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height using software available from Sontek. From each time series we calculated mean
near-bed velocity independent of ¯ow direction. Mean near-bed velocity was compared
between treatments using a non-parametric Mann±Whitney U-test because variances
could not be transformed to satisfy parametric assumptions.

Resource consumption

After measuring near-bed ¯ow, 278 mg of SPM stained with Rose Bengal dye was
released as a single pulse into each stream19. Larvae were allowed to feed for 15 min (a
duration less than gut passage times) before they were removed from their nets and
frozen. We dissected larval guts later and measured the diameter and band length of
stained SPM in foreguts using a dissecting microscope and ocular micrometer. Because
foreguts are essentially cylindrical, the consumption of SPM by each larva was calculated
as mm3 SPM by p ´ band length in foregut ´ (1/2 foregut diameter)2. Per capita
consumption was compared between treatments using t-tests. Total resource con-
sumption (the summed consumption of SPM by all larvae inhabiting a stream) was
compared between treatments using a non-parametric Mann±Whitney U-test because
variances could not be transformed to satisfy parametric assumptions. We used a paired
t-test to compare observed resource consumption in mixed assemblages with the total
expected SPM consumption2.

Bed roughness

At the end of the experiment we recorded the downstream location of every caddis¯y net
and measured their maximum heights and widths. We calculated the average maximum
height and density of the roughness elements, as well as their aggregation and topo-
graphical complexity. Aggregation measures the spacing between roughness elements as
the mean euclidian distance between neighbouring nets. Topographical complexity
measures the spatial uniformity or non-uniformity of roughness elements as the standard
deviation of the parabolic area (in mm2) of catchnets. An s.d. of 0 indicates a uniform
streambed (no topographical complexity), whereas a higher s.d. indicates greater
streambed complexity. We compared all four aspects of bed roughness between treatments
using t-tests.
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When a person looks at an object while exploring it with their
hand, vision and touch both provide information for estimating
the properties of the object. Vision frequently dominates the
integrated visual±haptic percept, for example when judging
size, shape or position1±3, but in some circumstances the percept
is clearly affected by haptics4±7. Here we propose that a general
principle, which minimizes variance in the ®nal estimate, deter-
mines the degree to which vision or haptics dominates. This
principle is realized by using maximum-likelihood estimation8±15

to combine the inputs. To investigate cue combination quantita-
tively, we ®rst measured the variances associated with visual and
haptic estimation of height. We then used these measurements to
construct a maximum-likelihood integrator. This model behaved
very similarly to humans in a visual±haptic task. Thus, the
nervous system seems to combine visual and haptic information
in a fashion that is similar to a maximum-likelihood integrator.
Visual dominance occurs when the variance associated with
visual estimation is lower than that associated with haptic
estimation.

The estimate of an environmental property by a sensory system
can be represented by

ÃSi � f i�S� �1�

where S is the physical property being estimated and f is the
operation by which the nervous system does the estimation. The
subscripts refer to the modality (i could also refer to different cues
within a modality). Each estimate, ÃSi, is corrupted by noise. If the
noises are independent and gaussian with variance j 2

i , and the
bayesian prior is uniform, then the maximum-likelihood estimate

* Present address: Max Planck Institute for Biological Cybernetics, TuÈbingen 72076, Germany.
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(MLE) of the environmental property is given by

ÃS �

î

wi
ÃSi with wi �

1=j2
i

ĵ

1=j2
j

�2�

Thus, the MLE rule states that the optimal means of estimation (in
the sense of producing the lowest-variance estimate) is to add the
sensor estimates weighted by their normalized reciprocal var-
iances8±15. If the MLE rule is used to combine visual and haptic
estimates, ÃSV and ÃSH, the variance of the ®nal (visual±haptic)
estimate, ÃS, is

j2
VH �

j2
Vj2

H

j2
V � j2

H

�3�

Thus, the ®nal estimate has lower variance than either the visual or
the haptic estimator. Implementation of MLE integration is shown
for two hypothetical cases in Fig. 1.

We examined visual±haptic integration quantitatively to deter-
mine whether human performance is optimal. Observers looked at
and/or felt a raised ridge (Fig. 2) and judged its height (vertical
extent). To work out the predictions of the MLE rule, we ®rst
determined the variances of the visual and haptic height estimates
(within-modality) by conducting discrimination experiments. In
the haptic-alone experiment, observers indicated which of two
sequentially presented ridges was taller from haptic information
alone; in the visual-alone experiment, they did the same from visual
information alone. There were four conditions in the visual experi-
ment that differed in the amount of noise in the stimulus (see
Methods). By adding noise we made the visually speci®ed height less
reliable.

