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A neuroscientific experiment typically generates a large amount

of data, of which only a small fraction is analyzed in detail and

presented in a publication. However, selection among noisy

measurements can render circular an otherwise appropriate

analysis and invalidate results. Here we argue that systems

neuroscience needs to adjust some widespread practices to

avoid the circularity that can arise from selection. In particular,

‘double dipping’, the use of the same dataset for selection and

selective analysis, will give distorted descriptive statistics and

invalid statistical inference whenever the results statistics are

not inherently independent of the selection criteria under the

null hypothesis. To demonstrate the problem, we apply widely

used analyses to noise data known to not contain the

experimental effects in question. Spurious effects can appear

in the context of both univariate activation analysis and

multivariate pattern-information analysis. We suggest a

policy for avoiding circularity.

‘‘Show me the data,’’ we say. But we don’t mean it. Instead of the
numbers generated by measurement, which can be billions for a single
experiment, we wish to see results. This frequent confusion illustrates
an important point. We think of the results as reflecting the data so
closely that we can disregard the distinction. However, interposed
between data and results is analysis, and analysis is often complex and
always based on assumptions (Fig. 1a).

Ideally, the results reflect some aspect of the data without any
distortion being caused by the assumptions or hypotheses (Fig. 1a).
Consider the hypothesis that neuronal responses in a particular region
reflect the difference between two experimental stimuli. We might
measure the neuronal responses, average across repetitions and present
the results in a bar graph with one bar for the response to each stimulus.
The set of stimuli (or, more generally, the experimental conditions) is
decided on the basis of assumptions and hypotheses, thus determining
which bars are shown. But the results themselves (that is, the heights of
the two bars) are supposed to reflect the data without any effect of
assumptions or hypotheses.

Untangling how data and assumptions influence neuroscientific
analyses sometimes reveals that assumptions predetermine results to
some extent1–5. When the data are altogether lost in the process, the

analysis is completely circular (Fig. 1a). More frequently, in practice,
the results do reflect the data, but are distorted to varying degrees by the
assumptions (Fig. 1a). Such distortions can arise when the data are first
analyzed to select a subset and then the subset is reanalyzed to obtain
the results. In this context, assumptions and hypotheses determine the
selection criterion and selection can, in turn, distort the results.

In neuroimaging, an example of selection is the definition of a region
of interest (ROI) by means of a statistical mapping that highlights
voxels that are more strongly active during one condition than another.
In single-cell recording, an example of selection is the restriction of in-
depth analysis to neurons with certain response properties. In electro-
and magnetoencephalography, an example of selection is the restriction
to a subset of sensors or sources that show expected responses. In gene
microarray studies, an example of selection is inferential analysis
performed for a statistically selected subset of genes6. In behavioral
studies, an example of selection is the division of a group of subjects
into subgroups on the basis of task performance. Weighting and sorting
of data can be construed as variants of selection, and we will use the
latter term in a general sense to refer to all three (Fig. 1b).

Selection can entail two distinct forms of bias: selective reporting of
accurate results and distortion of estimates and invalidation of statistical
tests. Both forms deserve a wider debate, but we focus on the latter here.

If selection were determined only by true effects in the data, then
there would be no distortion of the results of the selective analysis.
However, data are always a composite of true effects and noise.
Selection is therefore affected by noise. In neuroimaging, for example,
the voxels included at the fringe of an ROI tend to reflect the noise to
some extent, even if the ROI highlights a truly active brain region (as in
Example 2, see below). When the selection process is based on the
design matrix, it creates spurious dependencies between the noise in the
selected data and the experimental design, thus violating the assump-
tion of random sampling. This can bias selective analysis.

Selective analysis is a powerful tool and is perfectly justified when-
ever the results are statistically independent of the selection criterion
under the null hypothesis. However, double dipping (the use of the
same data for selection and selective analysis) will result in distorted
descriptive statistics and invalid statistical inference whenever the test
statistics are not inherently independent of the selection criteria under
the null hypothesis. Non-independent selective analysis is incorrect and
should not be acceptable in neuroscientific publications.

