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72076 Tübingen, Germany
3RIKEN Brain Science Institute, Wako, 351-0198 Saitama,
Japan
4Vision and Cognition Lab, Centre for Integrative
Neuroscience, University of Tübingen, 72076 Tübingen,
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Summary

fMRI, one of the most important noninvasive brain imaging
methods, relies on the blood oxygen level-dependent

(BOLD) signal, whose precise underpinnings are still not
fully understood [1]. It is a widespread assumption that the

components of the hemodynamic response function (HRF)
are fixed relative to each other in time, leading most studies

as well as analysis tools to focus on trial-averaged re-

sponses, thus using or estimating a condition- or location-
specific ‘‘canonical HRF’’ [2–4]. In the current study, we

examined the nature of the variability of the BOLD response
and asked in particular whether the positive BOLD peak is

subject to trial-to-trial temporal jitter. Our results show
that the positive peak of the stimulus-evoked BOLD signal

exhibits a trial-to-trial temporal jitter on the order of
seconds. Moreover, the trial-to-trial variability can be ex-

ploited to uncover the initial dip in the majority of voxels
by pooling trial responses with large peak latencies. Initial

dips exposed by this procedure possess higher spatial res-
olution compared to the positive BOLD signal in the human

visual cortex. These findings allow for the reliable observa-
tion of fMRI signals that are physiologically closer to neural

activity, leading to improvements in both temporal and
spatial resolution.
Results

Trial-to-Trial Temporal Jitter of the BOLD Positive Peak
In the first experiment, we investigated the trial-to-trial tempo-
ral variability of the positive blood oxygen level-dependent
(BOLD) peak in the human visual cortex using an event-related
visual stimulation paradigm with long poststimulus periods. A
polar-transformed checkerboard (width: 18 degrees visual
angle, duration: 4 s; Figure 1A) was presented centrally with
*Correspondence: watanabe@tuebingen.mpg.de (M.W.), andreas.bartels@

tuebingen.mpg.de (A.B.)
randomized interstimulus intervals of 40–46 s to obtain visually
evoked fMRI BOLD responses compared to baseline (see
Experimental Procedures). In order to quantify the latency of
the peak of the positive BOLD response for a given trial, we
defined it as the time of the highest BOLD signal of the tempo-
rally smoothed and detrended BOLD time course relative to
stimulus onset. Figure 1B plots the standard deviation of the
detected peak latencies in relation to the width of the Gaussian
kernel used for temporal smoothing. Hereafter, we use the
Gaussian kernel width value of 3.8 s that resulted in the small-
est trial-to-trial variability of positive peak latencies, which
nevertheless amounted to a considerable 4.1 s SD. Figure 1C
shows trial-by-trial response time courses of a single voxel,
sorted by positive BOLD signal peak latencies. Also, here the
peak latency of the BOLD response varied in the range of
several seconds. This was typical for most visually responsive
voxels and can be quantified by the SD of the peak times that
ranged between 2 and 5 s. (For further analysis showing evi-
dence that the BOLD temporal jitter has a biological origin,
see Figure S1 available online.)

The Jitter-Uncovered Initial Dip
When single-trial responses of BOLD signal were sorted
according to their positive peak latency, we saw two negative
response components that are independent of the temporal
shift of the positive BOLD signal. Figure 2A shows averaged re-
sponses, pooled from trials with different peak latency ranges.
Each curve contains data from the same set of voxels, but from
different trials, revealing two response properties. First the
so-called initial dip, i.e., the early negative component of the
BOLD response, is clearly visible in trials with long peak
latencies (hereafter termed the ‘‘jitter-uncovered initial dip’’).
Second, a sharp postresponse undershoot becomes apparent
in trials with short peak latencies. Interestingly, both proper-
ties are cancelled out in the average response across all trials
(black line in Figure 2A). The same procedure, applied to data
of a single voxel, is illustrated in Figure 2B. Although this voxel
does not show the initial dip when all trials are averaged, it can
be detected when only the 50% of trials with late BOLD peak
are considered.
In the following, we examine the fundamental properties of

