
Introduction to Matlab
Cells, structs, strings and functions

Pouyan R. Fard and Dario Cuevas

19. November 2015



Cells and structures

Cells:
They are similar to arrays, but each element can have a di�erent size
Example:
To initialize a cell array:
A = cell(3,2)

To index, use curly brackets:
A{1,1} = magic(5);

A{3,2} = zeros(2,1);

To index a cell's element's elements: A{1,1}(1,1)

Structures:
Like Cells, but indexed with names:
Example:
For a structure named �subject�,
subject.age = 30;

subject.country = 'Mexico';

subject.height = 1.83;

subject.results = [1, 0, 1, 1, 0];

To index the element's element, subject.results(5)



Cells and structures exercises

1. Create a vector-cell CellA whose �rst element is [1], the second
[1, 2], then [1,2,3], etc., until 5. The 6th element is magic(7).
The 7th one is empty.

2. Create a structure called MyStruct with elements: NoOfClassmates,
CurrentYear, MyCell and Magia. The value of MyCell should be
CellA from the previous exercise. The value of Magia should be the
6th element of CellA.

3. From MyStruct, change the 7th element of MyCell (that is,
MyStruct.MyCell{7}) to rand(2,10)



Strings

Strings are arrays of letters.
A = 'I am Jo';

They are indexed like an array:
A(1) gives I , A(2) gives (empty space) ;
To create two-dimensional arrays of chars:
B = char(A, 'Yes I am');

Note: C = '5'; is NOT a number but a string. C+5 gives unexpected
results.
Examples for indexing:
A(8:end) gives Jo
B(2,1:3) gives Yes

Exercise: Substitute Jo's name for your own in A. You might have to add
or delete characters at the end.



Save and load commands

save(filename, variable(s))

For example, A = 1; B = magic(5):
save('myvariables.mat', 'A', 'B')

When no variables are given, all are saved. For example:
save('myworkspace.mat') All variables are saved as a structure. Thus,
myworkspace.mat is a structure with �elds mystructure.A and
mystructure.B
load('mystructure.mat') will load all the variables in
mystructure.mat into your workspace. Matlab has to be in the folder
where mystructure.mat is located.
myStruct = load('mystructure.mat') will load all the variables into
myStruct. Then, to access them, use myStruct.A and myStruct.B



Scripts

I Scripts are successions of commands. Executed in the order found
(from top to bottom).

I % at the beginning of a line means that it's a comment and won't
be executed.

I Use ; at the end of each command to suppress the output of that
command.

I To run the script, use F5.

I Use %% to divide the script in independent cells.

I To run a cell, press ctrl+Enter.

I Script names can have letters, underscores and numbers. Just like
variables.

I Remember, all will be saved to the workspace (command window).
Variables will be overwritten.



Functions

A function is de�ned as:

function [output1, output2, ...] = ...

NameOfFunction(input1, input2,...)

end

Note that you can use elipsis (...) to break Matlab commands into
multiple lines.

I It's also a succession of commands

I All variables are stored in a temporary workspace and deleted
afterwards.

I You can reuse names of variables that are in your main workspace
without changing them.

I You cannot use variables from outside of the function unless passed
as inputs.

To call a function:
[variable1, variable2,...] = NameOfFunction(input1, input2,...);



Remarks about functions

I Run the function with the name of the �le, not the name of the
function.

I Name the function the same as the �le.

I An error is returned when a function is called with insu�cient inputs.

I Use ~ to suppress an output.

I You can call a function without assigning its output. It will display
the output on the command window.

I The variables given as input when calling the function need not have
the same name as in the function de�nition.

I Use a ; when calling a function to not display its output.

I Matlab does not check the variable type of the inputs. This should
be done �manually�.

I The comments at the beginning of a function are displayed when
help MyFunct is called.



Exercises

1. Create a function called MyConcatenation, that takes as input two
matrices. It should concatenate these two matrices one next to the
other, in the order they are given. Additionally, these two lines of
code should be included:

figure

imagesc(X)

where X is the result of the concatenation. The function should also
output X. Try the function with the following inputs: A=ones(5,1),
B = magic(5); name the output ABout.

2. Using MyConcatenation, concatenate the output of the previous
exercise (ABout) with a matrix C = zeros(5,1).

3. Write a function MyElimination that removes the last 3 columns of
the output of the last exercise.

4. Write a script that runs the last 3 exercises together.


	Previously...
	Strings
	Saving and loading variables
	Scripts, functions and path