Although the dangers of double dipping in the pool of data are well
understood in statistics and computer science, the practice is common
in systems neuroscience and, in particular, in neuroimaging and
electrophysiology. To assess how widespread non-independent selective
analyses are in the literature, we examined all of the functionalPublished online 26 April 2009; doi:10.1038/nn.2303
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magnetic resonance imaging (fMRI) studies published in five presti-
gious journals (Nature, Science, Nature Neuroscience, Neuron and
Journal of Neuroscience) in 2008. Of these 134 fMRI papers, 42%
(57 papers) contained at least one non-independent selective analysis
(not considering supplementary materials). Another 14% (20 papers)
may contain non-independent selective analyses, but the metho-
dological information that was given was insufficient for us to reach
a conclusion.

Are all these studies incorrect in their main claims? We do not think
so. First, we counted any study containing at least one non-indepen-
dent selective analysis. For a given paper, the overall claim may not
depend on the distorted result. Second, we have no way of assessing the
severity of the distortions. They might be small in many cases. If
circularity consistently caused only slight distortions, one could argue
that it is a statistical quibble. However, the distortions can be very large
(Example 1, below) or smaller, but significant (Example 2), and they
can affect the qualitative results of significance tests. To decide which
neuroscientific claims hold, the community needs to carefully consider
each particular case, guided by both neuroscientific and statistical
expertise. Reanalyses and replications may also be required.

The problem arises so frequently because the desired selection
criterion is often identical with or related to the desired results statistics
for the selective analysis. In neuroimaging, for example, we may
hypothesize that there is a region responding more strongly to stimulus
A than to B, select voxels showing this effect to define an ROI and then
selectively analyze that ROI to test our hypothesis. One way to ensure
statistical independence of the results under the null hypothesis is to
use an independent dataset for the final analysis of the selected channels
(for example, neurons or voxels).

Another way to ensure independence is to use inherently indepen-
dent statistics for selection and selective analysis. For example, we
may select channels with a large average response to stimuli A
and B (contrast A + B) and test for a difference between the
conditions (contrast A – B). The contrast vectors ([1, 1]T and
[1, –1]T) are orthogonal. Unfortunately, contrast-vector orthogonality,
by itself, is not sufficient to ensure independence (see Supplementary
Discussion online). In practice, the same data are frequently used
for selection and selective analysis, even when the selection

criteria are not inherently independent of the results statistics.
In this case, the results are questionable.

Distortions arising from selection tend to make results look more
consistent with the selection criteria, which often reflect the hypothesis
being tested. Circularity is therefore the error that beautifies results,
rendering them more attractive to authors, reviewers and editors, and
thus more competitive for publication. These implicit incentives may
create a preference for circular practices so long as the community
condones them.

Analyzing multiple channels and reporting results for a statistically
selected subset is essential in electrophysiology and neuroimaging.
Neuroimaging is faced with even more parallel sites than electrophysiol-
ogy, typically on the order of 100,000 voxels in the measured volume.
However, selection is also an issue in electrophysiology and will gain
importance as multi-electrode arrays become more widely used. To its
great credit, neuroimaging has developed rigorous methods for statis-
tical mapping from its beginning7–11. Note that mapping the whole
measurement volume avoids selection altogether; we can analyze and
report results for all locations equally, while accounting for the multiple
tests performed across locations12. The sense of discovery associated
with brain mapping derives from this data-driven approach, which
avoids both the bias of selective reporting of accurate results and the
circularity that can invalidate non-independent selective analyses.
Despite the beauty and completeness of a nonselective mapping analysis,
selective in-depth analysis of ROIs can yield additional insights13.

Here, we demonstrate the problem using two examples from
neuroimaging (Figs. 2 and 3). In each example, a widely accepted
practice is applied to random data known to not contain the experi-
mental effect in question. This exercise reveals the distortion and
spurious significance that can arise in circular analysis. We view the
problem from three perspectives: as ‘selection bias’, as ‘exploration
and confirmation using the same data’ and as ‘overfitting’ (these
perspectives are elaborated on in Supplementary Figures 1–4 and
the Supplementary Discussion online, which also contain further
analyses and simulations and a comprehensive set of questions
and answers about circular analysis). Finally, we suggest a policy
for noncircular analysis of brain-activity data (Fig. 4 and
Supplementary Discussion).

