Introduction to Matlab Plots

Pouyan R. Fard and Dario Cuevas

7. Januar 2016

Plot command

- plot(x,y), where x and y are vectors of the same size. For example:
 - x=1:0.1:10; y=sin(x); plot(x,y)
 - x1=-pi:0.1:pi; plot(x1, 2*cos(x1))
 - x2=1:10; plot(x2,x2.^2,'red') % or blue, black, b, r, g, ...
 - x3=0:0.1:pi/2; plot(x3,arctan(x3),'b*') % color + marker
 - x4=-10:10; plot(x4, heaviside(x4), '-.');
- To see a list of markers and colors: help plot
- You can put more than one function in a plot: plot(x,sin(x),'g',x,cos(x),'red)

Useful commands

The following commands can be executed after a plot:

title	Sets title for	title('Average population activity')
	the plot figure	
xlabel/ylabel	Sets the label	xlabel('time')
	to each axis	
legend	Creates a floa-	legend('First subject','Second sub-
	ting legend	ject')
axis	Changes the	axis([0 100 0 10])
	range of the	
	plot	
axis	Changes the	-
equal/square/	aspect ratio of	
tight	the plot	
grid on/off	Turn the grid	-
	on or off	
LineWidth	Changes the	plot(x,y, 'linewidth',3)
	width of the	
	plot line	

The are many more properties. For more advanced shaping, see the get and set commands.

Multiple plots in one command

To draw multiple plots in one set of axes, with one command, use: plot(x1,y1,x2,y2,...), where (x1,y1) are one set of data, (x2,y2) another set, etc. Examples:

x=1:0.1:5; y1=exp(x); y2=log(x); plot(x,y1,x,y2);

Alternatively, use the hold on and hold off commands:

Subplots

To draw many plots in one Figure window, use the subplot(rows,cols,plotnr) command. This will create one figure with many plots inside, in a 2D arrange. Example with subplot(6,6,x):

Subplot code

```
figure(1)
subplot(2,1,1)
x = linspace(-2*pi, 2*pi, 5);
plot(x, cos(x))
title('Cosine with 5 points')
subplot(2,1,2)
x = linspace(-2*pi, 2*pi,10);
plot(x, cos(x))
title('Cosine with 10 points')
% Another one
figure(2)
for i=1:4
    x = linspace(0, 2*pi, 5*i);
    subplot(2,2,i)
    plot(x,sin(x));
    title(sprintf('Sine with %d points',i*5));
end
```

Exercise

Import the data file FiringRates.mat. Each row is a different neuron; each column a time point.

- 1. Plot the firing rate for each neuron in a separate subplot, such that all are plotted on their own "square". You can decide the exact arrangement of squares; however, your code should work for any number of neurons, not just the 30 in the .mat file.
- 2. The lines should be black
- 3. Every subplot should have the same range. They should all go from zero to the maximum in the data file on the Y axis.
- 4. Add axis labels to the first subplot. They should be 'time' and 'firing rate'.
- 5. You should include a red line at height y=1 (see the picture). Use the command line for this.
- 6. Calculate the average population activity (of all 30 neurons) and plot it at the bottom of the figure, as shown in the picture; use a thick, black line. Give this plot a fitting title and axis labels 'time' and 'Population firing rate'.
- 7. Getting into the advanced stuff. Using get and set, remove the axis ticks on all the subplots except the first one.