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Abstract:

The classical or frequentist approach to statistics (in which inference is centered on sig-
nificance testing), is associated with a philosophy in which science is deductive and fol-
lows Popper’s doctrine of falsification. In contrast, Bayesian inference is commonly asso-
ciated with inductive reasoning and the idea that a model can be dethroned by a compet-
ing model but can never be directly falsified by a significance test. The purpose of this
article is to break these associations, which I think are incorrect and have been detrimen-
tal to statistical practice, in that they have steered falsificationists away from the very
useful tools of Bayesian inference and have discouraged Bayesians from checking the fit
of their models. From my experience using and developing Bayesian methods in social
and environmental science, I have found model checking and falsification to be central in
the modeling process.

1. The Standard View of the Philosophy of Statistics,
and Its Malign Influence on Statistical Practice

Statisticians can be roughly divided into two camps, each with a clear configu-
ration of practice and philosophy. I will divide some of the relevant adjectives
into two columns:

Frequentist Bayesian
Objective Subjective
Procedures Models

P-values Bayes factors
Deduction Induction
Falsification Pr (model is true)

This division is not absolute—in particular, it does not capture my own mix of
philosophy and statistical practice—but it reflects a common alignment of be-
liefs. I shall call it the standard view of the philosophy of statistics and abbrevi-
ate it as S.
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Science Foundation for grants SES-1023176 and SES-1023189, Institute of Education Sciences
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SC0002099, and National Security Agency for grant H98230-10-1-0184.
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The point of this article is that S is a bad idea and that one can be a better
statistician—and a better philosopher—Dby picking and choosing among the two
columns rather than simply choosing one.

S is neither a perfect classfier nor does it encompass all of statistical practice.
For example, there are objective Bayesians who feel comfortable choosing prior
distributions via the same sorts of theory-based principles that non-Bayesians
have commonly used when choosing likelihoods. And there are concepts and
methods such as robustness, exploratory data analysis, and nonparametrics
which do not traditionally fall in one or the other column. Overall, though, S
represents a set of associations that are commonly held—and I argue that they
are influential, and can be harmful, even to those practically-minded folk who
have no interest in foundations or philosophy. The economist (and Bayesian)
John Maynard Keynes famously remarked, “even the most practical man of af-
fairs is usually in the thrall of the ideas of some long-dead economist”, and this
is the case for philosophy as well.

Before explaining why I think that S, the above two-column categorization of
statistics, is wrong, I will argue that it has been influential. (After all, it would
be silly for an applied statistician to fight against a scheme that had no practical
implications.)

I see two distinct ways in which S has hurt statistical practice. From one di-
rection, consider the harm done to falsificationists—those scientists influenced
(correctly, in my view) by the ideas of Karl Popper and his followers to favor an
approach to inference in which hypotheses can only be rejected, not confirmed,
along with an objective framework in which informed scientific consensus is held
to reflect reality rather than the reverse. S has influenced these falsificationists
to disdain Bayesian inference in favor of the Neyman-Pearson or Fisherian ap-
proaches to hypothesis testing. In light of the many applied successes achieved
by Bayesian methods in recent decades,’ it seems a pity to abandon such a pow-
erful approach because of philosophical qualms—especially if, as I argue here,
these qualms are misplaced.

The second way in which I believe S has harmed statistics is by blinding
many Bayesians to the benefits of predictive model checking. I vividly remem-
ber going from poster to poster at the 1991 Valencia meeting on Bayesian statis-
tics and hearing from their presenters that, not only were they not interested

1 Progress in statistical methods is uneven. In some areas the currently most effective methods
happen to be Bayesian, while in other realms other approaches might be in the lead. The open-
ness of research communication allows each side to catch up: any given Bayesian method can be
interpreted as a classical estimator or testing procedure and its frequency properties evaluated;
conversely, non-Bayesian procedures can typically be reformulated as approximate Bayesian in-
ferences under suitable choices of model. These processes of translation are valuable for their
own sake and not just for communication purposes. Understanding the frequency properties of
a Bayesian method can suggest guidelines for its effective application, and understanding the
equivalent model corresponding to a classical procedure can motivate improvements or criticisms
of the model which can be translated back into better understanding of the procedures. From
this perspective, then, a pure Bayesian or pure non-Bayesian is not forever doomed to use out-of-
date methods, but at any given time the purist will be missing some of the most effective current
techniques.
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in checking the fit of the models, they considered such checks to be illegitimate.
To them, any Bayesian model necessarily represented a subjective prior distri-
bution and as such could never be tested. The idea of testing and p-values were
held to be counter to the Bayesian philosophy. Bayesians have become more
flexible in recent years but I still see some resistance to checking model fit.