Figure 1 Intuitive diagrams for understanding

circular analysis. (a) The top row serves to remind

us that our results reflect our data indirectly,

through the lens of an often complicated analysis,

whose assumptions are not always fully explicit.

The bottom row illustrates how the assumptions

(and hypotheses) can interact with the data to

shape the results. Ideally (bottom left), the results
reflect some aspect of the data (blue) without

distortion (although the assumptions will

determine what aspect of the data is reflected in

the results). Sometimes (bottom center), however,

a close inspection of the analysis reveals that the

data get lost in the process and the assumptions

(red) predetermine the results. In this case, the

analysis is completely circular (red dotted line).

More frequently in practice (bottom right), the

assumptions tinge the results (magenta). The

results are then distorted by circularity but still

reflect the data to some degree (magenta dotted

lines). (b) Three diagrams that illustrate the three

most common causes of circularity: selection (left), weighting (center) and sorting (right). Selection, weighting and sorting criteria reflect assumptions and

hypotheses (red). Each of the three can tinge the results, distorting the estimates presented and invalidating statistical tests, if the results statistics are not

independent of the criteria for selection, weighting or sorting.
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Example 1: pattern-information analysis

In pattern-information analysis14–18, the objective is to determine
whether the pattern of response in a brain region contains
stimulus information. Considering pattern-information analysis is
relevant not only because this approach is gaining importance
in systems neuroscience, but also because it provides a powerful
general perspective on circular analysis19,20.

One popular approach to pattern-information analysis is to attempt
to decode the stimulus from the response pattern with a pattern
classifier21–23. If we can predict the stimuli from the response patterns
significantly above chance level, then the patterns must contain
information about the stimuli. The most common method is linear
classification, where a linear decision boundary (that is, a hyperplane)
is placed in response-pattern space to discriminate the stimuli. After
training the classifier to discriminate example patterns, we can deter-
mine its accuracy (percentage of correct classifications). However, if we
used the training data to assess the accuracy, we would overestimate the
accuracy and conclude that there was stimulus information even if
there was none. The reason for this is a phenomenon known as
overfitting: a model will capture the noise to some extent as its
parameters are fitted to the data. A more flexible model (that is, one
with many parameters) will tend to be more susceptible to overfitting.
However, even the fitting of a one-parameter model (for example, a
mean) is affected by noise to some extent. When thinking about fitting
a linear decision boundary, we tend to imagine a line separating two
clouds of points in a plane. When there are many points (much data)
and few dimensions (for example, two dimensions: a plane), overfitting
may be negligible. However, response-pattern space has as many
dimensions as there are response channels (for example, neurons or
voxels), and a linear decision boundary has as many parameters as there

are dimensions. Counter to the intuitive simplicity and rigidity of a
planar decision boundary, fitting a hyperplane in a 100-dimensional
space to separate 100 data points is like separating two points on a
plane by a line; separation is always perfect, even if the points are drawn
from identical distributions (Supplementary Discussion). Separability
thus provides no evidence for separate distributions.

Using the same data to train and test a linear classifier can lead us to
believe that there is information about the stimulus in regions where
actually there is none. In this context, double dipping entails extreme
distortions and is widely understood to be unacceptable. We are not
aware of examples of this error in the systems neuroscience literature.
However, the error here is fundamentally the same as that of non-
independent selective analysis. Linear classification is based on a
weighted sum of the responses. Weighting can be construed as a
continuous variant of selection. Conversely, we can think of selection
as binary weighting, a special case.