Visual-alone and haptic-alone discrimination data are shown in
Fig. 3a. The proportion of trials in which the observer indicated that
the comparison stimulus (variable height) appeared taller than the
standard stimulus (®xed height of 55 mm) is plotted as a function of

the height of the comparison stimulus. The dashed red line and
symbols represent the haptic discrimination data, and the solid blue
curves with open symbols represent the visual data for the four
levels of noise. These psychometric functions were well ®t by
cumulative gaussian functions.

The discrimination threshold is de®ned as the difference between
the point of subjective equality (PSE) and the height of the
comparison stimulus when it is judged taller than the standard
stimulus 84% of the time. The 84% point corresponds to

���
2

p
times

the standard deviation of the underlying estimator. The haptic
discrimination threshold was roughly 0.085 times the average ridge
height (which was 55 mm). As the noise increased from 0 to 200%,
the visual discrimination thresholds increased from 0.04 to 0.2
times the average height. Thus, when the visual noise was 0%, the
visual discrimination threshold was roughly half the haptic thresh-
old; when the visual noise was 200%, the visual threshold was more
than double the haptic threshold.

In the visual±haptic experiment, observers simultaneously
looked at and felt two raised ridges that were presented sequentially.
In one presentation the visually and haptically speci®ed heights
were equal (comparison stimulus); in the other presentation they
differed (standard stimulus). The difference (D) in the speci®ed
heights was 6 6, 6 3 or 0 mm (the average of SH and SV was 55 mm).
For each D in the standard stimulus (randomly presented), the
height of the comparison stimulus was varied randomly from trial
to trial (47±63 mm). On each trial, the observer indicated which
stimulus seemed taller. Figure 3b shows the proportion of trials in
which the comparison stimulus was chosen as taller as a function of
the height of the comparison stimulus. From these psychometric
functions, we estimated the PSEÐthe comparison height appearing
equal to the standard heightÐand the just-discriminable change in
height (threshold).

Using the within-modality data, we can predict what an observer
using MLE will do when presented visual and haptic information
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Figure 1 Maximum-likelihood estimation integration: two hypothetical situations. Visually

and haptically speci®ed heights differ by D. Dashed gaussians in the top panels represent

probability densities of the (unbiased) estimated height from visual and haptic

assessment, and solid gaussians represent probability densities for the combined

estimate. On the left, the visual and haptic variances are equal (j2
H=j

2
V � 1) and both their

weights are 0.5 (equation (2)). The mean of the combined probability density is therefore

equal to the mean of the visual and haptic densities and the variance is reduced by half

(equation (3)). If the observer bases judgements of relative height on the combined

probability density, the psychometric function would be a cumulative gaussian (bottom

left) with a point of subjective equality (PSE) equal to the average of the visual and haptic

heights of the standard stimulus. On the right, the haptic variance is four times the visual

variance: j2
H=j

2
V � 4. By equation (2), the visual weight (wV) is 0.8 and the haptic weight

(wH) is 0.2. Thus, the combined probability density is shifted towards the visual estimate

and its variance is 0.8 times the visual variance (equation (3)). Accordingly, the

psychometric function should be shifted so that the PSE is closer to the visual height of the

standard stimulus.
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simultaneously, and we compare these predictions to the perfor-
mance in the visual±haptic experiment. First, we describe the analysis
of the PSE data and predictions for the weights. From equation (2)
and the relationship between threshold and estimator variance:

wV

wH

�
j2

H

j2
V

�
T2

H

T2
V

�4�

where TH and TV are the haptic and visual thresholds (84%
points in Fig. 3a). Incorporating the normalization assumption
(wV � wH � 1), the predicted weights for optimal integration are

wV �
T2

H

T2
V � T2

H

and wH �
T2

V

T2
V � T2

H

�5�

The predicted visual weights are represented by the curve and
shaded surround in Fig. 3c. The predicted weights vary signi®cantly
with the amount of visual noise in the stimulus: the visual weights
are higher when the noise level is low, and lower when the noise level
is high. Assuming that the visual and haptic estimators are on
average unbiased (ÃSV � SV and ÃSH � SH), the weights can be derived
experimentally:

wV � �PSE 2 SH�=�SV 2 SH� �6�

where PSE is the height of the comparison stimulus that matched
the apparent height of the standard stimulus. The visually and
haptically speci®ed heights in the standard stimulus, SV and SH, are
indicated on the right ordinate. Figure 3c shows that as the noise
level was increased the visual weight decreased, and the PSE shifted
from SV towards SH. Because the noise level varied randomly from
trial to trial, the weights must have been set within the 1-s stimulus
presentation. Below, we suggest a mechanism for such dynamic
weight adjustment. In summary, the predicted and observed PSEs
are similar, suggesting that humans do combine visual and haptic
information in a fashion similar to MLE integration.

According to the MLE rule, the combined estimates should have
lower variance, and therefore lower discrimination thresholds, than
either the visual or haptic estimate alone (equation (3)). To derive
predictions for the visual±haptic discrimination thresholds, we
rewrite equation (3):

T2
VH �

T2
VT2

H

T2
V � T2

H

, 1

T2
VH

�
1
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V

�
1

T2
H
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The predicted and observed thresholds are shown in Fig. 3d. The
open symbols represent the visual-alone thresholds and the dashed
line represents the haptic-alone threshold. The shaded area repre-
sents the predicted visual±haptic thresholds; they are always lower
than the visual-alone and haptic-alone thresholds at the corre-
sponding noise level. The ®lled purple symbols represent the
observed visual±haptic discrimination thresholds; as noise level
increases, the just-noticeable difference in height becomes greater.
Most notably, the predicted and observed visual±haptic discrimi-
nation thresholds are similar. As with the PSE data, this indicates
that human observers may combine visual and haptic information
in a manner similar to MLE integration.

In summary, we found that height judgements were remarkably
similar to those predicted by the MLE integrator. Thus, the nervous
system seems to combine visual and haptic information in a fashion
similar to the MLE rule: visual and haptic estimates are weighted
according to their reciprocal variances (equation (2)). Naturally, it is
important to determine whether this rule characterizes the estima-
tion of other stimulus properties such as shape, depth, localization,
roughness or compliance.

The relative contributions of vision and haptics to perceiving
such object properties have been studied previously. For example,
subjects have grasped a square while looking at it through a
distorting lens that made it appear rectangular1. The shape of the
uni®ed percept was determined almost completely by vision, so the
phenomenon was called `visual capture'. Numerous studies have
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Figure 2 Apparatus and stimuli. a, Observers viewed the re¯ection of the visual stimulus,

presented on a cathode ray tube (CRT) binocularly in a mirror. CrystalEyes

(StereoGraphics) liquid-crystal shutter glasses were used to present binocular disparity.

The surfaces of the stimuli were perpendicular to the line of sight. A head and chin rest

limited head movements. The right hand was beneath the mirror and could not be seen.

The haptic stimulus was presented with two PHANToM force-feedback devices, one each

for the index ®nger and thumb. b, Stereograms representative of visual stimuli, which

should be viewed by cross-fusing. Top row, stereogram has no noise and the horizontal

bar is raised above the background. Bottom row, stereogram of bar and background

contains noise, with random displacements of dots parallel to the line of sight.
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replicated visual capture in shape and size perception3,16,17, depth
perception18 and localization2,19±21. But visual capture does not
occur in the perception of surface roughness6,22; instead, perceived
roughness is affected nearly equally by haptics and vision. Does a
dynamic cue-combination rule, such as the one described here,
determine the degree to which vision or haptics dominates? The
statistically optimal means of combining visual and haptic informa-
tionÐthe MLE ruleÐpredicts that visual capture should occur
whenever the visual estimate of a property has much less variance
than that of the haptic estimate. Haptic capture should be observed
when the reverse occurs. We observed behaviour like visual capture
when the visual stimulus was noise-free, and behaviour similar to
haptic capture when the visual stimulus was quite noisy (Fig. 3c).

