Southampion
 and Astronomy

 Group Theory

 Group Theory}
Day 1: Discrete Groups
 G1: smaller groups
 G2: larger groups

Steve King, Dresden,
Germany 29th-30th August, 2016

G1: smaller groups

- Symmetry in Nature
- Group axioms
- Z_{2} a.k.a. C_{2}
- Z_{3} a.k.a. C_{3}
- S_{3} a.k.a. D_{3} or Dih_{3}
- Let's play a game...
- I give you an object and then you must do something to it so that it looks the same
- The list of all things you can do to it is called a symmetry group or "group" for short
- The smallest group consists of doing nothing, that is called the "identity" and contains one element e, but that is boring...
- We will consider more interesting groups...

Group axioms

- A group is a set of elements $\mathrm{a}, \mathrm{b}, \ldots$ which can be combined together with ab inside the set
- (ab)c=a(bc)

ㅁ One element e satisfies ae=ea=a for all a

- For each element a there is an element a^{-1} which satisfies $a a^{-1}=a^{-1} a=e$
- e.g. square matrices form groups under matrix multiplication (see Appendix on matrices)

Z_{2}, the permutation group of 2 objects

- Play game with a line with two ends A, B

$$
\begin{array}{lll}
A^{B} & { }^{B}{ }^{B}{ }^{B} & b^{2}=e \\
{ }_{A}{ }_{B} & { }^{B} & b^{-1}=b
\end{array}
$$

$$
\binom{A}{B} \xrightarrow{e}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{c}
A \\
\text { action of } \\
\text { group } \\
B
\end{array}\right)=\binom{A}{B}
$$

$$
\binom{A}{B} \xrightarrow{b}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{A}{B}=\binom{B}{A}
$$

- Matrix representation $\quad e=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad b=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- Matrix representation satisfies multiplication table
- Two dimensional representation is reducible to diagonal form by a $\quad \mathbf{2} \rightarrow \mathbf{1}+\mathbf{1}^{\prime}$ maximal mixing unitary matrix U

	e	b
e	e	b
b	b	e

$$
2 \rightarrow 1+1^{\prime}
$$

$b=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \rightarrow U^{-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) U=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \begin{aligned} & \mathbf{1}: \quad e=1, \quad b=1 \\ & \mathbf{1}^{\prime}: e=1, \quad b=-1\end{aligned}$
ㅁ Can write $\quad-1=e^{i \pi}=\alpha \quad \alpha^{2}=1$

ㅁ Can combine two irreducible reps $\quad \mathbf{1}^{\prime} \times \mathbf{1}^{\prime}=\mathbf{1}$
Z_{3} is the symmetry group of 120° rotations of an equilateral triangle

- Satisfies multiplication table
- Define "generator" $\mathrm{a}=\mathrm{a}_{1}$
- Then $\left\{\mathrm{e}, \mathrm{a}_{1}, \mathrm{a}_{2}\right\}=\left\{\mathrm{e}, \mathrm{a}, \mathrm{a}^{2}\right\}$

	e	a_{1}	a_{2}
e	e	a_{1}	a_{2}
a_{1}	a_{1}	a_{2}	e
a_{2}	a_{2}	e	a_{1}

- Three dim rep is reducible to diagonal form $3 \rightarrow \mathbf{1}+\mathbf{1}^{\prime}+\mathbf{1}^{\prime \prime}$
$U^{-1} a_{1} U=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2}\end{array}\right) \quad U^{-1} a_{2} U=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega^{2} & 0 \\ 0 & 0 & \omega\end{array}\right)$

	e	a_{1}	a_{2}
$\mathbf{1}$	1	1	1
$\mathbf{1}^{\prime}$	1	ω	ω^{2}
$\mathbf{1}^{\prime \prime}$	1	ω^{2}	ω

"Character table"

- We write $\quad \begin{aligned} & \omega=e^{i 2 \pi / 3} \\ & \omega^{3}=1\end{aligned}$.
- Can combine two irreducible reps

$$
\begin{aligned}
& \mathbf{1}^{\prime} \times \mathbf{1}^{\prime}=\mathbf{1}^{\prime \prime} \\
& \mathbf{1}^{\prime} \times \mathbf{1}^{\prime \prime}=\mathbf{1}
\end{aligned}
$$