Can selection produce similar distortions as continuous weighting in
the context of pattern-information analysis? To test this possibility, we
performed a classifier analysis on human inferior-temporal response
patterns measured with fMRI while subjects viewed object images2.
The experiment had two independent variables: object category
and task (Fig. 2a). In task 1, subjects judged whether the object
presented was animate or inanimate. In task 2, they judged whether
the object was pleasant or unpleasant. The experiment can reveal the
extent to which inferior-temporal activity patterns reflect stimulus
category and task.

We first analyzed all experimental runs together to define an ROI. We
included all inferior-temporal voxels for which any two-sided t test for
a pair-wise condition contrast was significant at P o 0.001 (uncor-
rected). We then cleanly divided the data into independent training and
test sets by designating all odd runs as being training data and all even
runs as being test data. For the training and the test set separately, we
computed the average activity pattern for each condition (combination
of task and stimulus category). For each pair of conditions, we decoded
a given test pattern by assigning the condition label of the training
pattern that was more similar to the test pattern14. This nearest-
neighbor method is a linear classifier because the condition-average
patterns are used. Pattern similarity was measured by the Pearson
correlation across voxels. For each subject, decoding accuracy was
computed for each pair-wise task comparison in each stimulus
category and for each pair-wise stimulus-category comparison in
each task (chance level was 50%). Task decoding accuracies
were averaged, first within subjects and then across subjects.
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Figure 2 Example 1: data selection can bias pattern-information analysis.

(a) To assess the extent to which human inferior-temporal activity patterns

reflect bottom-up sensory signals and top-down task constraints, we

measured activity patterns with fMRI while subjects viewed object images

of different categories and judged whether the object shown was ‘animate’

(task 1) or whether it was ‘pleasant’ (task 2)2. (b) We selected all inferior-

temporal voxels for which any two-sided t test contrasting two conditions was

significant at P o 0.001 (uncorrected for multiple tests). We then cleanly
divided the data into independent sets, using odd runs for training and even

runs for testing. We used a linear classifier to determine whether the activity

pattern would allow us to decode the stimulus category (light gray bars) and

the judgment task (dark gray bars). Results (top left) suggested that both

stimulus and task can be decoded with high accuracy, significantly above

chance. However, application of the same analysis to Gaussian random data

(top right) also suggested high decoding accuracies significantly above

chance. This shows that spurious effects can appear when data from the

test set are used in the initial data-selection process. Such spurious effects

can be avoided by performing selection using data that are independent of

the test data (bottom row). Error bars indicate ± 1 across-subject s.e.m.
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Stimulus-category decoding accuracies were averaged in the same way.
Similar methods are widespread in the literature.

This analysis suggested that both stimulus category and judgment
task can be decoded with accuracies above 90% and significantly better
than chance (Fig. 2b). Therefore, we would conclude that both the task
and the stimulus category are strongly reflected in inferior-temporal
response patterns. However, when we applied the same analysis to data
generated with a Gaussian random generator, we obtained equivalent
results (Fig. 2b). The random data are known to not contain any
information about either task or stimulus category, so any correct
analysis should indicate decoding accuracies whose deviations from
50% are in the margin of error and are significant in only 5% of the
cases. This demonstrates that selection of ROI voxels using all data can
strongly bias estimates of decoding accuracy and yield spuriously
significant test results.

The cause of the distortion is the selection of voxels whose time
series, by chance, show some consistency between training and test set
in the way that they are related to the experimental conditions. For the
selected voxel set, training and test datasets are therefore no longer
independent. When we corrected the error of non-independent voxel
selection, decoding accuracies dropped to chance level for the Gaussian
random data (Fig. 2b). For the actual experimental data, task decoding
accuracy dropped to chance level, whereas stimulus-category decoding
accuracy dropped to about 75%, but remained significant (Fig. 2b).
The latter result replicates a previous study14.

Beyond neuroimaging, pattern-information analyses are increas-
ingly used in invasive and scalp electrophysiology. Circularity will
cause similar distortions when cells or sensors are preselected
by non-independent criteria. We conclude that selection of res-
ponse channels can strongly inflate estimates of decoding
accuracy and misleadingly suggest substantial amounts of information
in a brain region, where there is actually none. We can avoid such
spurious results by performing selection using data that is independent
of the test data.