It is not only Bayesians who avoid model checking. Quantitative researchers
in political science, economics, and sociology (to name just three fields with
which I happen to be familiar) regularly fit elaborate models without even the
thought of checking their fit. Sometimes there is a bit of data exploration be-
forehand to suggest possible transformations and maybe tests of one or two as-
sumptions (for example, checking for autocorrelation or clustering), but rarely
the sort of open-ended exploration devoted to learning the limitations of a fitted
model.

Model checking plays an uncomfortable role in statistics. A researcher is typ-
ically not so eager to perform stress testing, to try to poke holes in a model or
estimation procedure that may well represent a large conceptual and computa-
tional investment. And the model checking that is done is often invisible to the
reader of the published article. Problems are found, the old model is replaced,
and it is only the new, improved version that appears in print.

So I am not claiming that S alone, or even mostly, has stopped statisticians
from checking their models. But I do feel that S has served as a justification for
many Bayesians to take the easy way out and, as a result, miss out on one of the
most useful ideas in statistics: that it is possible to reject a model using the very
data to which the model has been fit.

In short, S has led many falsificationists and others who are interested in
objective scientific knowledge to shun Bayesian methods, and S has led many
Bayesians to shun falsification.

2. The Standard View of the Philosophy of Statistics
Does Not Describe How I Do Statistics

At the center of S is the view that Bayesian inference represents inductive rea-
soning about scientific hypotheses. Here is how Wikipedia puts it (at the time of
this writing):2

“Bayesian inference uses aspects of the scientific method, which in-
volves collecting evidence that is meant to be consistent or inconsis-
tent with a given hypothesis. As evidence accumulates, the degree
of belief in a hypothesis ought to change. With enough evidence, it
should become very high or very low. [...] Bayesian inference uses a

2 We use Wikipedia here not as an authoritative source but rather as a reflection of a general
consensus. My views on induction, deduction, and Bayesian inference are not in agreement with
this consensus, and so it is my duty to explain, first, why my views are right and the consensus
wrong, and, second, if the consensus is so clearly wrong, how so many could intelligent people
hold to it.
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numerical estimate of the degree of belief in a hypothesis before evi-
dence has been observed and calculates a numerical estimate of the
degree of belief in the hypothesis after evidence has been observed.
[...] Bayesian inference usually relies on degrees of belief, or sub-
jective probabilities, in the induction process and does not necessar-
ily claim to provide an objective method of induction. Nonetheless,
some Bayesian statisticians believe probabilities can have an objec-
tive value and therefore Bayesian inference can provide an objective
method of induction.”

This does not describe what I do in my applied work. I do go through models,
sometimes starting with something simple and building up from there, other
times starting with my first guess at a full model and then trimming it down
until I can understand it in the context of data. And in any reasonably large
problem I will at some point discard a model and replace it with something new
(see Gelman and Shalizi 2011a,b, for more detailed discussion of this process
and how it roughly fits in to the philosophies of Popper and Kuhn).

But I do not make these decisions on altering, rejecting, and expanding mod-
els based on the posterior probability that a model is true. Rather, knowing
ahead of time that my assumptions are false, I abandon a model when a new
model allows me to incorporate new data or to fit existing data better.

At a technical level, I do not trust Bayesian induction over the space of mod-
els because the posterior probability of a continuous-parameter model depends
crucially on untestable aspects of its prior distribution. (For any parameters
that are identifiable by the data, the behavior of the prior in the far tails of the
distribution is irrelevant to inference within the model but can have arbitrarily
large effects on the model’s marginal posterior probability.)

At a philosophical level, I have been persuaded by the arguments of Pop-
per (1959), Kuhn (1970), Lakatos (1978), and others that scientific revolutions
arise from the identification and resolution of anomalies. In statistical terms,
an anomaly is a misfit of model to data (or perhaps an internal incoherence
of the model), and it can be identified by a (Fisherian) hypothesis test without
reference to any particular alternative (what Cox and Hinkley 1974 call “pure
significance testing”). True, one might argue that finding an anomaly via a
graphical or numerical data summary involves at the very least some implicit
consideration of alternatives—a sense of what directions of misfit are poten-
tially interesting or important. But such an implicit choice of directions in which
to test is a far cry from the fully specified probability model that would be re-
quired to perform a Bayes factor. At the next stage, we see science—and applied
statistics—as resolving anomalies via the creation of improved models which of-
ten include their predecessors as special cases. This view corresponds closely to
the error-statistics idea of Mayo (1996).