the jitter-uncovered initial dip in voxelwise analyses in which
we relate its magnitude to that of the conventional initial dip,
to the positive peak amplitude, and to the positive peak
latency, using data obtained from the first human experiment.
Scatterplots of the magnitudes of dips detected convention-
ally (all-trial average) or using jitter analysis are shown for a
representative subject in Figure 2C. Results show that the
magnitude of the jitter-uncovered initial dip was on average
larger than that of the conventional initial dip, whichwas signif-
icant for every subject (pairwise t test; p < 1.0 3 1028). The
widths of the temporal window were optimized to maximize
the number of voxels classified as having the particular type
of initial dip. The magnitude of the jitter-uncovered initial dip
was defined as the percent signal change between 3 s prior
and 3 s after stimulus onset using only the 50% of trials with
late BOLD peak responses, i.e., late-peaking trials (Figure 2B).
In contrast, the conventional initial dip was defined as the

http://dx.doi.org/10.1016/j.cub.2013.08.057
http://dx.doi.org/10.1016/j.cub.2013.08.057
mailto:watanabe@tuebingen.mpg.de
mailto:andreas.bartels@tuebingen.mpg.de
mailto:andreas.bartels@tuebingen.mpg.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2013.08.057&domain=pdf


Figure 1. Temporal Fluctuation of BOLD Positive

Peak Signal Latency

(A) Full-field checker stimulus used for experi-

ment 1, which flickered at 4 Hz during 4 s, fol-

lowed by 40–46 s blank.

(B) Dependency of the standard deviation of

BOLD peak latencies on thewidth of the temporal

smoothing Gaussian kernel used for peak detec-

tion. Error bars denote 95% confidence interval.

(C) BOLD time courses (aligned to the stimulus

onset) of a representative voxel, trial sorted by

the latency of the positive peak. Time histogram

of peak latencies is shown in the lower panel.

See also Figure S1.
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percent signal change between 3 s prior and 1.5 s after stim-
ulus onset using all trial responses.

Figures 2D and 2E show scatterplots of jitter-uncovered dip
magnitude versus positive peak amplitude and peak latency,
respectively. Peak amplitude (Figure 2D) and peak latency
(Figure 2E) were both negatively correlated with the jitter-un-
covered initial dip magnitude (p < 1.0 3 1028) for all six sub-
jects and each type of correlation. These negative correlations
are likely due to the voxel-by-voxel variability in terms of over-
lap with drainage vessels; voxels with large BOLD amplitudes
and large peak latencies tend to have a large signal contribu-
tion from large drainage vessels, and therefore the initial dip
that originates from tissue deoxygenation and/or dilation of
arterioles [5, 6] becomes relatively smaller. Note here that
the vascular composition within a voxel is a fixed anatomical
property, whereas the trial-to-trial temporal jitter reflects
fluctuations in neural states, neurovascular coupling, and var-
iable vascular responses across trials. (For experimental evi-
dence showing that the jitter-uncovered initial dip is robust
compared to the conventional initial dip also in the motor
cortex, see Figure S2.)

The Jitter-Uncovered Initial Dip Leads to Higher Spatial
Resolution in the Human Visual Cortex

Previous studies have shown that the positive component of
the BOLD response has a substantial point spread, i.e., a
spatial spill-out of the response beyond the site of neural acti-
vation [7]. In contrast, the initial dip of the BOLD signal is
considered to be more confined in space [8–11]. The primary
reason for the high interest of neuroscientists in the initial dip
has been that in theory, it may be more closely related to the
site of neural metabolism and thus allow for more precise
spatial localization compared to the positive BOLD peak. The
aim of the second experiment was to validate the identification
of the initial dip that was revealed by the jitter analysis and to
determine whether it indeed has a better spatial confinement
to the locus of neural activation compared to the positive
component of the BOLD response.

In order to obtain a reliable estimate, we placed fMRI slices
tangential to the calcarine sulcus of V1, which would allow
two-dimensional sampling of BOLD activity from a flat gray-
matter region (Figure 3B). Two eccentric rings were used as
visual stimuli, with shared stimulus borders (Figure 3A). The
eccentricity of the shared stimulus border was adjusted
between 3 and 6 degrees so that the activity border centered
on the flat gray-matter region.

