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Supplementary methods 

 

Patients 

 

We compared 22 healthy volunteers (age range 20-81 years, mean age 37 ± SD 19 years, 7 

males) with 21 brain damaged patients (13 MCS, 8 VS, age range 16-83 years, mean age 48 ± 

SD 20 years, 12 males). Patients’ data are reported in the Supplementary Table. To ensure the 

generalizability of our results, we included patients with different etiologies and clinical 

histories, in the hope of finding a common deficit that underlies changes in conscious level, 

irrespective of its distal causes. Data were acquired in an un-sedated condition. The study was 

approved by the Ethics Committee of the Medical School of the University of Liège. 

Informed consent to participate in the study was obtained from the subjects themselves in the 

case of healthy subjects, and from the legal surrogate for the patients.  

Behavioral assessments of consciousness were performed by trained and experienced 

neuropsychologists using the French adaptation of the Coma Recovery Scale-Revised (CRS-

R) (S1-2) that has been specifically developed to disentangle VS from MCS patients but also 

MCS patients from patients who recovered their ability to communicate functionally (EMCS). 

The scale comprises six subscales: auditory, visual, motor and oromotor/verbal functions, as 

well as communication and level of arousal (see Supplementary Table for scores obtained by 

each patient in the CRS-R subscales). The 23 items are ordered according to their degree of 

complexity; the lowest item on each subscale represents reflexive activity, while the highest 

item represents behaviors that are cognitively mediated. Scoring is based on the presence or 

absence of operationally-defined behavioral responses to specific sensory stimuli (e.g., if 

visual pursuit of a mirror is present at least two times in the same direction, the patient is then 

considered to be MCS). 

 

Data acquisition  

 

We recorded auditory evoked potentials using a 60-channel EEG amplifier (Nexstim Ltd, 

Helsinki FI) (S3). To optimize signal quality, the impedance at all electrodes was kept below 

5 kΩ. EEG signals were referenced to an additional electrode on the forehead, filtered (0.1-



500 Hz) and sampled at 1450 Hz. Two extra sensors were used to record the electro-

oculogram (EOG). To avoid a confounding effect due to differences in vigilance, arousal was 

maintained at a constant level throughout the experiment. During each EEG session, patients 

were lying on their beds, awake and with their eyes open. If signs of drowsiness appeared, 

recordings were momentarily interrupted and subjects were stimulated using the CRS-R 

arousal facilitation protocols. At the end of the experiment, the electrode positions and scalp 

landmarks (nasion, right and left tragus) were digitized. 

Electroencephalographic activity was measured during an auditory roving ‘oddball’ paradigm 

(see Fig. 1A). The stimuli comprised a structured sequence of pure sinusoidal tones, with a 

roving, or sporadically changing tone. This paradigm is similar to that used in previous DCM 

studies investigating the functional architecture of mismatch negativity response (MMN) in 

healthy volunteers (S4-5). Within each stimulus train, all tones were of one frequency and 

were followed by a train of a different frequency. The first tone of a train was a deviant, 

which eventually became a standard after few repetitions. This paradigm ensures that deviants 

and standards have exactly the same physical properties, differing only in the number of times 

they have been presented. This was varied pseudo-randomly between one and eleven. The 

probability that the same one was presented once or twice was 2.5%; for three and four times 

the probability was 3.75% and for five to eleven times it was 12.5%. The frequency of the 

tones varied from 500 to 800 Hz, in random steps with integer multiples of 50 Hz. Stimuli 

were presented binaurally via headphones for 15 min. The duration of each tone was 70 ms, 

with 5ms rise and fall times, and the inter-stimulus interval was 500 ms. About 250 deviant 

trials (first tone) and about 200 standards (eleventh tone) were presented to each subject. The 

loudness of the tones was set in each subject to a comfortable level, which was maintained 

throughout the experiment.  

 

Data pre-processing and scalp level analysis 

 

Pre-processing and data analysis were performed with SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/). The data were band-pass filtered between 0.5 and 20 Hz 

and down-sampled to 200 Hz. A correction for eye movements was performed (for each 

subject) using the Berg algorithm (S6) as implemented in SPM. The data were then epoched 

offline, with a peristimulus window of −100 to 400 ms. Artifacts were removed using robust 

averaging (S4), as described previously (S7). Averaged data were prepared for analysis using 

a second high-pass filtering at 20Hz and a correction for slow drifts via a third order discrete 



cosine transform procedure, as implemented in SPM. Trials were sorted in terms of tone 

repetition (S4). In other words, trials one to eleven corresponded to the responses elicited after 

one to eleven presentations of the same tone, collapsed across the whole range of frequencies. 

