
Problems on Symmetry-Breaking Phase Transitions

Problem 1: Mean-field for FM Heisenberg

Heisenberg model with a magnetic field ~B = B~ez along z direction:

H =
∑
〈i,j〉

J ~Si
~Sj − 2µBB

∑
i

Sz
i (1)

〈i, j〉 denotes nearest-neighbor pairs of spins, we count each pair only once. Suppose that spins ~S have
S = 1

2 and J < 0.

1. Introduce a ‘test system’

H∗ = −2µBB
∗
∑
i

Sz
i (2)

that can be used to find a variational free energy that cannot be smaller than the true free energy:

F ≤ F ∗ + 〈H −H∗〉∗ = Ĥ∗ (3)

2. Find the optimal B∗ = B∗0 that minimizes F ∗.

3. Show that

kBTC =
1

2
z|J | (4)

defines the critical temperature of a phase transition, with paramagnetism for T > TC and ferro-
magnetism for T < TC .

4. Show that for T > TC and B → 0,

χ(T ) =
∂

∂B
M(T,B) = 2µB

∂

∂B
〈Sz〉∗ ∝ 1

T − TC
(5)

Problem 2: Excitations and Melting

In symmetry-broken states, one finds characteristic excitations, which are related to eigenmodes of
deviations from perfect order. It is plausible enough that having too many of them will be bad for this
order. We will explore this issue here for phonons in a crystal, i.e. lattice vibrations that are associated
with a periodic order of atoms into a (here for simplicity: Bravais) lattice. Very similar issues exist for
many other ordered states, especially for broken continuous symmetries, where low-energy excitations
with energy ω → 0 exist. (See later classes.)

Excitations with momentum ~k are described by phonon creation and annihilation operators a†~k
and a~k

.
For a simple mode, the operator for the vibration amplitude is

x =

√
h̄

2Mω

(
a† + a

)
. (6)

As long as we stay with an harmonic treatment of excitations with the Hamiltonian

H = h̄ω

(
a†a +

1

2

)
(7)
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its quantum-mechanical – and thus also the thermodynamic – expectation value remains 0. However,
〈x2〉 6= 0 and if it becomes comparable to the square of the lattice spacing, we would worry about the
crystal’s stability. Express 〈x2〉 in terms of n = 〈n̂〉 = 〈a†a 〉.
Taking into account phonon/excitation modes at all available momenta, the Hamiltonian becomes just
the sum

H =
∑
~k

h̄ω~k

(
a†~k
a~k

+
1

2

)
. (8)

Overall expectation values are found by integrating over available momenta; as these are very dense, an
integral instead of a sum is an acceptable treatment. In d spatial dimensions, we then find, e.g.,

〈x2〉 =
∑
~k

〈x2~k〉 ≈
∫

ddk

(2π)d
〈x2~k〉 . (9)

As n̂~k describes the number of non-interacting phonons, its thermal expectation value is given by the
Bose distribution

n~k(T ) =
1

e
h̄ω~k
kBT − 1

. (10)

Finally, we need to know the phonon frequency. At least for the acoustic phonons, which have to exist
in every solid, and for momenta ~k ≈ 0, it grows linearly with momentum. We set here

ω~k ≈ c|~k| (11)

with some constant c, valid for ~k → 0. For low temperature T → 0, only these lowest-energy phonons
will have appreciable occupation numbers. Concerning high energies, phonon frequencies are bounded.

• First focus on the ground state T = 0, where we expect no excitations to be present n~k(T ) = 0.

– Write expressions for 〈x2〉(T ), this will lead to an integral.

– Estimate the integral in the three cases, paying particular attention to any potential diver-
gence.

– What conclusion can you draw concerning the stability of one- two- and three-dimensional
lattices?

• Consider now small T > 0 and 1, 2 and 3 dimensions.

The situation is very similar in antiferromagnets with (broken) continuous symmetry. Ferromagnets are a
slightly different story, because the classical ground state is also an eigenstate of the quantum-mechanical
Hamiltonian and does not contain zero-point fluctuations. However, results at finite T > 0 turn out to
be equivalent.

2