Figures 3C and 3D present activity maps of a representative
subject obtained by analysis based on the positive BOLD
peak and the jitter-uncovered initial dip, respectively. The
two values were calculated according to the methods pro-
vided in the previous experiment. Red and green color scales
correspond to activities evoked by the two eccentric rings, and
additive use of color scales leads to yellow representing over-
lap. The positive BOLD analysis resulted in an overlap of activ-
ity with a width of several voxels (note that we used 1.5 mm
in-plane resolution), whereas the jitter-uncovered initial dip
analysis yielded minimal overlap.
To quantify the above observation, we calculated the point

spread function (see Experimental Procedures). Signal fall-off
asa functionof thedistance fromtheactivationborder is shown
inFigure 3F,where redandblue linesdenotepoint spread func-
tions of the positive BOLD peak and the jitter-uncovered initial
dip, respectively. Hatched regions indicate 95%confidence in-
tervals. The two types of activity differed for all distances larger
than 1 mm from the activity border (p < 0.05, t test). The esti-
mated point spread functions provide clear evidence that the
jitter-uncovered initial dip results inenhancedspatial resolution
compared to the positive BOLD peak, with about 2 mm point
spread function compared to about double of that in the posi-
tive BOLD peak. Furthermore, the sharp monotonic decrease
of point spread right from the border of the stimulus, compared
to theblunt point spreadof the positiveBOLD, has thepotential
to drastically decrease the size of the minimal resolvable func-
tional structure in combination with differential mapping and
smaller voxel sizes at higher field strengths, which will be an
exciting future application of this method. However, note that
the increase in spatial resolution comes at the cost of poorer
signal-to-noise ratio. (For further experimental evidence on
the spatial confinement of the jitter-uncovered initial dip,
including voxel population analysis, see Figure S3.)

Discussion

We examined trial-by-trial temporal fluctuations of BOLD
responses in the human visual and motor cortices. Results
show that the delay of the positive peak BOLD response fluc-
tuated on the order of seconds. Furthermore, we found two
negative components of the BOLD response that were not
affected by the temporal jitter of the positive component: a
robust initial dip and a sharp poststimulus undershoot. The
initial dip was reliably brought to light in most single voxels
by pooling those trial responses that had long positive peak
latencies. In contrast, when all trials were pooled regardless
of the peak latency, the initial dip was seen only in a minority
of voxels. The latter result is in line with previous studies re-
porting the elusive nature of the conventional BOLD initial
dip [12–14]. By employing two spatially complementary visual
stimuli designed to activate retinotopically segregated regions



Figure 2. Properties of the Jitter-Uncovered Initial Dip

(A) Average BOLD time courses from the same pool of voxels. Each curve contains data from the same set of voxels, but from trials with different latencies of

the positive peak. Black line indicates average response across all trials. Colored lines indicate average responses of subsets of trials with increasing la-

tencies of their response peak.

(B) Average time courses obtained from a single representative voxel. Red line indicates average across all trials. Light blue and dark blue lines indicate 50%

of trials with late and early positive peak latencies, respectively. Shaded regions in blue and yellow denote the time windows of averaging for prestimulus

BOLD level and the jitter-uncovered initial dip, respectively.

(C) Voxelwise scatterplots of the magnitudes of the conventional initial dip and the jitter-uncovered initial dip of a representative subject. Positive values

indicate a decrease in BOLD signal. Each marker represents a single voxel. Marker color indicates the percent signal change of the positive BOLD peak

(averaged across all trials), whereas marker size indicates the positive peak latency (averaged across all trials). The magnitude of the jitter-uncovered initial

dip was on average larger than that of the conventional initial dip, which was significant for every subject (pairwise t test; p < 1.0 3 1028).

(D) Voxelwise scatterplots of jitter-uncovered initial dip magnitude and percent signal change of the positive BOLD peak of a representative subject.

(E) Voxelwise scatterplots of jitter-uncovered initial dip magnitude and positive peak latency of a representative subject. (D) and (E) show negative corre-

lations (p < 1.0 3 1028) for all six subjects likely due to the voxel-by-voxel variability in terms of overlap with drainage vessels (see main text).

See also Figure S2.
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of the visual cortex, our novel analysis showed that the early
negative response was better colocalized to neuronal activity
compared to traditional analysis based on the positive BOLD
response.