Where does induction fit into this story? Popper has argued (convincingly, in
my opinion) that scientific inference is not inductive but deductive, that the way
we generalize from particular cases is through the medium of models, and that
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inference within a model is deductive (see also Greenland 1998). Our key de-
parture from the mainstream Bayesian view (as expressed, for example, in the
Wikipedia excerpt above) is that we do not attempt to assign posterior proba-
bilities to models or to select or average over them using posterior probabilities.
Instead, we use predictive checks to compare models to data and use the infor-
mation thus learned about anomalies to motivate model improvements.

3. The Stability of the Consensus View of Bayesian
Induction

If the falsificationist Bayesian view is so evidently correct (as I believe)—or, at
the very least, not evidently wrong—how is it that the consensus of philosophi-
cally-minded statisticians and statistically-minded philosophers is so different.
Jeffreys, Savage, De Finetti, and their modern followers ... these guys are not
dumb!

I have a few thoughts on how these thoughtful, intelligent researchers have
come to a philosophical position much different from mine.? Most important, at
a practical level their methods work.* You can use Bayes factors to select and
average over models, and when the resulting inferences make no sense, you can
change the models. Many aspects of model checking can be performed informally
without the need for any p-values or significance levels.

My second explanation for the tenacity of the subjective Bayesian approach
(in the face of the much-noted general tendency toward Popperian objectivism
among working scientists) is simple logic: the argument made by Keynes, Ram-
say, R. T. Cox, Neumann, and others from the 1920s through 1940s that any
complete set of inferences must be either Bayesian or incoherent (see Savage
1954). I believe this argument fails because of the imperfections of any statis-
tical model—Bayesian or otherwise—in real-world settings; nonetheless, it has
been a powerful motivation for the subjective inductive philosophy.

It is a bit easier to understand the consensus in the other direction, in which
frequentist statisticians have come to consider Bayesian inference as anti-
falsificationist. Frequentists just took subjective Bayesians at their word and
quite naturally concluded that Bayesians had achieved the goal of coherence
only by abandoning scientific objectivity. Every time a prominent Bayesian pub-
lished an article on the unsoundness of p-values, this became confirming evi-
dence of the hypothesis that Bayesian inference operated in a subjective zone
bounded by the prior distribution. You don’t have to be Georg Cantor to realize
that no prior distribution or set of prior distributions, no matter how carefully

3 And 'm sure they have some theories of their own about how I could be so wrong!

4 1 believe my methods work better, at least for the sorts of problems I've studied in social and
environmental sciences (see Gelman et al. 2003), but I recognize that different statistical methods
work well in different problems (Gelman 2011a). Again, my ultimate argument in the present
article is not that my philosophical perspective is definitely correct but rather that it is not clearly
wrong.
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chosen, can sit there being ready for any data. Frequentists have reasonably
concluded that Bayesians were unwilling to see their models falsified and have
unfortunately not generally kept up with developments in the past fifteen years
on Bayesian model checking.®

Bandyopadhyay and Brittan (2010) argue that neither subjective nor objec-
tive Bayesianism, as usually defined, are possible, in that it is unrealistic to
imagine that prior probabilities represent personal degrees of belief or that they
directly correspond to observable real-world frequencies. We agree and would
make the argument more directly by pointing to the melange of normal distri-
butions, Poisson distributions, Dirichlet processes, and the like that character-
ized statistics as it is actually practiced. It would be silly to suppose that these
conventional choices represent subjective belief or objective reality. Given that
even the top statisticians tend to construct their models Tinkertoy-style from
previously manufactured parts, we are under a continuing obligation to check
model fit.

4. Falsification and Bayesian Data Analysis

As a data analyst, the statistical methods I use most are graphical exploratory
data analysis and Bayesian modeling. I do not think of confidence intervals as
inverses of hypothesis tests. Rather, I tend to think of maximum likelihood and
other classical estimation procedures as approximations to Bayesian posterior
summaries, and I interpret exploratory data analysis and confirmatory hypoth-
esis tests as graphical and numerical posterior predictive checks (see Gelman
2003, and chapter 6 of Gelman et al. 2003).

