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The anatomical connectivity pattern of a brain region determines its
function1. Although invasive tracer studies have produced a large body
of evidence concerning connectivity patterns in non-human animals2–4,
direct information concerning brain connections in humans is very lim-
ited. Injection of fluorescent dyes post mortem allows tracing of tracts,
but only for distances of tens of millimeters5. Longer-distance connec-
tions can be investigated by dissection of major tracts or histological
studies of remote degeneration following a focal lesion6, but such work
is based on a relatively small number of informative patients.

A specific, important focus for investigation is the thalamus because
nearly all incoming information to the cortex is routed through this
deep gray-matter structure. The thalamus is subdivided into cytoarchi-
tectonically distinct nuclei which have different patterns of anatomical
connectivity that are well characterized for non-human animals7,8.
Boundaries between thalamic nuclei that can be visualized histologi-
cally9 are not easily seen in magnetic resonance (MR) images, even using
contrast-optimized protoc0ls10. If connectivity information were avail-
able locally, it could be used as an alternative method for defining
boundaries between thalamic subregions and would provide informa-
tion directly relevant to function.

Diffusion imaging characterizes the apparent diffusion properties of
water11,12. In tissue with a high degree of directional organization, the
diffusion of water protons is different in different directions. In brain
white matter, the principal diffusion direction corresponds well with
orientation of major fibers in each voxel13. Recent developments in dif-
fusion tensor imaging (DTI) techniques have enabled tracing of large
fiber tracts in the living human brain11,14–20. However, conventional
‘streamlining’ tract tracing algorithms typically can only progress when
there is high certainty of fiber direction (that is, when local diffusion

anisotropy exceeds a specified threshold)16,19,20. This has limited their
usefulness in defining pathways near gray matter—as they approach
their cortical or subcortical targets.

Here, using a probabilistic tractography algorithm, we were able to
infer anatomical connectivity that progresses fully into gray matter. We
thus provide a comprehensive description of the connections between
thalamus and cortex in the human brain in vivo. An additional result of
this approach is the discrimination of human thalamic subregions on
the basis of their connections with the cortex.

RESULTS
We used a fully automated probabilistic tractography algorithm (see
Methods) to form connectivity distributions from individual voxels
within the thalamus of a single subject. From these distributions, we
traced pathways all the way to the cortex (Fig. 1a–d). For example, seed-
ing a voxel in the lateral geniculate nucleus (LGN) generated pathways to
the visual cortex and optic tract (Fig. 1a). The course of generated path-
ways depends on seed point locations (Fig. 1b).

Commonly connected thalamic subregions
We segmented the cortex into large, anatomically defined regions (see
Methods) corresponding to known connection areas of the major thala-
mic nuclear groups in non-human primates (Fig. 2a). For every thala-
mic voxel, the automated tractography algorithm was used to define
probability levels for connectivity to each ipsilateral cortical zone. Each
thalamic voxel then was classified according to the ipsilateral cortical
zone with which it had the highest probability of connectivity. This
resulted in clusters of commonly connected voxels within the thalamus.
On the basis of the strong correspondence among our connectivity-
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based clusters in the human thalamus, known locations of thalamic
nuclei in humans9 and connections in non-human primates7, we pro-
pose that these clusters correspond to different thalamic nuclei or
nuclear groups (Fig. 2). Note that the description cannot distinguish
between thalamocortical and corticothalamic connections, as diffusion-
weighted imaging (DWI) is sensitive only to the orientation of fiber
tracts and not to their anatomical polarity.

In the monkey, the mediodorsal nucleus (MD) is reciprocally con-
nected to the prefrontal cortex (PFC)21,22 via the anterior thalamic
peduncle and to temporal regions including the temporal pole23, olfac-
tory cortex24 and amygdala25 via the inferior thalamic peduncle. Our
results suggest that a similar organization is found in the human brain as
a large medial, dorsal region of the thalamus had highly probable pre-
frontal and temporal connections. We suggest that this region includes
MD. Studies in non-human primates have shown that the ventral poste-

rior nucleus (VP) projects to primary and secondary somatosensory
areas (S1 and S2)26. We found a similar ventral posterior region with a
strong probability of somatosensory connections (Fig. 2c,d) and suggest
this corresponds to the human VP. In monkeys, the ventral lateral (VL)
and ventral anterior (VA) nuclei project to primary motor cortex (M1)
and premotor cortex (PMC)27. A lateral region, anterior to the putative
VP, was found to have a high probability of motor cortical connectivity
(Fig. 2c,d). We suggest that this region includes VL and VA. In the non-
human primate, the lateral posterior nucleus (LP) and parts of the pulv-
inar (Pu) project to posterior parietal cortex (PPC) and extrastriate
cortices7, and medial and inferior parts of the pulvinar are connected to
the temporal lobe28,29. In the human brain, we found a posterior region
that is connected to these areas, and propose that it corresponds to the
LP/Pu complex (Fig. 2c,d). Confidence in the connectivity parcellations
was increased by the finding that the pattern of connections was compa-
rable between left and right thalami.