In visual±haptic tasks, the MLE integrator described here always
uses information from both sensory systems, so the combined
percept will always re¯ect both sources of information. Different
behaviour may be observed when the discrepancy between two
information sources is large. With large discrepancies between
information sources, the nervous system may exhibit robust
behaviour10 in which a discrepant source is discounted9,23. In
robust estimation, the weights associated with different information
sources are determined by more than the variances of the sensory
estimators; they are also determined by the discrepancy between
their estimates. In our experiments, the differences between the
visually and haptically speci®ed stimuli were never greater than
11%, and the visual±haptic data always exhibited an in¯uence of
both sensory systems. If the differences had been larger, we might

have observed discounting of one sense. It would be interesting to
know whether such vetoing occurs when observers become aware of
the con¯ict between visual and haptic inputs.

If the nervous system implements MLE integration, the weights
must be proportional to the reciprocal variances of the probability
densities associated with the visual and haptic estimates of the
environmental property in question (equation (2) and Fig. 1). Of
course, the variances change from one object property to the next
(such as size, shape or roughness) and from one situation to another
(for example, visual variance increases as the lighting is degraded).
Does the nervous system need to calculate or learn the variances
associated with the visual and haptic estimators for each property
and situation to implement MLE integration? Although explicit
calculation or learning may occur24, there are plausible schemes in
which explicit calculation of variances or weights is unnecessary.

Consider, for example, a population of visual and haptic neurons,
each sensitive to a range of heights. Each neuron has a preferred
height but also responds to other heights (that is, each neuron has a
tuning function). If the visual input speci®es the height clearly (that
is, high contrast, noise-free, and so on), then the visual neurons
preferring that height respond vigorously and those preferring other
heights respond less, and the distribution of response across the
population of visual neurons has a well de®ned peak. Assume that
the distribution across the population of haptic neurons has a less
well de®ned peak. Multiplication of these two distributions (point-
by-point multiplication where the two populations are in registra-
tion according to the stimulus property being estimated)25 yields a
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Figure 3 Predictions and experimental data. a, Within-modality discrimination. Proportion

of trials in which a comparison was perceived as taller than the standard stimulus is

plotted against the height of the comparison stimulus. Data were averaged for observers.

Height of the standard stimulus was 55 mm. Haptic discrimination data are represented

by red crosses and the dashed curve (best-®tting cumulative gaussian); visual

discrimination data are represented by blue curves, which correspond to four noise levels.

b, Visual±haptic discrimination. The average height of visual±haptic standard stimulus

was 55 mm; the height difference, D, varied from -6 to +6 mm. To plot the data on the

same coordinates, the psychometric functions for each D were shifted laterally by w VD/2

(w V is obtained from the regression of PSE against D). Purple curves represent the

different visual noise levels. c, Weights and PSEs. Abscissa represents the noise level, left

ordinate represents visual weight (w V; haptic weight is 1 - w V) and right ordinate

represents the PSEs relative to S V and S H. Purple symbols represent observed visual

weights obtained from regression analysis of PSEs (equation 6) across D. Shaded area

represents predicted weights expected from within-modality discrimination (a; equation

(5)); its height represents predicted errors given the standard errors of the within-modality

discrimination. d, Combined and within-modality discrimination thresholds. Just-

noticeable differences in height are plotted against noise level. Thresholds are taken from

psychometric functions in a and b. Dashed red line represents haptic-alone threshold;

open blue symbols represent visual-alone thresholds; ®lled purple symbols represent

combined visual±haptic thresholds. Shaded area represents predicted visual±haptic

thresholds (equation (7)).
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peak response closer to the visual than the haptic peak, as with MLE
integration. If degrading the visual input causes the response
distribution of the visual neurons to spread, then multiplication
of the visual and haptic distributions yields a peak closer to the
haptic peak, again as in MLE integration. Thus, the estimator
variances (and therefore the weights) do not have to be calculated
explicitly: the behaviour of an MLE integrator might be achieved
through interactions among populations of visual and haptic
neurons. M

Methods
Stimuli

The stimulus was a horizontal bar raised 30 mm above a plane; the bar and plane were
perpendicular to the line of sight (Fig. 2a). The width of the bar was 150 mm; its height
varied but the average was S0 = 55 mm. Observers viewed the bar binocularly and/or
grasped it with the index ®nger and thumb in order to estimate its height (Fig. 2a). Its
vertical position was varied randomly from trial to trial.