The first trail in each train (corresponding to the oddball or the deviant) and the eleventh 

(corresponding to the standard) were retained for further analysis. Data were transformed into 

scalp-map images (S4), which were then entered in a second level between-subjects random 

effects analysis. This used an ANCOVA model, with stimulus type (standard versus deviant) 

and the level of consciousness (3 levels: controls, MCS and VS) as factors. The different 

observations were assumed to be independent but their variances were assumed to be unequal. 

As previous studies (S8-9) show a correlation between mismatch negativity amplitude and 

prognosis, the patients’ prognosis at 1 month were entered as a covariate of no interest (in VS 

patients: values of -2 if death, -1 if stay VS, 1 if evolution towards MCS; in MCS patients: -1 

if stay MCS, 1 if emergence from MCS). F-contrasts were specified to test for differences 

between deviant and standard in controls, MCS and VS populations (simple effects of trial in 

each group). Finally, we used an F-contrast to search for the interaction with group; i.e., an 

ERP amplitude difference attributable to differences in the level of consciousness across the 

three populations. In all the SPM analyses, results were thresholded at p-value < 0.05, 

corrected for multiple comparisons using Random Field Theory in the usual way (S10). The 

peak latencies we refer to in the results are those of the local maxima of statistical 

significance of scalp-time group F-maps, as reported by SPM software. 

The Supplementary Fig. shows instantaneous scalp T-maps over time, for the comparison 

standards versus deviants, in individual MCS and VS patients. These maps were obtained 

after filtering from 0.5 to 20 Hz, correction for eye movements using the Berg algorithm 

described above, epoching from -100 to 400 ms, and correction of trials for slow drifts using a 

third order discrete cosine transform, as implemented in SPM. Individual epoched data were 

then converted to scalp-time images and a two sample T-test was performed, searching for a 

differential effect between standards and deviants in each patient. Scalp T-maps are displayed 

un-thresholded and at p < 0.001, uncorrected. In general, MCS patients show more robust 

differences at the individual level, although we did not obtain significant individual results in 

all patients. Note that the statistical criterion we used here is more conservative than 

commonly employed in ERP reports: a p-value threshold of 0.001 is equivalent to a correction 

for multiple comparisons over 50 time-points. The Supplementary Fig. also displays averaged 

ERP time courses in each MCS and VS patient. These were used for all our group analyses. 

 



Dynamic causal modeling 

 

Dynamic causal modeling (DCM) was originally developed for connectivity analysis of fMRI 

(S11) and M/EEG data (S12). Most approaches to connectivity analysis of M/EEG data use 

functional connectivity measures such as coherence or temporal correlations, which establish 

statistical dependencies between two time-series. However, there are certain cases where 

causal interactions are the focus of interest. In these situations, DCM is particularly useful, 

because it estimates effective connectivity (the influence one neuronal system has over 

another), under a perturbation, or stimulus. DCM models the interactions among cortical 

regions and allows one to make inferences about the parameters of that model and investigate 

how these parameters are influenced by experimental factors. DCM uses generative or 

forward models for evoked responses as measured with EEG/MEG (S12-13), and provides an 

important advance over conventional analyses of evoked responses because it places 

biophysically plausible constraints on the inversion; namely, activity in one source has to be 

caused by activity in another. DCMs for MEG/EEG use neural mass models (S14) to explain 

source activity in terms of the ensemble dynamics of interacting inhibitory and excitatory 

subpopulations of neurons, based on the model of Jansen and Rit (S15). The active sources are 

interconnected according to the connectivity rules described in (S16) and conform to a 

hierarchical model of intrinsic and extrinsic connections within and among multiple sources 

as described in (S17) and (S18). By taking the marginal likelihood over the conditional 

density of the model parameters, one can estimate the probability of the data, given a 

particular model. This is known as the marginal likelihood or evidence and can be used to 

compare and select the best model amongst alternative models. We have previously used 

DCM to explain ERPs to standards and deviants using a classical (S19) and roving paradigm 

(S4-5). Differences in the ERP to standards and deviants were modeled in terms of changes in 

synaptic connections within and between hierarchically organized cortical sources. Model 

comparison addressed hierarchical implementations of multiple-level network models ranging 

from one to three levels. These models allowed for changes in extrinsic connections in 

combination with changes in intrinsic connections at the different levels of the cortical 

hierarchy.  