Nuclear subdivisions
We further divided the cortical surface in the left hemisphere (for
example, M1 was separated from PMC; Fig. 3a) and re-ran the auto-

Figure 1 Tracing connectivity distributions from individual seed voxels.
Voxels are color-coded according to whether the probability of pathways
traveling through that voxel is high (yellow) or low (red). (a) From a voxel in
putative LGN, the connectivity distribution was traced anteriorly along the
optic tract, and posteriorly to the visual cortex, consistent with the well-
established anatomy of the visual system. (b) Seeding a voxel in the optic
tract generated a connectivity distribution such that the multiple pathways
generated followed one of two distinct paths. One path went through the
LGN and on to visual cortex, corresponding to the optic radiations (as in a).
A second path corresponded to the brachium of the superior colliculus (axial
slice in b). The separation of these two paths can be seen in the coronal
sections in b. The more inferior and medial path follows the brachium and
the more superior path follows the optic radiation (as in a). Seeding a voxel
in the white matter just lateral to the LGN generated a distribution that
traveled indirectly to the visual cortex, via the temporal lobe, forming
Meyer’s loop. The path shown here is a maximum-intensity projection over
four axial slices, overlaid on a single slice. (c) From a voxel in putative MD,
the connectivity distribution progressed anteriorly to the lateral prefrontal
cortex and also, at first posteriorly, around the posterior edge of the
thalamus, and then anteriorly to the anterior temporal cortex. (d) From a
voxel in putative VL, the distribution both ascended to the anterior bank of
the central sulcus (M1) and descended. The descending distribution
followed two distinct paths, one entered the cerebellum and branched,
terminating in the cerebellar cortex, and the other continued farther down
the brainstem.

Figure 2  Connectivity-based segmentation of the thalamus in a single
subject. (a) Division of the cerebral cortex according to anatomical
landmarks (see Methods). (b) An axial section based on a histological atlas
of the human thalamus with nuclei outlined by black lines9. Nuclei have
been color-coded according to the cortical zone to which we predict they
would show the strongest connections, on the basis of data from non-human
primates7,21–27. (c,d) Classifying thalamic voxels based on the zone with the
highest probability of connection resulted in clusters of commonly-
connected voxels. The clusters correspond to histologically defined locations
of major nuclei as in b. The medial, anterior purple area in c and d is
thought to include the mediodorsal nucleus and nuclei within the anterior
complex, which are connected to prefrontal cortex and the temporal lobe.
The more posterior purple area is thought to include parts of the lateral and
inferior pulvinar which connect to the temporal lobe. The yellow area is
thought to include the anterior pulvinar and the lateral posterior nucleus
which project mainly to posterior parietal and extrastriate areas. The blue
area is thought to include the ventral posterior lateral nucleus, which
projects to somatosensory cortices. The orange area is thought to include the
ventral lateral and ventral anterior nuclei, which project to motor and
premotor cortices.
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mated tractography-based segmentation for the left thalamus to test for
finer thalamic subdivisions. Within the large, lateral clusters, smaller,
distinct regions connecting to the somatosensory cortices, M1 and
PMC were distributed along a posterior–anterior axis (Fig. 3b). From
the known anatomy in non-human primates, in which VP projects to
somatosensory cortex26, VLp to area 4 (ref. 30) and VLa and VA to lat-
eral and medial area 6 (ref. 31), we suggest that the clusters we found
connected to somatosensory cortices M1 and PMC correspond to VP,
VLp and VLa/VA, respectively. On the cortical surface, we also sepa-
rated PPC from the occipital cortex. We propose that the inferior/lateral
area (red in Fig. 3c) with the most probable connections to the occipital
lobe corresponds to the LGN. The posterior region that connects to
PPC (yellow in Fig. 3) may include LP and anterior and lateral pulvinar.
Medial to this, there are areas that connect to the occipital lobe and to
the temporal cortex (red and purple, respectively, in Fig. 3). These may
include parts of medial and inferior pulvinar, which have been shown
to connect to ventral and anterior parts of the temporal lobe in non-
human primates28,29.

Distribution of thalamic pathways within the internal capsule
Thalamocortical pathways are highly organized within the internal cap-
sule32. To test the degree to which we could detect this organization, we
used the same tractography approach to classify white matter voxels
within the internal capsule according to the thalamic region with which
they were most strongly connected. The distribution of thalamic path-
ways within the internal capsule was as expected32 (Fig. 4).