As a modeler, I'm comfortable with continuity. For example, I'd prefer to con-
sider voters in the United States as falling on a continuous partisan scale rather
than being discretely categorized as Republicans, independents, and Democrats.
I recognize that survey responses will give us discrete data but I like to think
of these as measures of a continuous underlying quantity. My preference for
continuity is not shared by all. For example, many statisticians and social scien-
tists when studying opinion will use clustering models to place people in discrete
latent categories.

My preference for continuity and my experiences in applications have led
me to want to include all predictors in a regression model. In the sort of social
science problems I study, there are no true zeroes except by design or through
a natural experiment, and I do not see the point of statistical methods that
attempt to discover from data conditional independence patterns that cannot

5 For example, Huber (2011) writes, “Bayesian statistics lacks a mechanism for assessing goodness-
of-fit in absolute terms. [...] Within orthodox Bayesian statistics, we cannot even address the
question whether a model Mi, under consideration at stage i of the investigation, is consonant
with the data y.” This statement reflects unawareness of posterior predictive checking, which is
a fully Bayesian approach to checking the fit of a particular model to a particular dataset (see
Gelman, Meng and Stern 1996 for a review).
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exist (Gelman 2011b). Rather than say that a variable is zero or not, I'd rather
use a Bayesian model that partially pools coefficients toward a larger model.

Moving to the philosophy of science, I follow Popper in believing that a model
can be rejected, never accepted.® I will go even further and say that, realistically,
all my models are wrong. The encouraging message of the present article is
that we can have all the powerful data-analytic tools of Bayesian inference, and
falsification too!

Here are two simple examples of Bayesian falsification (taken from Gelman
et al., 2003), one theoretical and one applied. In the theoretical example, a series
of 20 binary outcomes, 11000001111100000000, is modeled as independent with
common probability 8, with a uniform prior distribution 6. For the data at hand,
the questionable part of the model is the independence assumption, not the prior,
and the model can be checked with an autocorrelation statistic. A simple runs
test will work fine; we can define a test statistic T(y) to be the number of switches
in the series. The observed T(y) = 3 for these data. We can perform a Bayesian
test by first assuming the model is true, then obtaining the posterior distribution
(in this case, 0 |y ~ Beta (8,14)), and then determining the distribution of the test
statistic under hypothetical replicated data under the fitted model. In practice
we implement this sort of check via simulation,” which reveals in this case that
the observed value of 3 switches is about one-third the number expected from
the fitted model, with a p-value of 0.03 when considered as a two-sided test. The
point of this example is that we can indeed check the fit of a model by comparing
data to a fitted posterior distribution.

My second, applied, example comes from a regression model predicting elec-
tions for the U.S. Congress, given incumbency status and previous district-level
election results. Concerned about outliers, we define a test statistic that is the
proportion of district elections where the regression prediction is off by more

6 1 use Popper’ to broadly represent the falsificationist approach to the philosophy of science ex-
pressed by Lakatos (1978). I am not well read in the philosophical literature, and I recognize
that the ideas of falsification, scientific inference, research programmes, and scientific revolutions
have seen many developments in the past forty years.

7 To make the example fully self-contained we code the data and test in the open-source statistics
package R:

y <-¢(1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)
test <- function (y){

n <- length (y)

n.switch <- sum (y[2:n] != y[1:(n-1)])
return (n.switch)

}

alpha <- 1

beta <- 1

n.sims <- 10000

theta <- rbeta (n.sims, alpha + sum(y==1), beta + sum(y==0))
T.rep <- rep (NA, n.sims)

for (i in 1:n.sims){

y.rep <- rbinom (length(y), 1, thetalil)
T.repli] <- test (y.rep)

}

p.value <- mean (T.rep >= test(y))



74 Andrew Gelman

than 20% of the vote. The observed frequency of these ‘outliers’ in the observed
data is 0.026 (that is, 2.6%) in open-seat elections and 0.008 in elections with
incumbents running for reelection. Simulation of replicated data from the fitted
model yields a posterior predictive distribution for these test statistics under
which, if the model were true, the expected proportion of outliers is only 0.004,
and the simulations reveal that the observed rates are far outside of what could
plausibly happen under the normal model.