 

Model specification 

 



DCM is usually used in a hypothesis-driven fashion: it does not explore all possible models 

but tests specific mechanistic hypotheses. Our models attempt to explain the generation of 

each individual response (i.e., responses to each tone presentation). Therefore, left and right 

A1 were chosen as cortical input stations for processing the auditory information. Doeller et 

al. (S20) identified sources for the differential response, with fMRI and EEG measures, in 

both left and right superior temporal gyrus (STG) and inferior frontal gyrus (IFG). Here, we 

modeled each active source; i.e., each node in the network, with a single equivalent current 

dipole (ECD) in a conventional electromagnetic forward model. This electromagnetic model 

used boundary element  head models (S21), with homogeneous and isotropic conductivity as 

an approximation to the brain, cerebrospinal fluid (CSF), skull and scalp surfaces. Subject-

specific head models were obtained using an inverse spatial normalization of a canonical 

mesh for each subject. Normalization parameters were obtained using unified segmentation of 

the subjects’ structural images (computerized tomography or T1 MRI) as implemented in the 

SPM software. Coregistration of electrode position and head model was performed in each 

subject, prior to forward model computation. After the forward model was computed for each 

subject, the lead-field mapping cortical sources onto measured signals was parameterized in 

terms of the location and orientation of each dipole source in the DCM (S4). The coordinates 

reported by Opitz et al. (S22) (for STG and IFG) and Rademacher et al. (S23) (for left and 

right primary auditory cortex, A1) were chosen as prior source location means, with a prior 

variance of 16mm
2
.We converted these coordinates, given in the literature in Talairach space, 

to MNI space using the algorithm described in http://imaging.mrc-

cbu.cam.ac.uk/imaging/MniTalairach. The moment parameters had prior mean of zero and a 

variance of 256 mm
2
 in each direction. This is equivalent to assuming uninformative or flat 

priors on the orientations of the dipole moments. For computational expediency, DCMs (see 

below) were computed on a reduced form of data that corresponded to eight channel mixtures 

or spatial modes. These were the eight principal modes of a singular value decomposition 

(SVD) of the channel data between 0 and 400 ms, over the trial types of interest. These were 

the standard and deviant trials above. 

 

DCMs 

 

Bayesian model selection considered eleven models specified by their architecture (see Fig. 

3). These models covered different levels of hierarchical complexity, both in terms of the 

number of areas involved, and the extrinsic (between-source) connections. The models started 



with the most parsimonious model, Model 1 (a one-level hierarchical model comprising two 

nodes in the left and right A1) and increased in their complexity, in terms of hierarchical 

levels, number of sources and extrinsic connections. The inclusion of nodes and connections 

to the initial model culminated in a non-symmetric three-level hierarchical model that 

included bilateral A1 and STG, and right IFG. All models can therefore be considered as a 

sub-model of the last one, Model 11. Our simplest model, Model 1, is a two source network 

corresponding to the hypothesis that the ERPs are generated by bilateral activity in A1. 

Models 2 to 5 build on Model 1 through addition of left and right STG sources (connected 

through forward connections to ipsilateral A1, and in more complex models through 

backward connections to ipsilateral A1, and/or via lateral connections with each other). A 

third-level family of models, Models 6 to 11, comprising five sources, included a right IFG 

source. Right STG was connected with ipsilateral IFG. Models 6 to 11 differ in the successive 

addition of backward and lateral connections at different levels of the cortical hierarchy. We 

accommodated differences in the ERP to standard and deviants by condition-specific scaling 

parameters on every connection in each model. This meant that Models 2 to 11 cover the 

hypotheses that both local adaptation (S24), within each area, and interactions within a 

temporo-frontal network (S25-26) underlie the generation of the MMN.  