Probabilistic representation of connections
In Figs. 2 and 3, classification of thalamic voxels is generated from the
highest probability of connectivity to cortical targets. However, infor-
mation is available on the probability of connectivity to every cortical

Figure 3  Connectivity-based segmentation of the thalamus. (a) Division of
the cortex according to anatomical landmarks (see Methods) after cortex.
(b–d) Classification of thalamic voxels based on probable connections to
these cortical areas. We propose the following color scheme: anterior, superior
and medial purple regions (visible in c and d) include some of MD, which
receives inputs from the temporal lobe, and parts of the anterior complex that
project to limbic areas in the medial temporal region; the more posterior and
inferior purple region (posterior to the red area, visible in b and d) includes
parts of the medial and inferior pulvinar that project to the temporal lobe; the
dark blue region includes some of MD, VA and parts of the anterior complex
(AM, AD) that project to the prefrontal cortex; the yellow region includes the
anterior parts of the pulvinar that project to PPC; the pale blue area includes
LP and VPL, which project to somatosensory cortices; the orange area
includes VLp which projects to M1; the green region includes VLa and VA,
which project to premotor areas; and the red regions include LGN (visible in
coronal section, c), parts of the inferior pulvinar (most inferior red areas
visible in sagittal section, d) and some intralaminar nuclei.

region for each voxel. Representation of these probabilities demon-
strates that some voxels appear connected to more than one cortical
region (Fig. 5). For example, in the cluster that we propose corresponds
to VA, some pathways reached PMC and others reached PFC, consistent
with the known distribution of cortical connections of this nucleus in
the monkey21,33 (Fig. 5). We also detected PFC connections from the
medial pulvinar (Fig. 5), again consistent with monkey studies33.

Paths between thalamus and cortex
Each of the large cortical masks used here includes functionally and
anatomically distinct subregions. Information is also available concern-
ing pathway targets within each cortical mask and the path by which
they travel to the cortex. We explored this with connections from MD to
temporal lobe. A similar approach could be taken with other thalamic
subregions and cortical areas.

We generated pathways from all voxels within MD with predomi-
nantly temporal lobe connections (Fig. 6a) and found that pathways
between MD and the temporal lobe take at least two distinct paths 
(Fig. 6b) and terminate in different regions (Fig. 6b–d), consistent with
data from nonhuman primates34.

Internal medullary lamina
The classification of thalamic voxels described thus far has been based
only on probable connections to cerebral cortex. In monkey thalamus,
however, there are thalamic regions with predominantly subcortical
connections and only weak or diffuse cortical connections7. Similarly, in
our data there were regions within the thalamus for which the probabil-
ity of connection to cortical gray matter was very small. To better define
these regions that show lower probabilities of cortical connections, we
re-ran analyses with thresholding at various levels (Fig. 7).As the thresh-
old was increased, a region between the proposed lateral and medial
nuclear groups was defined that did not show suprathreshold connec-
tivity probability to any cortical region (Fig. 7). Pathways from this
region were generated mainly to the ipsilateral basal ganglia or to con-
tralateral subcortical targets via the corpus callosum. We propose that

Figure 4 Classification of internal capsule white matter based on connections
to putative thalamic nuclei. Voxels are color-coded according to the thalamic
region in Fig. 3 with which they show the strongest connection. The anterior
limb of the internal capsule contained probable pathways from putative MD
that terminated in the prefrontal cortex. The posterior limb of the internal
capsule contained pathways from (in anterior→posterior order) putative VA/VL
to premotor cortex, VL to motor cortex, VP to sensory cortices, and pulvinar to
temporal and visual cortices.
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the thalamic region defined in this way includes parts of the internal
medullary lamina and the intralaminar nuclei. These nuclei project pre-
dominantly to the striatum in the monkey35, although they also have
diffuse cortical connections7.

Reproducibility between subjects
To explore the reproducibility of the connectivity-based thalamic clus-
ters between subjects, we analyzed data from an additional seven sub-
jects. In five out of seven subjects, the resulting clusters were very similar
in location, ordering and size to those in the original subject (Fig. 8). In
two out of seven subjects, the diffusion data was of poorer quality, and
most of the paths generated from certain thalamic regions failed to reach
the cortical masks . Even in those two subjects, pathways from the thala-
mus that did reach cortex had a very similar distribution to those in the
original subject. Explicit representation of pathway uncertainty in this
approach provides a good criterion to limit false positives.