First, we discuss neurovascular mechanisms underlying the
initial dip with regard to the proposed method of the jitter-un-
covered initial dip. One congruent observation from intrinsic
optical imaging (IOI) studies is that there is a point in time after
stimulus presentation where the tissue remains dark (due to
raised deoxyhemoglobin [HbR] concentration, but see [5])
while portions of visible vasculature are brightening (higher
HbO2 concentration) (Figure 1D in [15]; Figure 1B in [5]; Fig-
ure 2A in [16]). The darkening reveals a columnar structure,
and hence it is colocalized to neural activity, whereas the sub-
sequent tissue brightening has amuch larger spatial scale and
does not follow the functional structure. Furthermore, if we as-
sume that the onset of vasculature brightening has a trial-by-
trial variability, and taking into account the opposite effects
in tissue and vasculature observed in IOI, as well as the fact
that both are spatially pooled in single fMRI voxels, it becomes
apparent why the fMRI initial dip was only robustly revealed
when pooling responses with large positive peak latencies
(Figure 4). Inclusion of short-latency positive peak trials would
have allowed the signal related to early vascular oxygenation
to cancel that of the local deoxygenation of tissue within single
voxels. In relation, it will be an important question for future
studies to examine to which extent the variability in trialwise
fluctuations of BOLDpeak latencies is related either to preced-
ing neural activity (with potential correlates in cognition and
perception) [17–19] or to physiological mechanisms of neuro-
vascular coupling.
The point spread of neural activity itself has been estimated

to be 2–3 mm using optical imaging with voltage-sensitive
dyes [20, 21]. This is in good agreement with our estimation
of the point spread function of the jitter-uncovered initial dip.
The important point, in terms of future applications of the
fMRI BOLD jitter-uncovered initial dip, is that compared to
the positive component, the amplitude of the initial dip drops



Figure 3. Comparison of the Point Spread Func-

tion between the Jitter-Uncovered Initial Dip and

the BOLD Positive Peak

(A) Complementary visual stimuli (flickering at

4 Hz) used for experiment 2. Surrounding colored

squares (red: larger eccentric ring, green: small

eccentric ring) and dashed blue circles (shared

border) are shown only for illustrative purposes.

(B) Scan slice aligned to the calcarine sulcus.

(C and D) Activation map obtained using the pos-

itive BOLD peak (C) and the jitter-uncovered

initial dip (D). Green and red color scales corre-

spond to activity evoked by the two visual stimuli

shown in (A).

(E) Oversampled (linear interpolation) activation

map (positive BOLD peak) used to calculate the

point spread function. The thick dashed line

denotes the estimated activation border, and

the thin dashed lines denote the lines orthogonal

to the activation border where activation was

sampled for calculating the point spread func-

tion.

(F) Point spread functions of the positive BOLD

peak and the jitter-uncovered initial dip. Shaded

regions indicate 95% confidence interval.

See also Figure S3.
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sharply and monotonically with cortical distance as in the re-
sults of voltage-sensitive dye imaging [21]. This would allow
resolving functional structures much smaller than 2–3 mm,
as seen in intrinsic optical imaging studies that reveal func-
tional structures at the spatial scale of 100–200 mm [22]. Hence,
although the current results are limited by voxel size and
signal-to-noise ratio achievable by a standard 3 T MRI scan-
ner, jitter-uncovered initial dip imaging will allow taking full
advantage of future developments in MRI hardware and lead
and during the late phase (F). When there is no early oxygenation of veins and

in the case of early oxygenation, voxel signal values are mostly affected by the

signal contribution to the gradient echo BOLD signal (E). If all trials were to be a

the local decrease of BOLD seen in late oxygenation trials (e.g., D) would be ca

Here, only the voxels with small contribution of veins and venules (lower left v

initial dip. In contrast, the proposedmethod of the jitter-uncovered initial dip wo

pattern would reflect the darkened patches in intrinsic optical imaging that co

BOLD signal has a comparably larger point spread function. That is, drainage

oxygenation propagates to remote regions.
to noninvasive observation of functional structures with un-
precedented spatial resolution.

Experimental Procedures

Experiment 1: Human fMRI BOLD Experiment with Full-Field Visual

Stimulus

Subjects

Six healthy right-handed volunteers (three males and three females),

age 27 6 3 years, participated in the experiment. All subjects had
Figure 4. Schematic Illustration Relating the

Jitter-Uncovered Initial Dip to Vascular

Responses Accounting for Its Higher Spatial

Resolution

(A–C) Illustration of intrinsic optical imaging data

in two possible states of early phases (A and B;

0–3 s after stimulus onset) and in a late phase

(C; 9–12 s after stimulus onset). Dark patches

on the upper right and the lower left corners in

(A) and (B) correspond to regions with increased

absorbed light due to increase in local neural

activity and correspondingly increased deoxy-

hemoglobin (HbR). Curved lines denote visible

veins and venules. (A) illustrates an example trial

case with late oxygenation (increase in HbO2),

depicted prior to oxygenation in veins and

venules, whereas (B) illustrates an example trial

case with early oxygenation. An illustration of a

late phase is shown in (C), where both local and

remote veins and venules are oxygenated

regardless of the onset of oxygenation. Yellow

squares denote virtual borders corresponding

to hypothetical fMRI voxels.