Example 2: regional activation analysis

A widespread approach to neuroimaging analysis is to perform a
statistical mapping, followed by a selective activation analysis of one
or more ROIs. The ROIs are typically defined by the mapping; and their
analysis is often based on the same data. In many cases, the conclusion
that the ROI analysis serves to support is directly or indirectly related to
the mapping contrast. Is this a valid approach?

Let us assume that the ROI is defined by a valid statistical mapping
analysis with adequate correction for multiple tests. If the statistical
mapping were not performed correctly, one could argue that whatever
problem arises thereafter is not caused by non-independent selection,
but instead by the inadequate statistical mapping. We further assume
that the mapping analysis successfully localizes a truly active region.
The alternative case that the mapping falsely highlights a region will be
rare; it will have a probability of 0.05 or less under the null hypothesis,
as the mapping is assumed to be correct. If the mapping did not
highlight any region, then there would be no ROI to selectively analyze.

To assess whether an ROI analysis can be distorted by selection under
these assumptions, we simulated a neuroimaging dataset of 30 � 30 �
20 voxels and 200 time points. The simulated experiment was a block
design with four conditions (A, B, C and D). We placed a 100-voxel
activation (5 � 5 � 4 voxels) at the center of the volume. The region
was simulated to be active during conditions A and B, but not during C
and D (Fig. 3a). The resulting spatiotemporal dataset was added to
independent spatiotemporal Gaussian noise and spatially smoothed by
convolution with a 3-voxel-wide cubic kernel. The data were analyzed
by means of a general linear model using the same design matrix as was
used to simulate the effects, with one predictor per condition. We
mapped the dataset by voxel-wise univariate linear modeling using the
contrast A – D (Fig. 3a). We thresholded the resulting t map using a
primary threshold corresponding to P o 0.0001 (uncorrected). We
then assessed the size of each contiguous cluster exceeding this primary
threshold and highlighted all clusters whose size exceeded a cluster-size
threshold that controlled the family-wise error rate at P o 0.05, thus
correcting for multiple tests. The cluster-size threshold was determined
by simulating the map-maximum cluster-size distribution under the
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Figure 3 Example 2: ROI definition can bias activation analysis. A simulated

fMRI block-design experiment demonstrates that non-independent ROI

definition can distort effects and produce spuriously significant results, even

when the ROI is defined by rigorous mapping procedures (accounting for

multiple tests) and highlights a truly activated region. Error bars indicate ± 1

s.e.m. (a) The layout of this panel matches the intuitive diagrams of

Figure 1a; the data in Figure 1a correspond to the true effects (left), the

assumptions to the contrast hypothesis (top) and the results to ROI-average
activation analyses (right). A 100-voxel region (blue contour in central slice

map) was simulated to be active during conditions A and B but not during

conditions C and D (left). The t map for contrast A – D is shown for the

central slice through the region (center). When thresholded at P o 0.05

(corrected for multiple tests by a cluster threshold criterion), a cluster

appears (magenta contour), which highlights the true activated region (blue

contour). The ROI is somewhat affected by the noise in the data (difference

between blue and magenta contours). The noise pushes some truly activated

voxels below the threshold and lifts some nonactivated voxels above the

threshold (white arrows). This can be interpreted as overfitting. The bar graph

for the overfitted ROI (bottom right, same data as used for mapping) reflects

the activation of the region during conditions A and B, as well as the absence

of activation during conditions C and D. However, in comparison to the true

effects (left), it is substantially distorted by the selection contrast A – D (top).

In particular, the contrast A – B (simulated to be zero) shows spurious

significance (P o 0.01). When we use independent data to define the ROI

(green contour), no such distortion is observed (top right). (b) The simulation

illustrates how data selection blends truth (left) and hypothesis (right) by

distorting results (top) so as to better conform to the selection criterion.
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null hypothesis by running the above simulation 1,000 times for the
same contrast without any effect placed in the data.