DISCUSSION
Here we show that it is possible to trace connections from the thalamus
to the gray matter of the human cerebral cortex in vivo using diffusion
imaging. To our knowledge, this is the first report of anatomically spe-
cific inferences of connectivity between gray matter structures using dif-
fusion data. This approach should therefore provide new data on
human brain connectivity. We found that connections between the thal-
amus and cortex in humans are largely similar to those previously found

in tracer studies in non-human primates7,21–31,33–35 and are repro-
ducible across subjects. This similarity to data from non-human pri-
mates is apparent not only in the distribution of connections to different
cortical sites, but also in the paths that are followed between the thala-
mus and the cortex.

We also used the probability of connection to different cortical zones
as an anatomical classifier for individual thalamic voxels. This generated
clusters of voxels showing common patterns of anatomical connectivity
to the neocortex. The relative locations and sizes of these clusters corre-
sponded well to histologically defined human thalamic nuclei9. The
approach used here is generalizable and therefore may be used to map
connectivities or anatomically parcel other gray-matter structures. This
type of data should complement functional imaging and has the poten-
tial to provide new insights into understanding disorders associated
with variations in brain structure.

Tracing fibers to cortex has been notoriously difficult when using
the maximum-likelihood approaches traditionally used for DTI trac-
tography. As fibers approach cortex, diffusion anisotropy reduces, and
calculated principal diffusion directions become increasingly uncer-
tain as a result of image noise (Jones, D.K. et al. Proc. Intl. Soc. Mag.
10, 1122, 2002). This problem is so pronounced that streamlining
algorithms used to date have had to apply an arbitrary anisotropy
threshold, which forces the early termination of reconstructed path-
ways16,19,20. This has limited attempts to trace pathways directly from
deep gray matter, which typically has low anisotropy. In these circum-
stances, a fully probabilistic algorithm has significant advantages.
First, because an explicit representation of uncertainty in path direc-
tion is generated, the relative probabilities of directions can be 

Figure 5  Probabilistic mapping of cortical connections. Regions of
overlapping connections are shown in green. Probabilistic mapping of
connections to prefrontal cortex (PFC) and premotor cortex (PMC) indicates
the presence of a region, which we propose corresponds to the ventral anterior
nucleus, with a suprathreshold probability of connections to both regions.

Figure 6  Paths from thalamus to temporal lobe. (a) Probabilistic mapping of
connections to the temporal (turquoise to blue) and prefrontal (red to yellow)
regions or both (green). To investigate the paths and termination sites of
connectivity distributions to the temporal cortex, we generated a
representation of pathways from all medial voxels with suprathreshold
connections to the temporal (and not prefrontal) region (the blue/turquoise
area). (b) Distributions took two distinct paths to the temporal lobe. The
most probable pathway from this region travels around the posterior edge of
the thalamus, extends anteriorly through the hippocampal formation, then
spreads before terminating in the superior temporal gyrus (temporal pole),
the anterior middle temporal gyrus and piriform lobe (as in Fig. 1c). A less
probable pathway (indicated by arrows in b–d) extended anteriorly and
inferiorly along the medial wall of the thalamus, then turned laterally into
the amygdala (c,d). A similar path, which travels from the amygdala via the
inferior thalamic peduncle and enters the anterior head of the thalamus, has
been described for non-human primates34.
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estimated, and the pathway can continue even if the probability is low
for any single direction. A second useful advantage of a probabilistic
algorithm is resistance to noise. It can be difficult to track beyond a
noisy voxel using a non-probabilistic algorithm, as it may initiate a
meaningless change in path. With a probabilistic algorithm, however,
paths that have taken errant routes tend to disperse quickly, so that
voxels along these paths are classified with low probability. In con-
trast, ‘true’ paths tend to group together, giving a much higher proba-
bility of connection for voxels on these paths.

We have used patterns of thalamocortical connectivity inferred
from diffusion images to parcel anatomically distinct regions of the
thalamus. Although it uses a common imaging technique, this
approach is distinct from the differentiation of thalamic regions on
the basis of local diffusion properties (Wiegell, M.R. et al. Proc. Intl.
Soc. Mag. Reson. 8, 481, 2000; Wiegell, M.R., et al. Proc. Intl. Soc.
Mag. Reson. 7, 934, 1999) and offers significant advantages as we
consider long-distance connectivities. For example, the lateral sen-
sorimotor nuclear group (VLa, VLp, VP) contains voxels that have
very similar principal eigenvectors from a diffusion tensor fit, but
pathways from the nuclear subdivisions terminate in distinct
anatomical regions, allowing their discrimination if connections are
followed up to the cortex. Also, by considering not only diffusion
measurements within a voxel, but also information available at a
more global scale, the thalamic segmentation achieved has a finer
spatial resolution than that of the original diffusion images.
Together, these characteristics of our approach have allowed us to
thoroughly test predictions concerning homologies between human
and non-human primate thalamic organization.