 

Statistical analysis 

 

Statistical analyses in this paper were based on a two-stage (summary-statistic) approach. In a 

first stage, Bayesian model comparison was used to optimize the network architecture (DCM) 

underlying electrophysiological responses to auditory stimulation in controls, MCS and VS 

patients. In a second stage, a quantitative connectivity analysis was performed, conditioned 

upon the winning model, searching for differences in connectivity between controls, MCS and 

VS patients, in response to auditory stimulation. The second stage used the conditional 

(within-subject) estimates of effective connections from the winning DCM as the dependent 

variable in a classical (between-subject) ANOVA. 

 

Bayesian model selection (BMS) 

 

DCM inversion involves optimizing a model (m) which provides two important quantities: the 

free-energy bound on the model-evidence p(y|m), used for model comparison, and the 

posterior or conditional density of the model parameters, p(θ|y,m). Specifically, inversion of a 



DCM corresponds to approximating the posterior probability of the parameters using 

variational Bayes (S27). The aim is to minimize a free-energy bound on the log-evidence, 

with respect to a variational density, q(θ). When the free-energy is minimized; q(θ)=p(θ|y,m) 

and the free-energy F = −ln p(y|m) approximates the negative marginal log-likelihood or 

negative log-evidence. After convergence, the variational density is used as an approximation 

to the desired conditional density and the log-evidence is used for model comparison. 

One often wants to compare different models and select the best before making statistical 

inferences on the basis of the conditional density (see above). The best model, given the data, 

is the one with the highest log-evidence, ln p(y|m) (assuming a uniform prior over models). 

Given two models m1 and m2 one can compare them by computing their relative log-evidence 

ln p(y|m1)−ln p(y|m2) (S4). One may wish to select the model that best explains multiple data 

sets, i.e., the best model at the group level. Alternatively, we can make inferences about 

general characteristics of model architecture using family-based inferences, which compare 

different groups of models characterized by similar architectural properties (S28). We thus 

performed family-wise inferences in each population, using a random effects approach, which 

is robust to potential outliers in the population (S29). A first family-wise inference optimized 

the number of areas that explained the data of the three populations. We separated the model 

space into three families: two-area models with bilateral A1 only (Model 1); four-area models 

with bilateral A1 and STG (Models 2 to 5), and five-area models with bilateral A1 and STG, 

and right IFG (Models 6 to 11). Bayesian model selection showed that the five-area models 

were the best. A second family-wise inference addressed the connectivity architecture. Three 

families were considered: models with no inter-areal connections (Model 1), models with 

forward connections only (Models 2, 5, 6 and 7), and models with both forward and backward 

connections (Models 3, 4, 8, 9, 10 and 11). This BMS procedure established the presence of 

recurrent connections, involving the prefrontal source, and demonstrates the consistency of 

BMS over the three groups of subjects (Fig. 3 – left panel). The superiority of the full model 

(model 11) was confirmed with an exhaustive model search over all models using a (random 

effects) BMS over all subjects (Fig. 3 – right panel). Fig. 3 (lower panel) displays source 

activity estimates in representative subjects according to this model. These predictions of 

source activity over time illustrate the preservation of frontal responsiveness in MCS as in VS 

patients.  

 

Quantitative connectivity analysis 

 



We used the winning model above for final (between-subject) statistical analysis of the 

conditional estimates of connectivity. In our DCMs, the effects of deviant stimuli (relative to 

standards) are modeled by scaling the effective connectivity in a trial-specific fashion. 

Although we tested for group differences in this (MMN-related) scaling, our primary interest 

was in differences in the underlying connection strengths mediated distributed responses to all 

stimuli. We exported the connectivity estimates to SPSS, and performed an ANCOVA, using 

the patients’ prognosis as a covariate of no interest (as defined above). We tested each 

forward and backward connection independently with appropriate contrasts. We first searched 

for an effect of the level of consciousness on changes in connectivity between standard and 

deviants. We then tested for group differences in connection strength per se. We found a 

significant difference in the backward connection between frontal and temporal cortices 

between controls, MCS and VS, at p < 0.05, corrected for multiple comparisons using 

Bonferroni procedure; i.e., taking into account the number of connections tested. 