(D–F) Corresponding fMRI voxel activation

pattern during the early phase (D, late oxygena-

tion trial case; E, early oxygenation trial case)

venules, voxel signal values reflect the local darkening patch (D), whereas

oxygenation in the veins and venules (i.e., reduction of HbR) that have larger

veraged together, as in the method of calculating the conventional initial dip,

ncelled out by the increase of BOLD in trials with early oxygenation (e.g., E).

oxel) would not suffer from the cancellation effect and show a conventional

uld take only averages of late oxygenation trials (e.g., D), and hence the voxel

rrespond to local increase in neural activity. (C) and (F) explain why positive

veins and vessels are connected horizontally along the cortical surface and
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normal or corrected-to-normal visual acuity and normal stereo-

depth perception. All subjects gave prior written informed consent

before each experiment, and the study was approved by the local joint

ethics committee of the Max Planck Institute and the University Clinic

Tübingen.

MRI Acquisition and Stimulus Presentation

Functional images were acquired on a 3 T Siemens TIM scanner located in

theMax Planck Institute Tübingenwith a gradient echo planar imaging pulse

sequence and a 12-channel phased-array head coil. We collected 14 slices

(slice thickness 2mm) oriented perpendicular to the individual subject’s cal-

carine sulcus with the first slice prescribed at the occipital pole, using an

interleaved sequence and the following parameters: volume repetition

time (TR) 1.16 s, echo time (TE) 35 ms, 88 3 128 matrix, voxel size 1.5 3

1.5 3 2.0 mm. A set of high-resolution (1 mm isotropic) T1-weighted

3D modified driven equilibrium Fourier transform (MDEFT) images was

acquired from each subject as an anatomical reference. All stimuli were pro-

grammed in MATLAB in the PsychToolbox environment [23, 24]. See Sup-

plemental Experimental Procedures for further description of stimulus

presentation.

Data Analysis

fMRI data were preprocessed using SPM5 (Wellcome Department of

Cognitive Neurology, London; http://www.fil.ion.ucl.ac.uk/spm). Pre-

processing included image realignment and coregistration of functional

and anatomical images. A general linear model (GLM) analysis with a

boxcar regressor was applied to calculate the statistical values used to

determine visually activated voxels in the occipital cortex (p < 0.05, family-

wise error corrected). No spatial smoothing was applied on the functional

images.

Experiment 2: Human fMRI BOLDExperimentwith Complementary Ring

Stimuli and Cortical Tangential Scan

This experiment was identical to experiment 1, with the following differ-

ences. Subjects were five healthy right-handed volunteers (two males and

three females), age 23 6 3 years. Stimuli consisted of two sets of polar-

transformed checkerboard rings with shared borders as shown in Figure 3A

(100% contrast, shared border eccentricity adjusted between 3 and 6

degrees visual angle), flickering (contrast inversing) at 4 Hz. See Supple-

mental Experimental Procedures for further description of the stimulus

presentation.

Data Analysis

We used the following procedure to estimate the point spread functions of

the positive BOLD peak and the jitter-uncovered initial dip, respectively.

First, the activation maps were oversampled by a factor of ten using linear

interpolation to determine the border of the two activation patches evoked

by two ring stimuli. The borderwas defined as a set of points in oversampled

space along where the difference between the two activation patches

became minimal (Figure 3E, thick dashed line). Next, for each of the border

points, an activity profile was sampled along a straight line orthogonal to the

border curve. For each subject, two point spread functions (inner to outer

ring and outer to inner ring) were calculated by averaging the normalized ac-

tivity profiles (normalized by the activation value at the border point). These

were pooled across subjects and then averaged to obtain the subject aver-

aged point spread function (n = 5 3 2).

Supplemental Information

Supplemental Information includes three figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.

org/10.1016/j.cub.2013.08.057.
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research program of the Bernstein Center for Computational Neuroscience,
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