The ROI defined by the mapping analysis (Fig. 3a) correctly high-
lighted the activated region. However, the ROI was somewhat affected
by noise in the data. Some voxels at the fringe of the ROI will be
included because their noise component makes them look as though
they conformed slightly better to the selection criterion; others will be
excluded because their noise makes them look as though they did not
conform as well to the selection criterion. This can be interpreted as
overfitting of the ROI.

We averaged all time courses in the ROI (same data as used for
mapping) and fitted the linear model. The resulting bar graph (Fig. 3a)
reflects the activation of the region during conditions A and B as well as
the absence of activation during conditions C and D. However, it is
substantially distorted by the non-independent selection; recall that the
mapping was based on the contrast A – D (Fig. 3a). Although the
region was equally activated during conditions A and B, it appears to be
more activated during condition A than during B, and this effect is
significant (P o 0.01 in the particular example run shown). When we
used independent data to define the ROI, no such distortion was
observed (Fig. 3a).

To assess the proportion of cases in which the contrast A – B would
yield a spuriously significant result caused by non-independent voxel
selection, we repeated the simulation 100 times. The one-sided t test for
the ROI contrast A – B (whose ground-truth value is zero in the
simulation) was significant in 20 of the 100 simulations for P o 0.05
and in 9 of the 100 simulations for P o 0.01. These false-positives
rates are significantly larger than for a correct test (P¼ 0.00005, w2 test

for the null hypothesis that the proportion of
results that were significant at P o 0.05 is
0.05). We conclude that non-independent
selection can distort the results of selective
analyses, even when rigorous statistical tests
are used during selection.

Independence of the selective analysis could
have been ensured either by using indepen-
dent test data (Fig. 3a) or by using selection
and test statistics that are inherently indepen-
dent. For the contrasts that were used (selec-
tion contrast, A – D; test contrast, A – B), the
inherent dependence is obvious; voxels with
higher signals during condition A are more
likely to be selected by chance using contrast A
– D. Thus, test contrast A – B will be biased.
However, selection bias can arise even for
orthogonal contrast vectors (Supplementary
Discussion and Supplementary Fig. 3).

Non-independent selection causes bias because the selection is
somewhat affected by the noise (Fig. 3a), even when the statistical
criterion is stringent and the ROI highlights a truly activated region.
Our statistical selection method controls the family-wise error rate; it
does not ensure that the ROI perfectly captures the shape of the region.
The ROI will be overfitted to the data to some extent, just like the
weights of a linear classifier.

To temper this conclusion, we note that overfitting will typically be
less severe in fitting an ROI than in fitting a linear classifier with
continuous weights. The restriction to binary weights and the con-
straint of selecting a contiguous set of voxels effectively regularize an
ROI fit. In contrast, discontiguous selection (as in Example 1) and data
sorting can be extremely susceptible to overfitting (for two simple
simulations on sorting effects, see Supplementary Fig. 2).

In practice, statistical mapping for ROI definition is not always
performed with rigorous correction for multiple tests as assumed here.
Many studies rely on a threshold of P o 0.001 (uncorrected). The
selective analysis of the same data is then sometimes interpreted as
though it confirmed the effect selected for. Although it does not
confirm the effect, the selective analysis effectively serves to help us
forget about the multiple-testing problem during selection. The inade-
quacy of the inference during selection will compound the circularity of
the selective analysis, and strong biases and large false-positives rates are
to be expected.

Although the example here concerns the selection of voxels in a
neuroimaging experiment, the same caution should be applied in
analyzing other types of data. In single-cell recording, for example,
it is common to select neurons according to some criterion (for

Selective analysis needed? Nonselective analysis
e.g. analysis of effects restricted to
functionally defined ROI or mask, or pattern-
classifier analysis

e.g. statistical mapping (for activation or pattern-
information), accounting for multiple testing and
temporal autocorrelation, optionally with conjunction
analysis

Independent analysis using all data

Independent split-data analysis

Acknowledge circular results
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1  Selection/weighting using set 1 only
a,b

1  Perform selective analysis using all data

2  Use circularity indicators
e.g. in a bar graph, mark all contrasts used in the
selection process

e.g. ROI or mask definition (and voxel weighting for
pattern-classifier analysis)

