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S Matrix and Quantum Field Theory

Why Particle Physics is Simple

Condensed Matter, Early Universe, Quark-Gluon Plasma, . . .

I finite density and temperature

I various degrees of space/time symmetry

I complicated states and processes

I model Hamiltonians, symmetries, effective quantum field theory

Particle Physics

I model Lagrangian, symmetries, effective quantum field theory

I simple states, undefined/zero density and temperature

I exact Poincaré symmetry

I fundamental interactions and degrees of freedom unknown
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S Matrix and Quantum Field Theory

S Matrix

In phenomenological particle physics, there is only one observable:

Sio = 〈out|in〉

The connection between theory and experiment is

p(in→ out) ∝ |Sio |2
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S Matrix and Quantum Field Theory

S Matrix and Quantum Field Theory

A relativistic quantum field theory (

QFT

) is a quantum theory where the
basic degrees of freedom are operators (

fields

) which map the invariant
ground state (

vacuum

) to irreducible representation states of the Poincaré
group (

particles with mass and spin

), and where all states can be
constructed by repeated application of those operators.

The existence of nontrivial, realistic QFTs is a conjecture, which is
however extremely useful for phenomenological particle physics.

S-matrix elements are defined and computed as ratios of pole residues of
Green functions (= field operator expectation values).

A relativistic QFT contains infinitely more information than the associated
S matrix, but this information is unphysical and arbitrary.
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S Matrix and Quantum Field Theory

S Matrix and Quantum Field Theory

There may be an infinite set of different QFTs, or other theories, which
generate the same observed S-matrix.

All such theories must be considered as equivalent.

Particle Physics is searching for particularly simple representatives.
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S Matrix and Quantum Field Theory

Scaling in Particle Physics

Nontrivial symmetry transformation:

scaling in particle physics

I No temperature or density variables

I Exact Lorentz invariance ⇒ set c = 1

I Quantum theory ⇒ set ~ = 1

mass = momentum = energy =
1

length
=

1

time
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S Matrix and Quantum Field Theory

Scales in Particle Physics

Today’s standard unit: GeV

1 GeV proton mass nuclear physics (1960s)

10 GeV jets subnuclear physics (1970s)

100 GeV W ,Z , t electroweak physics (1980/90s)

1, 000 GeV LHC Higgs physics (2010s)

10, 000 GeV unexplored ???

...

10∼12 GeV neutrino physics?

...

1019 GeV gravitation
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S Matrix and Quantum Field Theory

Scaling in QFT

Simple quantum field theories are those which realize simple scaling
properties of the S matrix

Ei ,pi → λEi , λpi

⇒ unique whenever particle masses become negligible.

In the QFT, scaling is represented but not uniquely defined.
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S Matrix and Quantum Field Theory

Good Theories

Particle Physics understanding of a good QFT:

I finite (small) set of degrees of freedom = fields

I finite (small) set of free parameters = masses, coupling strengths

I local

I predictive

I form-invariant under scale transformations

I renormalizable

I can be defined by a polynomial Lagrangian

I weakly interacting over most of the scaling range

I unitary calculated S-matrix in perturbative expansion

These conditions are all equivalent to each other
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S Matrix and Quantum Field Theory

Effective and Fundamental Theories

I Classification of interactions in Lagrangian field theory:

1. relevant: D < 4 (masses) = break scaling for low energy (IR)
(= correlation lengths)

2. marginal: D = 4

3. irrelevant: D < 4 = break scaling for high energy (UV cutoff)

⇒ a Good QFT consists only of marginal interactions: critical
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The Role of the Gauge Principle

A Theory of (massless) Quarks and Gluons

Quarks have spin 1
2 .

Gluons have spin 1.

There are qqg and ggg interactions.

The interactions are form-invariant under scaling transformations.

A critical relativistic QFT containing such interacting spin-12 and spin-1
fields is severely constrained. It must be a non-abelian gauge theory.
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The Role of the Gauge Principle

QCD Gauge Theory

1. The spin-1 particles can be combined in the adjoint representation of
some Lie algebra.

The self-interactions are determined by the structure constants of
that algebra f abc .