 

Supplementary discussion 

 

Previous literature on MMN in healthy volunteers  

 

There is a large literature validating DCM for electrophysiological responses that uses both 

psychological (S4, S18-19, S30-38) and psychopharmacological (S39-40) constructs. The 

choice of the mismatch negativity paradigm in the current study was based on several years of 

experience with this paradigm and its modeling (with both DCM (S4, S18-19, S31-32, S41) 

and neuronal simulations (S18, S42)). In short, we chose the mismatch negativity paradigm 

not only because it was particularly appropriate for the patients we studied but because we 

have a wealth of information about the underlying mechanisms and networks from lesions 

studies (e.g. (S43-44)), fMRI studies of normal subjects (e.g. (S20, S22, S45)), high-density 

EEG (e.g. (S46-48)) and MEG studies (e.g. (S48-50)). The five area model we used, including 

a right frontal region (S22, S46) has been shown to have the greatest evidence in a number of 

DCM studies; using different variants of the MMN paradigm and different subjects (S4, S18-

19, S31-32, S41).  

Previous MMN studies in MCS and VS patients 

 



Previous studies have used auditory event-related potentials to assess prognosis in severely 

brain-damaged patients. The presence of MMN is a good predictor of awakening and suggests 

that comatose patients will not enter a permanent vegetative state (S8, S51-57). In contrast, 

only a few studies have investigated the correlation between MMN and level of 

consciousness. A study by Wijnen and collaborators (S9) showed that the amplitude of the 

MMN increases with recovery from VS to normal consciousness. This study found a 

significant correlation between the amplitude of the MMN and level of consciousness, when 

comparing VS with MCS and subsequent emergence from MCS (S9). A recent study by 

Fischer and collaborators (S58) failed to replicate these results. However, one might argue 

that a failure to demonstrate MMN differences does not mean they do not exist (classical 

statistics control type I, not type II errors). While Wijnen’s analysis and our study investigated 

between-condition differences in MMN amplitude, Fischer et al. used an all-or-none (based 

on some threshold) MMN scoring procedure in individual brain-damaged patients. Finally, 

these differences may also speak to the distinction between phenomenological (MMN) 

differences in observed scalp-level responses (in data-space) and a (possibly more sensitive) 

comparison of their underlying causes (e.g., coupling strengths – see also discussion below). 

 

Technical comments 

 

DCM does not examine coupling among sources following the inversion of a classical 

electromagnetic forward model. It subsumes the inversion of a classical model and tries to 

explain the data as observed in channel-space. In other words, DCM is a generalization of 

classical inversion schemes, not an add-on. The parameters estimated from the DCM and the 

evaluation of the DCMs per se were based on exactly the same (ERP) data. The SPM (scalp-

level) analyses report classical inferences on responses over channels and peristimulus time.  

They represent a statement about phenomena observed in data-space. Conversely, the DCM 

analyses pertain to the underlying causes of these phenomena and their group differences.  

These causes include the hidden source activity and coupling parameters. The parameters of 

the network (DCM) are estimates of the functional architectures producing observed 

differences. Group comparisons of these parameter estimates (using simple classical 

inference) allow one to interpret scalp-level differences mechanistically, by appealing to the 

neurobiologically grounded DCM. Discrepancies between these complementary (SPM and 

DCM) analyses are resolved easily by noting that a failure to demonstrate a significant 

difference cannot be taken as evidence for no difference. 



It is important to note that the inference about impaired connectivity was direct and based 

upon simple classical tests (T-tests). This pre-empts any concerns about the robustness or 

sensitivity of DCM. Put simply, DCM was used to furnish quantities (coupling parameters) 

that could be interpreted in relation to an underlying model. However, the inference about 

these quantities was based upon straightforward classical statistics which, under the null 

hypothesis of no differences, could not have given significant results. The fact that we 

obtained selective and significant results could be construed as a validation of the DCM; in 

the sense that it parameterized something that differed significantly between the groups. 