2  Selective analysis using set 2 only

•  Set-2 analysis provides undistorted
   statistics and valid test results

•  Do not base conclusions on effects
   affected by circularityc

•  Do not perform inference on any contrast
   affected by circularityd

•  Do not perform pattern-classifier
   analysis

e.g. ROI activation or pattern-classifier
analysis

e.g. bar graph, event-related average or
deconvolution time courses with standard errors

2  Perform selective analysis using all data

Show by argument, analysis, or simulation that, under
the null hypothesis, no aspect of the results can
possibly be affected by the selection process

Results statistics independent
of selection criteria?

Can data be divided into
independent sets?

Model the effect of selection
under the null hypothesis

Most common errors

e.g. anatomical selection criterion

Y

N

Y

Y

N

N

a

b

c

d

e.g. odd and even runs of the experiment

e.g. by simulation, subjecting randomized
data to the selection process and the
selective analysis many times

Some piece of information from set 2 is used
in voxel selection or weighting (e.g. a mask,
map or mean value computed on all data)
Information from set 2 passively enters voxel
selection or weighting (e.g. slow trends or
hemodynamic effects extend across
set-1/set-2 boundary)
A bar graph with some bars distorted by voxel
selection is interpreted as reflecting relative
effect sizes
A circular ROI analysis is used for statistical
inference

Figure 4 A policy for noncircular analysis. This

flow diagram suggests a procedure for choosing an

appropriate analysis that avoids the pitfalls of

circularity. Considering the most common errors

(bottom left, red-letter references) can help to

recognize circularity in assessing a given

analysis. We first consider performing a

nonselective analysis only. If selective analysis is
needed and we can demonstrate that the results

are independent of the selection criterion under

the null hypothesis, then all data are used for

selective analysis. If we cannot demonstrate

this, then a split-data analysis can serve to

ensure independence (for details, see

Supplementary Discussion).
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example, visual responsiveness or selectivity) before applying
further analyses to the selected subset. If the selection is based on
the same dataset as is used for selective analysis, biases will arise
for any statistic not inherently independent of the selection
criterion. For neurons and voxels, selection should be based on
criteria that are independent of any selective analysis. In sum,
Example 2 shows that non-independent selective analysis can
cause significant biases, even when selection is performed with
rigorous statistical inference correcting for multiple tests.

A policy for noncircular analysis

One possible policy that ensures correct inference and undistorted
descriptive statistics is summarized by the flow diagram of Figure 4.
The core of our policy is as follows: we first consider a nonselective
analysis (for example, brain mapping with correction for multiple
comparisons). If selective analysis is needed, we then assess whether the
results statistics are independent of the selection criterion under the
null hypothesis. If this has been explicitly demonstrated, then all data
are used for selective analysis. Otherwise, an independent dataset is
used for the selective analysis to ensure independence of the results
under the null hypothesis and prevent circularity. Each of these steps is
explained in detail in the Supplementary Discussion.

Conclusion

To learn about brain function, systems neuroscience needs to apply
complex selective and recurrent analyses to high-dimensional brain-
activity data. One challenge that this poses is to avoid circularity.
A circular analysis is one whose assumptions distort its results. We
have demonstrated that practices that are widespread in neuroimaging
are affected by circularity. In particular, data weighting, sorting and
selection can distort results and invalidate tests when preceding non-
independent further analyses. Similar practices are common in other
fields of systems neuroscience including electrophysiology. The distor-
tions may be small in many cases. However, they can be large and can
qualitatively affect results. We conclude that some common practices
need to be adjusted. In particular, selection criteria should be demon-
strated to be independent of further analyses. A simple way to ensure
independence is to use independent data for selection and selective
analyses. Immanuel Kant24 observed that Reason, in science, will not be
led on by Nature, but rather forces her to answer specific questions.
Circular analysis goes one step further, enforcing specific answers as well
(or biasing results in their favor), which is one step too far in our opinion.

Note: Supplementary information is available on the Nature Neuroscience website.
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