2. The spin-12 particles can be combined in any representation(s) of the
same Lie algebra

The mutual interactions are determined by the generator (matrix)
elements of that algebra T a

ij .

A Lagrangian generating this will show classical gauge invariance (local
continuous symmetry). The would-be external states should appear in
symmetry multiplets.

For quarks and gluons: SU(3)
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The Role of the Gauge Principle

The S Matrix of QCD

A relativistic QFT that contains spin-1 states suffers from a fundamental
problem:

||Gµ||2 = 〈Gµ|Gµ〉 ∝ gµµ

⇒ There are states with negative norm.

Resolution:
The S matrix elements for longitudinal and scalar polarization precisely
match the S matrix elements for scalar ghost fields, that we have to add
to the quantized theory.

We need a unitary projection where we evaluate the S matrix only for
transversal polarizations. The matching property guarantees that
probability is conserved for this subset of external states.

Proof: gauge symmetry → BRST symmetry
Only BRST singlets are retained in the S matrix.

Kugo, Ojima
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The Role of the Gauge Principle

The QCD Singularity

For any initial value, the dimensionless (marginal) QCD interaction
strength develops a singularity in the infrared.

This phenomenon is known as dimensional transmutation.

There is a definite mass scale associated with the singularity where the
interaction becomes strong, such that

I asymptotic quarks/gluons can’t be isolated anymore

I only symmetry singlets (hadrons) become free particles

I their masses are related to the singularity, roughly all ∼ 1 GeV.

This is the origin of most of the mass in the Universe.
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Symmetry in Weak Interactions

Beyond QCD

QCD dimensional transmutation just doesn’t explain the masses of

1. leptons (and neutrinos), especially the electron

2. pions, kaons, . . . (lightest meson states)

3. . . . and the observed transitions between quarks or leptons.
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Symmetry in Weak Interactions

Weak Interactions

The transitions between quarks and leptons are mediated by new particles
(resonances) with spin 1 and masses

W+,W− : M = 80 GeV, Z 0 : M = 92 GeV

The masses are similar but not equal: symmetry?

Antique but natural explanation: W ,Z are strongly interacting composite
“mesons” of some new unknown interaction . . .

but:
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Symmetry in Weak Interactions

Symmetry of the Weak Interactions

Direct Observation (LEP, Tevatron, 1980s–90s):

1. The (self)-interactions of the new resonances are determined by the
tensor εabc , the structure constants of SU(2).

2. The interactions of quarks and leptons with W ,Z are determined by
the Pauli matrices σaij , the generators of SU(2).

[. . . and the photon is also involved: U(1)]

⇒ Weak and electromagnetic interactions are (asymptotically) uniquely
described by a

SU(2)× U(1) gauge theory,

except for the fact that there are quark, lepton and W /Z masses.
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Symmetry in Weak Interactions

Is the Symmetry Real?

In the asymptotic regime, the symmetry properties of the interactions are
not just a property of Green functions, they are evident in observables.

Examples:

I Jet emission and jet scaling in LHC data

I W -Z -photon universality in deep-inelastic scattering at HERA

I Four-fermion production (via W+W−) at LEP 2

In asymptotia, the symmetries and scaling properties of the QFT are real.

In the IR, the S matrix does not show any symmetry.
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Summary

Summary, Part I

I All known interactions of particle physics apparently reduce
asymptotically to a critical effective QFT with symmetry

SU(3)× SU(2)× U(1)

I Such a symmetry is mandatory if there is scaling behavior.

I There are relevant operators that disturb this picture: quark and
lepton mass terms. There is also the QCD singularity, so the S matrix
has no local symmetry except QED.

I We have no idea whether there is an UV cutoff or what are the
symmetries of the fundamental interactions, if any. The symmetry in
the QFT may be fundamental or emergent.
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