At a conceptual level, the model employed here considers the regions involved in the 

generation of the individual responses in isolation. However, in EEG some nonspecific state 

variables can have a systematic effect on stimulus processing, and also on the emergence of a 

conscious experience. An example of this is provided by studies showing that the conscious 

visual perception depends on the level of occipital alpha (S59). Conversely, both sensory 

stimuli and attention may affect physiological states. In short one cannot ignore interactions 

among brain state, stimulus processing and conscious awareness. In our patients, the classical 

EEG markers of brain state were drastically altered. However, it is difficult to be definitive 

about what causes what. In other words, perceptual processing can cause a change in synaptic 

coupling, which changes the nature of perceptual processing. A simple example here might be 

attentional increases in postsynaptic gain (mediated by activity-dependent changes in synaptic 

efficacy) (S60). In our context, this means that a failure of backward connectivity from the 

frontal region may be a cause or consequence of processing that underlies consciousness. We 

deliberately chose the mismatch negativity paradigm because it elicits well characterized 

electrophysiological responses even in the absence of attention and (perhaps) explicit 

awareness (S68). These responses enable us to estimate the underlying network and 

distributed processing using DCM. However, there is no supposition that the responses 

elicited in this paradigm are related to the perception of the stimuli used. Associating changes 

in backward connections from the frontal cortex with conscious perception is based purely 

upon the fact that it is changes in these and only these connections that are common to 

patients that show deficits of perceptual awareness. In short, the key experimental 

manipulation here was not the standard or deviant stimuli of the mismatch negativity 

paradigm but the selection of subjects with different levels of consciousness. This allowed us 

to detect changes in network architecture that are related not to the content (perception of a 

particular sound), but to the level of consciousness. This approach is used in studies 

correlating the mismatch negativity component with the level of consciousness during 



anesthesia (S61) and sleep (S62). It is also adopted in experiments using transcranial magnetic 

stimulation (TMS) (S63-65): perturbing the system with TMS allows one to characterize 

network changes underlying various levels of consciousness (S66-67). In short, we were able 

to establish that a failure of backward effective connectivity is associated with decreased level 

of consciousness. This failure may or may not be necessary to explain any abnormal 

perceptual content elicited by the standard and oddball stimuli in our paradigm.  

Finally, it would be interesting to determine which EEG frequencies contribute to the 

interactions among sources. In particular, do long-distance backward fronto-temporal 

connections employ beta-band frequencies or slower (alpha band) or faster dynamics (gamma 

band)? As fast rhythms like gamma are prone to corruption by non-neuronal noise in scalp-

level EEG recordings (S69), the use of invasive electrophysiological data may be more suited 

to answer this question. To address this issue, one could use DCM for induced responses 

(S35). DCM for ERP, as used here, tries to explain evoked as opposed to induced responses. 

This means that the differences in coupling explain only the evoked data features and do not 

explain any induced components. It may be that effective connectivity depends upon (or is 

changed by) high frequency synchronous activity (e.g., communication through coherence or 

synchronous gain (S60, S70)). In a DCM for ERP (as used here) this would be expressed as 

increased effective connectivity, provided induced responses are expressed consistently in 

peristimulus time. To understand the relationship between how different data features (e.g., 

evoked versus induced) are caused one would have to model both explicitly. DCM for 

induced responses may provide a more rounded picture on what aspects of brain dynamics 

mediate the coupling between brain regions and the aberrant coupling reported here. 





Supplementary Fig. Spatiotemporal differences between standards and deviants in individual 

MCS and VS. Individual mean ERPs show responses to standard (t11 — green) and deviant (t1 

— red) tones at channel Cz (central) for each patient. Scalp plots represent instantaneous 

Statistical Parametric Maps for differential responses across time. For display purposes, 2D-

scalp topographies were interpolated from the 60 channels and results are displayed un-

thresholded and thresholded at p < 0.001 (uncorrected). Color scales correspond respectively 

to T values and to significant (in black) voxels.  

 



Supplementary Table. Clinical, electrophysiological and structural imaging data of patients.  

 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7 MCS8 MCS9 

Clinical Features          

Sex (age, years) Male (27) Male (20) Male (38) Male (46) Female (60) Male (28) Male (71) Female (38) Male (19) 

Cause Anoxic Trauma Anoxic Trauma Haemorrhage Trauma Stroke Haemorrhage Trauma 

Time of EEG  

after insult 

1 month 3 years 13 years 27 years 1 month 6 years 18 days 12 days 1 year 

Outcome at 1 month  MCS MCS MCS MCS EMCS MCS MCS MCS MCS 

Paralysis/paresis Tetraparesis Tetraparesis Tetraparesis Tetraparesis Right-sided 

hemiparesis 

Tetraparesis Right-sided 

hemiparesis 

Tetraparesis Tetraparesis 

Coma Recovery Scale-

Revised  

         