The haptic stimulus was generated using two PHANToM (SensAble Technologies)
force-feedback devices (Fig. 2a), one each for the index ®nger and thumb. Finger and
thumb movements had all six degrees of freedom in the 20-cm3 workspace. The three-
dimensional positions of the tips of the ®nger and thumb were monitored, and
appropriate forces were applied when the tips reached the positions of the simulated
haptic objects. PHANToMs compellingly simulate haptic properties such as the size, shape
and stiffness of the bar. The apparatus was calibrated to align the visual and haptic stimuli
spatially.

The visual stimulus was a random-dot stereogram simulating the background plane and
bar (Fig. 2). The dots subtended 8 arcmin at the 50-cm viewing distance. Dot density was
roughly 9 dots per degree2. New dots were displayed with each presentation. The positions
of the ®nger and thumb (tracked by the PHANToMs) were indicated by small three-
dimensional markers; the markers were visible until the bar was touched. Noise was added
to the visual display to vary its reliability. The noise was a random displacement of the dot
depths in the stereogram (direction parallel to line of sight). The displacements were
drawn from a random uniform distribution whose range was 0, 67, 133 or 200% of the 3-
cm depth step between the bar and plane. The displacement of the dots is shown in Fig. 2.
No noise was added to the haptic display.

We wanted the presentation times for the visual and haptic stimuli to be identical. In the
vision-alone discrimination experiment, the standard and comparison stimuli were
displayed for 1 s each. In the haptic-alone discrimination experiment, the haptic stimulus
began when the thumb and ®nger both contacted the bar and ended after 1 s. In the visual±
haptic trials, the visually speci®ed bar did not appear until the bar was touched by both
®ngers simultaneously and the visual and haptic stimuli were extinguished after 1 s.

Procedure

Within-modality discrimination was measured in a two-interval, forced-choice scheme.
Each trial consisted of the sequential (visual or haptic) presentation of two bars. In the
standard interval, the bar was always 55 mm tall and in the comparison interval, it was
shorter or taller than 55 mm. The standard and comparison stimuli were randomly
assigned to the ®rst or second interval. The observer indicated the interval containing the
apparently taller stimulus. The comparison height was varied according to the method of
constant stimuli. We plotted psychometric functions, that is the proportion of trials in
which the comparison was perceived as taller than the standard against the comparison
height. From these functions, we could determine PSEs and discrimination thresholds.
Half of the vision-alone and haptic-alone discrimination experiments were conducted (in
random order) before the visual±haptic experiment and the other half were conducted
after.

In the visual±haptic experiment, observers were again presented two stimuli sequen-
tially: the standard stimulus (visually and haptically speci®ed heights differed by D) and
the comparison stimulus (visually and haptically speci®ed heights were the same). The
average height of the standard stimulus was always 55 mm and the visual±haptic
difference (D) ranged from -6 to +6 mm. The height of the comparison varied. The
observer indicated the interval containing the apparently taller stimulus. Trials with
different con¯icts were presented in random order to prevent visuomotor adaptation.

No feedback was given in any of the experiments. Four observers (aged 22 to 33), naive
to the experimental purpose, participated. They were right handed and had normal or
corrected-to-normal vision. The observers were questioned at the end: none of them had
noticed the con¯icts between the visually and haptically speci®ed heights.

Received 25 July; accepted 15 November 2001.

1. Rock, I. & Victor, J. Vision and touch: An experimentally created con¯ict between the two senses.

Science 143, 594±596 (1964).

2. Hay, J. C., Pick, H. L. Jr & Ikeda, K. Visual capture produced by prism spectacles. Psychonomic Sci. 2,

215±216 (1965).

3. Warren, D. H. & Rossano, M. J. in The Psychology of Touch (eds Heller, M. A. & Schiff, W.) 119±137

(Erlbaum, Hillsdale, New Jersey, 1991).

4. Power, R. P. The dominance of touch by vision: Sometimes incomplete. Perception 9, 457±466

(1980).

5. Welch, R. B. & Warren, D. H. Immediate perceptual response to intersensory discrepancy. Psychol.

Bull. 88, 638±667 (1980).

6. Lederman, S. J. & Abbott, S. G. Texture perception: Studies of intersensory organization using a

discrepancy paradigm, and visual versus tactual psychophysics. J. Exp. Psychol. Hum. Percept. Perform.

7, 902±915 (1981).

7. Heller, M. A. Haptic dominance in form perception with blurred vision. Perception 12, 607±613 (1983).

8. Clark, J. J. & Yuille, A. L. Data Fusion for Sensory Information Processing Systems (Kluwer Academic,

Boston, 1990).