This sort of test is natural in statistical practice (some classic simulation-
based model checks in the statistical literature appear in Bush and Mosteller
1955, and Ripley 1988), and it fits in fine with Bayesian inference. We can feel
much more comfortable with probability models to new data if we are able and
willing to check the fit. I associate this Bayesian approach of making strong
assumptions and then testing model fit—with the work of the philosophically-
minded physicist E. T. Jaynes. As he has illustrated (Jaynes 1983, 1996), the
biggest learning experience can occur when we find that our model does not fit
the data—that is, when it is falsified—because then we have found a problem
with our underlying assumptions.

5. Reacting to ‘All Models Are Wrong’

The celebrated dictum of Box (1976), “all models are wrong but some are useful”,
can lead an applied Bayesian (at least) two different directions: Bayes factors or
posterior predictive checks.

The Bayes factor approach abandons the Popperian idea of hypothesis test-
ing entirely. What is the point of rejecting a model if we know ahead of time that
it is false? Instead you compute the relative posterior probabilities of competing
models, with the progress of science corresponding to formerly high-probability
models being abandoned in favor of new models that are more supported by the
data (and, more generally, by the improvement or replacement of existing mod-
els by alternatives that currently or with future data will have higher posterior
probability).

To me, Bayes factors correspond to a discrete view of the world, in which we
must choose between models A, B, or C (or a weighted average of A, B, and C,
using the related idea of discrete model averaging as in Madigan and Raftery
1994). I prefer the idea of model expansion, using posterior predictive checks as
a guide to where and how efforts at expansion should be targeted.

In contrast, posterior predictive checks (as illustrated in the previous section)
embrace rejection but with the goal of understanding what aspects of the data
are not fit well by the model. As with Bayes factors, the goal is not rejection
itself. What rejection tells us is not that a model is false or even likely so—
we know our models are false even before gathering any data—but rather that
certain potentially important aspects of the data are not captured by the model.

Formally, posterior predictive checks are based on a comparison of data y
to hypothetical replicated data y™P, averaging over the posterior distribution
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of the unknown parameters 0. In this formulation (Gelman, Meng and Stern
1996), the joint distribution of all these quantities is p(y,y™P,0) = p(@)p(y|0)
p(y™P10); that is, y and y™P are two independent instances of the data. In
a predictive check, there is some test statistic T(y), and it is compared to its
distribution under hypothetical replication, y*P. The p-value is Pr (T(y"P) =
T(y)). If the test statistic is pivotal (that is, if the distribution of T does not
depend on 0), we can stop right there. In general, though, the distribution of
the test statistic will depend on unknown parameters, hence the p-value must
be written conditionally as p-value (0) = Pr (T(y"*P) = T(y)[0). In classical tests
a common fix at this point is to plug in a point estimate of 8 and then adjust
the p-value if necessary to account for the ensuing additional variability. Our
Bayesian approach is to average over 6, integrating p-value (6) over the posterior
distribution p(0 | y), which results in the posterior predictive p-value, Pr (T(y"*P)
= T(y) ly).

Posterior predictive checks are disliked by some Bayesian statistics because
of their low power arising from their allegedly “using the data twice” (Bayarri
and Berger 2000; see also Mayo 2008). Here is not the place to debate this
issue (see Bayarri and Castellanos 2007, and Gelman 2007, for two views on
Bayesian predictive checking) but I will briefly note that statistical power is not
a big concern for us: unlike in classical testing, the goal is not to reject a model
(we could do that before we started on a priori grounds) but rather to understand
aspects of lack of fit. If a certain posterior predictive check has zero or low power,
this is not a problem for us: it simply represents a dimension of the data that is
automatically or virtually automatically fit by the model.

6. Discussion

What can statistics learn from philosophy? Falsification and the notion of sci-
entific revolutions can make us willing and even eager to check our model fit
and to vigorously investigate anomalies rather than taking a naively positivistic
approach that would treat prediction as the only goal of statistics.

What can the philosophy of science learn from statistical practice? The suc-
cess of inference using elaborate models, full of assumptions that are certainly
wrong, demonstrates the power of deductive inference, and posterior predictive
checking demonstrates that ideas of falsification and error statistics can be ap-
plied in a fully Bayesian environment with informative likelihoods and prior
distributions.