Diagnosis at time of 

EEG 

MCS MCS MCS MCS MCS MCS MCS MCS MCS 

Auditory function Auditory 

startle 

Auditory 

startle 

None Reproducible 

movement to 

command 

Reproducible 

movement to 

command 

Auditory 

startle 

Localization to 

sound 

Reproducible 

movement to 

command 

Reproducible 

movement to 

command 



Visual function Visual  

pursuit 

Visual 

pursuit 

Visual 

pursuit 

Object 

recognition 

Visual 

startle 

Visual 

pursuit 

Fixation Visual 

pursuit 

Visual 

pursuit 

Motor function Flexion 

withdrawal 

Abnormal 

posturing 

Automatic 

motor response 

Automatic 

motor 

response 

Abnormal 

posturing 

Flexion 

withdrawal 

Automatic 

motor response 

Automatic 

motor response 

Abnormal 

posturing 

Oromotor/Verbal 

function 

None Oral reflexive 

movement 

Oral reflexive 

movement 

Intelligible 

verbalization 

None Vocalization/

Oral 

movement 

Vocalization/ 

Oral 

movement 

Vocalization/ 

Oral movement 

Oral reflexive 

movement 

Communication Non- 

Functional: 

Intentional 

Non- 

Functional: 

Intentional 

None Non- 

Functional: 

Intentional 

None None None Non- 

Functional: 

Intentional 

None 

Arousal Eye opening 

without 

stimulation 

Eye opening 

without 

stimulation 

Eye opening 

without 

stimulation 

Attention Eye opening 

with 

stimulation 

Eye opening 

without 

stimulation 

Eye opening 

without 

stimulation 

Eye opening 

without 

stimulation 

Eye opening 

without 

stimulation 

Total score 9 9 11 21 7 10 13 15 10 

EEG          

Background activity Bilateral slow  Bilateral slow  Bilateral slow Bilateral slow  Bilateral slow  Bilateral slow  Left hemispheric Right Bilateral slow  



theta-delta 

dysrhythmia 

theta-delta 

dysrhythmia 

theta 

dysrhythmia 

theta-delta 

dysrhythmia 

theta-delta 

dysrhythmia 

theta-delta 

dysrhythmia 

theta-delta 

dysrhythmia 

hemispheric 

theta-delta 

dysrhythmia 

theta-delta 

dysrhythmia 

MRI/CT           

Lesions Anoxic lesions 

in bilateral 

basal ganglia 

and 

corticospinal 

tracts 

Diffuse fronto-

temporal, 

thalamic and 

ponto-

mesencephalic 

atrophy 

Diffuse bilateral 

leuco-

encephalopathy 

Major 

bilateral 

thalamic and 

cerebral 

atrophy. 

External 

capsule T2 

hyperintensity  

Bilateral 

frontal 

hemorrhagic 

collections and 

right ponto-

mesencephalic 

ischemic 

lesion 

Bilateral 

contusional 

sequellae in 

frontal and 

temporal 

lobes 

Left sylvian 

territory 

ischemic lesion 

Right subdural 

haematoma with 

right 

hemisphere 

compression 

and contusions 

Diffuse 

bilateral leuco-

encephalopathy 

predominant in 

frontal lobes 

 



 

Supplementary Table (continued). Clinical, electrophysiological and structural imaging data of patients.  

 MCS10 MCS11 MCS12 MCS13 

Clinical Features     

Sex (age, years) Male (32) Female (48) Female (54) Female (62) 

Cause Anoxic Anoxic Trauma Haemorrhage 

Time of EEG  

(after insult) 

1 month 2 months 9 years 20 days 

Outcome at 1 month  MCS MCS MCS MCS 

Paralysis/paresis Mild 

tetraparesis 

Mild 

tetraparesis 

Tetraparesis Tetraparesis 

Coma Recovery 

Scale-Revised  

    

Diagnosis at time of 

EEG 

MCS MCS MCS MCS 

Auditory function Reproducible 

movement to 

Localization to 

sound 

Auditory  

startle 

Auditory 

startle 



command 

Visual function Visual 

pursuit 

Visual 

pursuit 

Visual 

pursuit 

Visual 

pursuit 

Motor function Automatic 

motor response 

Automatic 

motor response 

Flexion 

withdrawal 

Flexion 

withdrawal 

Oromotor/Verbal 

function 

Vocalization/ 

Oral movement 

Vocalization/ 

Oral 

movement 

None Oral reflexive 

movement 

Communication None Non- 

Functional: 