There are limitations to this approach. First, it is impossible to define
fiber tract polarity (for example, distinguishing thalamocortical from
corticothalamic connections) using diffusion tractography. Second, the
method is sensitive primarily to major pathways, and therefore smaller
pathways, pathways with sharp path inflections or pathways that cross
other tracts are not always detected by our method. For example, from
seeds placed within the gray matter of the LGN, we were able to detect
the dorsal portion of the optic radiation that travels directly to the visual
cortex (Fig. 1a). However, detection of the more ventral part of the optic
radiation that travels to visual cortex via the temporal cortex (forming
Meyer’s loop32) was possible only from seeds placed in the white matter
just lateral to the LGN. Use of higher-resolution imaging and of analysis
approaches that explicitly model complex fiber structures within a
voxel36 may increase sensitivity to such paths.

In interpreting the connectivity distributions presented here, it is
important to note that our approach does not allow us to infer the true
distribution of fiber structure within a voxel, but rather to estimate the
uncertainty associated with the principal direction so that we may quan-
tify our confidence in the tractography results. Thus, the distributions
that we present are not estimates of true fiber spread from a voxel, but of
the confidence bound on the location of the most probable single con-
nection. The width of these confidence bounds will depend both on
experimental noise and on any mismatch between our model (a single
population of parallel fibers) and the diffusion data (which may reflect
complex structure, such as crossing fibers).

Although the patterns that we found correspond well with those
defined by direct anatomical studies of non-human primates, further
validation of this approach is desirable. For example, cytoarchitec-
tonic boundaries could be defined on the same population imaged,
and parallel diffusion and manganese-tracer imaging37 could test the
correspondence between probabilistic tracts and real fiber pathways
in non-human primates.

Figure 7  Effects of thresholding thalamic clusters based on the probability of
connection to cortex. Thresholding at probabilities of 10% (a,b), 40% (c,d)
and 80% (e,f). Top, axial images; bottom, coronal images.

Figure 8 Comparison of connectivity-based segmentation of the thalamus
between eight subjects (results from subject 1 are described in greater detail
elsewhere in the manuscript). Voxels are color-coded as in Fig. 2 if at least
1% of generated pathways reached the cortex. Brains have been re-aligned
to the same standard brain template and a single axial slice (at Talairach 
Z = 0) is presented. The connectivity-based clusters found in subjects 1–6
were very similar. In subjects 7 and 8, there are some ‘gaps’ in the thalamus
which correspond to regions where fewer than 1% of pathways reached any
cortical mask. The patterns in these two subjects are similar to those seen in
subject 1 when much higher thresholds were used (see Fig. 7).
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The current study was limited to the investigation of thalamic
connections to large cortical regions. However, the non-human
primate literature has provided strong evidence for finer-grained
topographic mapping, such as between subregions of MD and
smaller regions in the prefrontal cortex33,38. Such investigations in
the living human brain could proceed as a straightforward exten-
sion of the current investigation.

We verified that patterns of anatomical connectivity in the thalamus
are reproducible between subjects, but future studies should explore
reproducibility quantitatively15, for example by producing population-
level probabilistic maps of connectivity-based clusters, which could be
related to cytoarchitectonic and functional maps39.

There are obvious clinical applications of our methods as well.
Probabilistic tractography could help characterize developmental and
acquired brain disorders, for example by testing for alterations in fron-
tothalamic circuitry in schizophrenia40 or by defining the relations
between quantitative differences in corticocortical connectivity and
learning abilities41. The ability to define regional boundaries reliably in
gray matter could also, for example, be used to more precisely target spe-
cific subcortical structures in the treatment of movement disorders by
functional neurosurgery42,43.

METHODS
Data acquisition. Diffusion-weighted data were acquired in eight healthy subjects
(6 male, 2 female, ages 26–33, but the majority of the results reported are from a
single male subject, aged 33) using echo planar imaging (60 × 2.3 mm thick slices,
f.o.v. = 220 × 220 mm2, matrix = 96 × 96; images were reconstructed on a 128 ×
128 matrix giving a final resolution of 1.7 × 1.7 × 2.3 mm3) implemented on a
General Electric 1.5 T Signa Horizon scanner with a standard quadrature head-
coil and maximum gradient strength of 22 mT m–1. Informed written consent
was obtained from all subjects in accordance with ethical approval from the
National Hospital for Neurology and Neurosurgery and Institute of Neurology
joint research ethics committee. The diffusion weighting was isotropically dis-
tributed44 along 54 directions (δ= 34 ms, ∆ = 40 ms, b-value = 1,150 s mm–2). Six
diffusion-weighted volumes (b-value = 300 s mm–2) and six volumes with no dif-
fusion weighting were acquired. The high angular resolution of the diffusion-
weighting directions44 improves the robustness of PDF estimation (see image
analysis section below) by increasing the signal-to-noise ratio per unit time and
reducing directional bias. Cardiac gating (Wheeler-Kingshott, C.A.M. et al. Proc.
Intl. Soc. Mag. Reson. Med. 10, 1118, 2002) was used to minimize artifacts from
pulsatile flow of the cerebrospinal fluid. The total scan time for the DWI protocol
was approximately (depending on heart rate) 20 min.

