben möglich
Bootstrapping	Nein	-
Robuste lineare Regression	Ja	Nur bei linearen Zusammenhängen möglich
Generalisierte lineare Modelle	Nur sehr bedingt	Nur in großen Stichproben möglich
Box-Cox-Transformation von \mathbf{Y} (g(\mathbf{Y}) = (\mathbf{Y}^L - 1)/L L aus Daten geschätzt; z.B. ln(\mathbf{Y}) , $\sqrt{\mathbf{Y}}$)	Nur bedingt	Größe von Zusammenhängen auf Y-Skala schwer zu beurteilen, da Transformation kompliziert

Beispiel robuste (lineare) Regression

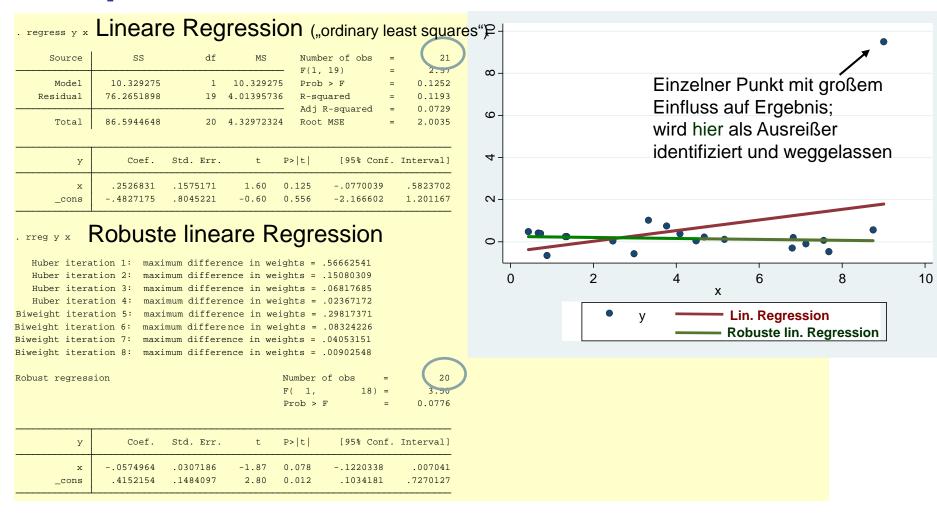
Voraussetzung

- Zusammenhang zwischen Y und X ist linear (evtl. vorher Y mittels "Box-Cox.Transformation" richtung Normalverteilung transformieren)
- X und ε sind unabhängig

Funktionsweise

- Ausreißer (extrem große Residuen) automatisch erkannt und weggelassen (z.B. Cook's distance > 1: Um wie viel ändern sich Regressionsergebnisse, wenn man ein Individuum weglässt?)
- Der Beitrag anderer Individuen mit besonders hohen Residuen wird heruntergewichtet
- Daten werden damit so "getrimmt", dass sonst. Voraussetzungen der linearen Regression auch erfüllt (normalverteilte Residuen mit gleichen Varianzen)
- Ergebnisse hängen kaum von einzelnen Beobachtungen ab → robust und viel breiter interpretierbar
- Methode funktioniert oft auch in kleinen Stichproben
- Aber nicht in komplexen Stichproben (gewichtete, korrelierte Beobachtungen u.a.)

Beispiel



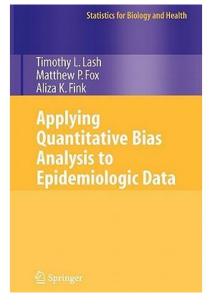
Wahl des Ausreißerkriteriums (Cook's d > 1) spielt hier keine so große Rolle (weil Beob. knapp daneben auf fast 0 heruntergewichtet werden (es gibt aber einen anderen "tuning parameter", der das Ausmaß der Gewichtung steuert).

Verwandtes, allgemeines Vorgehen: **Sensitivitätsanalyse**

- Man kann nicht entscheiden, welche Analyse besser ist
- Führe daher auch **alternative Analyse** durch, um zu sehen, wie sensitiv Analyse gegenüber der Entscheidung ist
- Ähnliche Ergebnisse: Entscheidung spielt keine Rolle (der Einfachheit halber bei Standardvorgehen bleiben, "Sparsamkeitsprinzip", "occams razor")
- Widersprüchliche Ergebnisse: berichte beide, damit Leser sieht, was die Entscheidung zur Folge hat → Transparenz, Leser kann

selber entscheiden und entspr. Schluss

ziehen



Weiterführende Literatur

- DeSimone JA, Harms PD, DeSimone AJ: Best practice recommendations for data screening. *Journal of Organizational Behavior* 36; 171–181.
- Hastie R, Tibshirani J, Freedman J. *The elements of statistical learning.*Data mining, inference, and prediction. Springer, 2009
- Hardle W, Muller M, Sperlich S, Werwatz A. *Nonparametric and semiparametric models*. Springer, 2004
- Huber, P. J. 1964. Robust estimation of a location parameter. *Annals of Mathematical Statistics* 35: 73–101.
- Leys C et al. How to Classify, Detect, and Manage Univariate and Multivariate Outliers, With Emphasis on Pre-Registration. *International Review of Social Psychology* 2019, 32: 5, 1–10.
- Li, G. 1985. Robust regression. In Exploring Data Tables, Trends, and Shapes, ed. D. C. Hoaglin, C. F. Mosteller, and J. W. Tukey, 281–340. New York: Wiley.