Nowadays ‘Bayesian’ is often taken to be a synonym for rationality, and I
can see how this can irritate thoughtful philosophers and statisticians alike: To
start with, lots of rational thinking—even lots of rational statistical inference—
does not occur within the Bayesian formalism. And, to look at it from the other
direction, lots of self-proclaimed Bayesian inference hardly seems rational at all.
And in what way is ‘subjective probability’ a model for rational scientific inquiry?
On the contrary, subjectivity and rationality are in many ways opposites!
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The goal of this paper is to break the link between Bayesian modeling (good,
in my opinion) and subjectivity (bad). From this perspective, the irritation of fal-
sificationists regarding exaggerated claims of Bayesian rationality are my ally.
Being Bayesian is no guarantee of rationality or even of coherence. Our appro-
priate willingness to discard and improve models that poorly fit data has the
effect of destroying all the theorems of Bayesian coherence. What we are left
with is an approach that is coherent—deductive—within a model and which is
an effective tool for model checking through its ability to generate probabilistic
predictions about anything. A Bayesian model makes strong claims and is thus
falsifiable.

I admit, however, that there is a philosophical incoherence in my approach!
Consider a simple model with independent data yi, ya, .., y5 ~ N(0,02), with
a prior distribution & ~ N(0,10%) and ¢ known and taking on some value of
approximately 10. Inference about 6 is straightforward, as is model checking,
whether based on graphs or numerical summaries such as the sample variance
and skewness.

But now suppose we consider 6 as a random variable defined on the integers.
Thus @ =0orlor2or3or... or-lor-2or-3or...,and with a discrete prior
distribution formed by the discrete approximation to the N(0,102) distribution.
In practice, with the sample size and parameters as defined above, the infer-
ences are essentially unchanged from the continuous case, as we have defined 0
on a suitably tight grid.

But from the philosophical position argued in the present article, the discrete
model is completely different: I have already written that I do not like to choose
or average over a discrete set of models. This is a silly example but it illus-
trates a hole in my philosophical foundations: when am I allowed to do normal
Bayesian inference about a parameter 6 in a model, and when do I consider 6 to
be indexing a class of models, in which case I consider posterior inference about
6 to be an illegitimate bit of induction? I understand the distinction in extreme
cases—they correspond to the difference between normal science and potential
scientific revolutions—but the demarcation does not cleanly align with whether
a model is discrete or continuous.

Another incoherence in Bayesian data analysis, as I practice it, arises after
a model check. Judgment is required to decide what to do after learning that
an aspect of data is not fitted well by the model—or, for that matter, in deciding
what to do in the other case, when a test does not reject. In either case, we
must think about the purposes of our modeling and our available resources for
data collection and computation. I am deductively Bayesian when performing
inference and checking within a model, but I must go outside this framework
when making decisions about whether and how to alter my model.

In my defense, I see comparable incoherence in all other statistical philoso-
phies:

* Subjective Bayesianism appears fully coherent but falls apart when you

examine the assumption that your prior distribution can completely re-
flect prior knowledge. This can’t be, even setting aside that actual prior
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distributions tend to be chosen from convenient parametric families. If
you could really express your uncertainty as a prior distribution, then you
could just as well observe data and directly write your subjective posterior
distribution, and there would be no need for statistical analysis at all.

* Classical parametric statistics disallows probabilistic prior information
but assumes the likelihood function to be precisely known, which can’t
make sense except in some very special cases. Robust analysis attempts to
account for uncertainty about model specification but relies on additional
assumptions such as independence.

¢ (lassical nonparametric methods rely strongly on symmetry, translation
invariance, independence, and other generally unrealistic assumptions.

My point here is not to say that my preferred methods are better than others
but rather to couple my admission of philosophical incoherence with a reminder
that there is no available coherent alternative.

In conclusion, I am arguing here and elsewhere that Bayesian inference need
not be subjective (beyond the subjective elements of human choice in any statis-
tical method and any scientific endeavor) nor must it be inductive in the sense
of resulting in posterior probabilities of models being true. The Bayesian data
analysis that I practice is deductive within a model, with predictive falsification
used to compare models. I hope that philosophers who are interested in falsi-
fication and error statistics will see the compatibility of my brand of Bayesian
inference with their philosophy, and I hope that practicing Bayesians will recog-
nize that falsification and model checking are consistent with a larger Bayesian
approach. If you want to follow scheme S (see the chart at the beginning of this
article), feel free to do so, but realize that is a choice, not a necessity.
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