The high-resolution T1-weighted scan was obtained with a three-dimensional
inversion recovery prepared spoiled gradient echo (IR-SPGR) (f.o.v. = 310 × 155;
matrix = 256 × 128; in-plane resolution = 1.2 × 1.2 mm2; 156 × 1.2 mm thick
slices; TI = 450 ms; TR = 2 s; TE = 53 ms).

Image analysis. Probabilistic diffusion tractography was carried out accord-
ing to previously proposed methods (Behrens, T.E.J. et al. Proc. Intl. Soc. Mag.
Reson. Med. 10, 1160 and 1142, 2002).

Probability distributions of fiber directions at single voxels. Under a voxel-
wise model of diffusion (the diffusion tensor (DT) model12), it is possible to
calculate a maximum likelihood solution for fiber direction within each voxel
(the principle eigenvector in the DT case). However, this fiber direction has
associated uncertainty, caused both by the potential mix of many fiber direc-
tions within a voxel, and by image noise (physiological, thermal and other
intrinsic measurement noise)45. This uncertainty in the fiber direction may be
represented in the form of a probability density function (PDF), which can be
expressed as P(θ,φ|Y), where (θ,φ) is the fiber direction (in spherical polar
coordinates) and Y is the data.

We chose to estimate this distribution using a simple partial volume model,
which allows for only one fiber direction, with no fiber spread and an isotropi-
cally diffusing compartment within the voxel. The effect of any true fiber diver-
gence within the voxel will thus be seen as greater uncertainty in the principal

fiber direction, as is desirable for probabilistic tractography, rather than as a
change of shape in the diffusion profile, as might be the case with a DT model.

The partial volume signal model assumes that the MR measurements are
a sum of signal from within a single, homogeneous white-matter tract
(which has wholly anisotropic diffusion) and signal from isotropically dif-
fusing free water. So for the ith diffusion weighted acquisition, the pre-
dicted signal (µi) at each voxel is

(1)

where S0 is the MR signal without diffusion weighting, d is the diffusivity, bi and ri

respectively are the b-value and gradient direction associated with the ith MR
acquisition, f is the volume fraction of anisotropic diffusion in the voxel and RART

is the anisotropic diffusion tensor along the principle diffusion direction (θ,φ):

and R rotates A such that its principal eigenvector lies along (θ,φ).
Note that ri

TRARTri may equivalently be written as cos2(γi), where γi is the
angle between u(θ,φ) (the unit vector along (θ,φ)) and ri, the gradient direction
for the ith acquisition. This signal model has parameters (θ, φ, d, S0, f) that must
be estimated from the data, and parameters bi and ri that are defined by the acqui-
sition parameters.

The noise is modeled separately for each voxel as i.i.d. (independently identi-
cally distributed) Gaussian with a mean of zero and a standard deviation across
acquisitions of σ.  The probability of seeing the data at each voxel, Y, given the
model, M, and any randomly chosen instance (or ‘realization’) of parameter set,
Ω = (θ, φ, d, S0, f, σ), may now be written as:

(2)

where

(3)

Using Bayes’ equation, we may now write down

(4)

where P(Ω|Y,M) is the joint posterior distribution on the entire parameter
set, Ω. P(Ω|M) are the prior distributions on the model parameters, which
are chosen to be noninformative, and therefore have minimal effect on the
posterior distribution:

where U(0,1) is the uniform distribution between 0 and 1, Γ(α,β) is the incom-

plete Gamma function (which ensures positivity), and α and β are chosen to give

 sin(θ)
P(θ, φ) =              , P(d) = P(   –2) = Γ(α, β), P(f) =

    2

U(0,1), P(So) = U(0, ∞)