Intentional 

None None 

Arousal Eye opening 

without 

stimulation 

Eye opening 

without 

stimulation 

Eye opening 

with stimulation 

Eye opening 

with 

stimulation 

Total score 15 15 7 8 

EEG     

Background activity Bilateral slow Bilateral slow Bilateral slow Bilateral slow 



theta 

dysrhythmia 

delta 

dysrhythmia 

theta 

dysrhythmia 

theta 

dysrhythmia 

MRI/CT      

Lesions  No acute lesion 

demonstrated 

Bilateral 

chronic 

ischemic 

lesions in 

cerebral 

hemispheres 

Bilateral frontal 

contusions and 

bilateral fronto-

parietal leuco-

encephalopathy 

Bilateral 

anterior and 

sylvian 

haemorrhage 

With 

ventricular 

inondation 

 



Supplementary Table (continued). Clinical, electrophysiological and structural imaging data of patients. 

 VS1 VS2 VS3 VS4 VS5 VS6 VS7 VS8 

Clinical Features         

Sex (age, years) Male (67) Male (16) Female (77) Male (43) Female (83) Male (34) Female (60) Female (60) 

Cause Anoxic Trauma Haemorrhage Anoxic Trauma Anoxic Haemorrhage Haemorrhage 

Time of EEG  

(days after insult) 

9 months 12 days 14 days 22 days 1 month 21 years 15 days 1 month 

Outcome at 1 month  VS EMCS VS VS Death VS EMCS EMCS 

Paralysis/paresis Tetraparesis Tetraparesis Tetraparesis Tetraparesis Tetraparesis Tetraparesis Tetraparesis Tetraparesis 

Coma Recovery Scale-

Revised  

        

Diagnosis at time of 

EEG 

VS VS VS VS VS VS VS VS 

Auditory function None None None None None Auditory 

startle 

None None 

Visual function None None None None None Visual 

startle 

None None 



Motor function Abnormal 

posturing 

Flexion 

withdrawal 

Abnormal 

posturing 

Flexion 

withdrawal 

None Abnormal 

posturing 

Flexion 

withdrawal 

Abnormal 

posturing 

Oromotor/Verbal 

function 

None None Oral reflexive 

movement 

Oral reflexive 

movement 

Oral reflexive 

movement 

Vocalization/ 

Oral 

movement 

Vocalization/ 

Oral 

movement 

Oral reflexive 

movement 

Communication None None None None None None None None 

Arousal Eye opening 

without 

stimulation 

Eye opening 

with 

stimulation 

Eye opening 

with 

stimulation 

Eye opening 

with 

stimulation 

Eye opening 

with 

stimulation 

Eye opening 

without 

stimulation 

Eye opening 

with 

stimulation 

Eye opening 

with 

stimulation 

Total score 3 3 3 4 2 7 5 3 

EEG         

Background activity Bilateral slow 

theta 

dysrhythmia 

Bilateral slow 

theta-delta 

dysrhythmia 

Bilateral slow 

theta-delta 

dysrhythmia 

Bilateral slow 

theta 

dysrhythmia 

Bilateral slow 

theta-delta 

dysrhythmia 

Bilateral slow 

theta 

dysrhythmia 

Bilateral slow  

theta-delta 

dysrhythmia 

Bilateral slow  

theta-delta 

dysrhythmia 

MRI/CT          

Lesions  Right fronto-

parietal 

Left occipital 

and right 

Bilateral 

sylvian 

Bilateral 

insular, basal 

Bilateral 

frontal 

Major bilateral 

cerebral and 

Left fronto-

temporo-

Intraventicular 

haemorrhage 



hypoxic lesion temporal and 

cerebellar 

peduncle 

contusion  

territory 

ischemic 

lesions 

ganglia and 

thalamic 

ischemic 

lesions 

contusions  

and fronto-

temporo-

parietal 

haematoma 

cerebellar 

atrophy 

parietal stroke 

with secondary 

haemorrhage 

involving 

thalamus and 

brainstem 

secondary to 

basilar 

aneurysm 

rupture 
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