9. Blake, A., BuÈlthoff, H. H. & Sheinberg, D. Shape from texture: Ideal observer and human

psychophysics. Vision Res. 33, 1723±1737 (1993).

10. Landy, M. S., Maloney, L. T., Johnston, E. B. & Young, M. Measurement and modeling of depth cue

combination: In defense of weak fusion. Vision Res. 35, 389±412 (1995).

11. Gharamani, Z., Wolpert, D. M. & Jordan, M. I. in Self-organization, Computational Maps, and Motor

Control (eds Morasso, P. G. & Sanguineti, V.) 117±147 (Elsevier, Amsterdam, 1997).

12. Knill, D. C. Discrimination of planar surface slant from texture: Human and ideal observers

compared. Vision Res. 38, 1683±1697 (1998).

13. Backus, B. T. & Banks, M. S. Estimator reliability and distance scaling in stereoscopic slant perception.

Perception 28, 417±442 (1999).

14. van Beers, R. J., Sittig, A. C. & Denier van der Gon, J. J. Integration of proprioceptive and visual

position information: An experimentally supported model. J. Neurophysiol. 81, 1355±1364 (1999).

15. Schrater, P. R. & Kersten, D. How optimal depth cue integration depends on the task. Int. J. Comp. Vis.

40, 71±89 (2000).

16. Gibson, J. J. Adaptation, after-effect, and contrast in the perception of curved lines. J. Exp. Psychol. 16,

1±31 (1933).

17. Festinger, L., Burnham, C. A., Ono, H. & Bamber, D. Efference and the conscious experience of

perception. J. Exp. Psychol. 74 (4), 1±36 (1967).

18. Singer, G. & Day, R. H. Visual capture of haptically judged depth. Percept. Psychophys. 5, 315±316

(1969).

19. Tastevin, J. En partant de l'experience d'Aristote. L'Encephale 1, 57±84 (1937).

20. Mon-Williams, M., Wann, J. P., Jenkinson, M. & Rushton, K. Synaesthesia in the normal limb. Proc. R.

Soc. Lond. B 264, 1007±1010 (1997).

21. Pavani, F., Spence, C. & Driver, J. Visual capture of touch: out-of-the-body experiences with rubber

gloves. Psycholog. Sci. 11, 353±359 (2000).

22. Heller, M. A. Visual and tactual texture perception: Intersensory cooperation. Percept. Psychophys. 31,

339±344 (1982).

23. Banks, M. S. & Backus, B. T. Extra-retinal and perspective cues cause the small range of the induced

effect. Vision Res. 38, 187±194 (1998).

24. Ernst, M. O., Banks, M. S. & BuÈlthoff, H. H. Touch can change visual slant perception. Nature

Neurosci. 3, 69±73 (2000).

25. PenÄa, J. L. & Konishi, M. Auditory spatial receptive ®elds created by multiplication. Science 292, 249±

252 (2001).

Acknowledgements

We thank M. Landy for comments on the manuscript; and H. Ernst, X. Moncada,
C. Alderson and S. Kashiwada for participating as observers. This research was supported
by research grants from Air Force Of®ce of Scienti®c Research and the National Institutes
of Health, and by an equipment grant from Silicon Graphics.

Competing interests statement

The authors declare that they have no competing ®nancial interests.

Correspondence and requests for materials should be addressed to M.O.E.
(e-mail: marc.ernst@tuebingen.mpg.de).

.................................................................
Effects of grouping in
contextual modulation
Michael H. Herzog* & Manfred Fahle*²

* Human Neurobiology, University of Bremen, Argonnenstrasse 3, 28211 Bremen,

Germany
² City University, Department of Optometry and Visual Science, Tait Building,

Northampton Square, London EC1V 0HB, UK

..............................................................................................................................................

Perception of a visual target and the responses of cortical neurons
can be strongly in¯uenced by a context surrounding the target1±27.
This observation relates to the fundamental issue of how cortical
neurons code objects of the external world. In high-contrast
regimes, embedding a target in an iso-oriented context reduces
neural responses and deteriorates performance in psychophysical
experiments. Performance from orthogonal surrounds is better
than that from iso-oriented ones1±17. This contextual interference
is often postulated to be caused by long- or short-range interac-
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