σ

           P(Y Ω,M)P(ΩM)
P(Ω  Y,M) =

     ∫P(Y Ω,M)P(ΩM)dΩ
         Ω

P(yi Ω,M) ~ N(   i,   )µ  σ

            n

P(Y Ω,M) = Π  P(yi Ω ,M)
          i = 1

       1 0 0
Α = 0 0 0
       0 0 0







i = So ((1–f) exp(–bid)+ f exp(–bidrTRARTri))iµ
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the prior the highest variance possible within machine precision (making the dis-

tribution noninformative).
However, the joint posterior distribution in equation (4) is not the distribution

of interest for connectivity estimation. We are interested in the uncertainty in the
subset of parameters in Ω that contain directional information (θ,φ). The uncer-
tainty in these parameters of interest is contained in the marginal posterior distri-
bution on (θ,φ), that is P(θ,φ|Y,M) (see, for example, discussions on
marginalization46):

(5)

whereΩ is the parameter set Ω, excluding (θ,φ).
Although the integrals in equations (4) and (5) cannot be solved analytically,

Markov Chain Monte Carlo47 (MCMC) techniques provide a way of drawing
samples directly from the marginal distributions of interest at each voxel, implic-
itly performing the integrals in equations (4) and (5). Specifically, we draw sam-
ples from σ−2 using a Gibbs sampler47 and from all other parameters using
Metropolis Hastings samplers47.

Estimating global connectivity. To estimate connectivity from P(θ,φ|Y,M)
at each voxel, we require a model to take us from these local parameters to
parameters describing global connectivity. However, given that we only
explicitly model a single fiber direction locally in each voxel, the only global
model available to us is a simple binary model. Thus, with knowledge of the
parameters (θ,φ) at each voxel, we can say that two voxels are connected at a
global scale if and only if there is a path between them, through the data
(θ,φ). Hence we may write:

(6)

If there is a connecting path through (θ,φ)x where P(∃ A→B|(θ,φ)x) is the proba-
bility of a connecting path between points A and B given a particular realization
of (θ,φ)x (note that we use the subscript x to refer to every voxel in the brain, so
(θ,φ)x is the complete set of fiber directions and Yx is the complete MR data set).
However, in the absence of absolute knowledge of (θ,φ)x, equation (6) cannot be
applied. The PDF of interest instead becomes P(∃ A→B|Yx). To calculate this
probability of global connectivity, we need to incorporate, for each possible value
of fiber direction at every voxel (θ,φ)x, the probability of connection given this
(θ,φ)x, and also the probability of this (θ,φ)x given the acquired MR data. This
involves solving the following integrals:

(7)

where x1...xv are voxels in the diffusion data.
It can be seen from equation (7) that P(∃ A→B|Yx) reduces to P(∃ A→B|(θ,φ)x)

when P((θ,φ)x|Yx) are delta functions centered on, for example, the principal
eigenvector of a diffusion tensor fit. That is, when there is no uncertainty in (θ,φ),
equation (7) reduces to the streamlining (maximum likelihood) solution (equa-
tion 6). However, when local fiber direction is uncertain, P(∃ A→B|Yx) will be
non-zero for connectivity pathways not on the maximum likelihood streamlines.
However, even in the discrete data case, equation (7) represents a 2v-dimensional
(where v is the number of voxels in the brain) integral over distributions with no
analytical representation. It therefore has no analytical solution.

Fortunately, as we saw in the previous section, even though explicit integration
is not possible, the integral can be computed implicitly by drawing samples from

P(∃ A → B  Yx) =

2ππ     2ππ

∫ ∫…∫ ∫ P(∃ A → B  (θ, φ)local)P((θ, φ)x'1
  Yx1

)   …
0  0      0   0

P((θ, φ)xv
  Yxv

)dθx1
 dφx1

   …   dθxv
 dφxv

     1

P(∃ A → B  (θ, φ)x) =

     0   otherwise
{

P(θ, φ  Y,M) = ∫P(Ω  Y,M)dΩ
                  Ω

the resulting distribution. Each sample from P(∃ A→B|Yx), in this case, is a
streamline through samples from P((θ,φ)x|Yx).

To generate a single pathway from among all those possible, we choose a single
sample (θ,φ) from the local distribution at point (x,y,z), then move a distance S
(taken to be 0.5 mm) along (θ,φ) to a new point (x′,y′,z′), and continue to follow
samples from the local distributions until either the brain surface is reached or
the path begins to loop back on itself. This last criterion is implemented by use of
a lenient curvature threshold (successive directions must be within 80° of each
other) and by testing whether the path passes through the same area more than
once.

In summary, the effect of this overall procedure is to incorporate the uncer-
tainty in all local fiber directions, derived from all relevant voxels, to produce the
best estimate of the PDF on global connection between two points. Each of the
probable pathways generated represents a sample from this global PDF on con-
nectivity.

Pilot investigations showed that distributions based on 10,000 or 100,000 sam-
ples did not differ, and so we assumed convergence of each global PDF after
10,000 samples are drawn.

Note that the second part of this method (estimating global connectivity),
where we sample from the global PDF on connectivity given knowledge of the
local PDFs, has a similar effect to approaches proposed by other groups (see Proc.
Intl. Soc. Mag. Reson. Med. 10, 2002; abstr. 539 (Lazar, M. & Alexander,A. L.), 1131
(Brun, A. et al.) and 1165 (Parker, G.J.M. et al.). Crucially, however, here we have
estimated the local PDFs from the data, whereas previous work has assumed their
form.

Thalamic segmentation. We manually outlined the whole thalamus and a num-
ber of cortical zones on the subject’s T1-weighted image. For tissue-type segmen-
tation, skull stripping and registration (tools from the Oxford Center for
Functional Magnetic Resonance Imaging of the Brain’s Software Library,
www.fmrib.ox.ac.uk/fsl) were used. We performed probabilistic tissue-type seg-
mentation and partial volume estimation on the T1-weighted image48. We
thresholded these results to include only voxels estimated at greater than 35%
gray matter and used this to mask our cortical regions. We skull-stripped the dif-
fusion-weighted and T1-weighted images49 and performed affine registration50

between the first non-diffusion-weighted volume and the T1-weighted image to
derive the transformation matrix between the two spaces. From each voxel in the
thalamus mask, we drew samples from the connectivity distribution (as above),
maintaining knowledge of location in structural and DWI spaces, and recorded
the proportion of these samples that passed through each of the cortical masks as
the probability of connection to that zone. Hard segmentation was performed by
classifying the seed voxel as connecting to the cortical mask with the highest con-
nection probability (Figs. 2 and 3). To determine whether voxels showed strong
or weak cortical connectivity, we carried out thresholding on the basis of the
probability of reaching any cortical mask (Fig. 7). Some voxels showed a high
probability of connection to more than one cortical mask. To investigate overlap-
ping or branching connections from individual voxels, a probability was assigned
for each mask at each voxel, based on the percentage of cortically connected path-
ways that reach the mask (Fig. 6).

Cortical masks. We defined cortical zones that correspond to known thalamic
connection sites7. First, we defined four exclusive cortical zones using the follow-
ing landmarks on the T1-weighted image:

Prefrontal/temporal zone: The prefrontal cortex was defined as the lateral and
orbital cortex anterior to the inferior and superior precentral sulci, from the dor-
sal to the orbital brain surface. Medially, this region included the cortex superior
to the cingulate sulcus, anterior to the vertical line from the anterior commissure,
perpendicular to the plane between the anterior and posterior commissures
(VAC) and also the cingulate gyrus, from its anterior edge to the level of the cen-
tral sulcus. The temporal lobe was defined as the lateral cortex inferior to the lat-
eral fissure, bordered posteriorly by the temporo-occipital incisure where visible,
or the anterior occipital sulcus. Medially, the temporal lobe was defined as the
cortex anterior to a line from the temporal incisure to the posterior commissure.

Motor zone: This region included M1, supplementary motor area (SMA) and
PMC. Laterally, this included cortex anterior to the central sulcus up to and
including both banks of the inferior and superior precentral sulci. Medially, this
region included cortex anterior to the central sulcus up to the VAC line. Both lat-
eral and medial parts of this region extended from the dorsal surface of the brain
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to the level of cingulate sulcus.
Somatosensory zone: This region included S1 and S2. S1 was defined as the pos-

terior bank of central sulcus plus postcentral gyrus, from the dorsal surface of the
brain to the lateral fissure. S2 was defined as the superior bank of lateral fissure
posterior to the posterior edge of postcentral gyrus.

Parieto-occipital zone: The posterior parietal cortex was defined as the lateral
cortex posterior to postcentral gyrus, bordered posteriorly and inferiorly by a line
from the posterior-occipital fissure to the lateral fissure. Medially, PPC included
regions posterior to the postcentral gyrus, bordered posteriorly by the parietal-
occipital fissure and inferiorly by the cingulate gyrus. The occipital lobe was
defined as the lateral cortex posterior to anterior occipital sulcus and the tem-
poro-occipital incisure, bordered superiorly by a line from the parietal-occipital
fissure to the lateral fissure and the medial cortex inferior to the parietal-occipital
fissure and posterior to a line from the temporal incisure to the posterior com-
missure. The optic tract, where visible, was also included with the occipital lobe in
this target mask.

Further analyses were carried out with seven cortical masks. We separated M1
(anterior bank of central sulcus and posterior half of precentral gyrus) from the
PMC and SMA (the remainder of the motor zone). We also separated the PPC
from the occipital lobe and separated the temporal lobe from the PFC.

The insular cortex was not considered in this analysis.
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