$\square S_{3}$ is permutation group of 3 objects $(A, B, C) \rightarrow$ (A,B,C), (C, A, B), (B,C,A), (A,C,B), (C,B,A), (B,A,C)
$\begin{array}{lllllll}\square & e & a_{1} & a_{2} & b_{1} & b_{2} & b_{3}\end{array}$
口 even even even odd odd odd

- even/odd refers to number of two-element swaps
- e: zero swaps, $\left\{a_{1}, a_{2}\right\}$:two swaps, $\left\{b_{1}, b_{2}, b_{3}\right\}$:one
- Z_{3} rotation subgroup is $\left\{e, a_{1}, a_{2}\right\}$, the even perms
$\square Z_{2}$ reflection subgroups: $\left\{e, b_{1}\right\},\left\{e, b_{2}\right\},\left\{e, b_{3}\right\}$
- Subgroups are subsets of $\left\{e, a_{1}, a_{2}, b_{1}, b_{2}, b_{3}\right\}$ which form a group by themselves
- S_{3} can be defined by its multiplication table
- It is a non-Abelian group since its elements do not all commute e.g. $\mathrm{a}_{1} \mathrm{~b}_{1}=\mathrm{b}_{2}$, $\mathrm{b}_{1} \mathrm{a}_{1}=\mathrm{b}_{3}$ so $\mathrm{a}_{1} \mathrm{~b}_{1} \neq \mathrm{b}_{1} \mathrm{a}_{1}$
- The order of the group is

S_{3}	e	a_{1}	a_{2}	b_{1}	b_{2}	b_{3}
e	e	a_{1}	a_{2}	b_{1}	b_{2}	b_{3}
a_{1}	a_{1}	a_{2}	e	b_{2}	b_{3}	b_{1}
a_{2}	a_{2}	e	a_{1}	b_{3}	b_{1}	b_{2}
b_{1}	b_{1}	b_{3}	b_{2}	e	a_{2}	a_{1}
b_{2}	b_{2}	b_{1}	b_{3}	a_{1}	e	a_{2}
b_{3}	b_{3}	b_{2}	b_{1}	a_{2}	a_{1}	e

- The order of each element $a=a_{1}, b=b_{1}$ is the power which gives e $-\left\{e, a_{1}, a_{2}, b_{1}, b_{2}, b_{3}\right\}=$
- $a_{i}^{3}=e$ order $3, b_{i}^{2}=e$ order $2 \quad\left\{e, a, a^{2}, b, a b, b a\right\}$
- S_{3} multiplication table can be generated by a and b with the rules $\quad a^{3}=b^{2}=e,(a b)^{2}=e$
- Called "presentation" $<a, b \mid a^{3}=b^{2}=e,(a b)^{2}=e>$
- The set of group elements $g \in\left\{e, a, a^{2}, b, a b, b a\right\}$
- fall into 3 "conjugacy classes" $\{e\},\left\{a, a^{2}\right\},\{b, a b, b a\}$
- corresponding to $\left\{\right.$ geg $\left.^{-1}\right\},\left\{g^{-1}\right\},\left\{g^{-1} g^{-1}\right\}$ for all g
- Notation for classes: $1 \mathrm{C}^{1}(\mathrm{e}), 2 \mathrm{C}^{3}(\mathrm{a}), 3 \mathrm{C}^{2}(\mathrm{~b})$
- Each member of class has same order \#elements
- Exercise: show that the rotations and reflections form separate conjugacy classes

$$
\begin{array}{cc}
a=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) & U^{-1} a U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \quad \text { EX. } \\
b=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & U^{-1} b U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & \omega \\
0 & \omega^{2} & 0
\end{array}\right) \\
\mathbf{3} \rightarrow \mathbf{1}+\mathbf{2}
\end{array}
$$

- irreducible complex doublet representation

$$
2: \quad a=\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{2}
\end{array}\right) \quad b=\left(\begin{array}{cc}
0 & \omega \\
\omega^{2} & 0
\end{array}\right)
$$

- irreducible representations of S_{3}

1 :

$$
a=1, \quad b=1
$$

$$
a=1, \quad b=-1
$$

$$
a=\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{2}
\end{array}\right)
$$

$$
b=\left(\begin{array}{cc}
0 & \omega \\
\omega^{2} & 0
\end{array}\right)
$$

- Rule 1:
\# irreps=
\#classes=3
- Rule 2: sum square irreps
=group order

ㅁ irreps are basis dependent but are $\frac{1^{2}+1^{2}+2^{2}=6}{}$ characterised by their trace (N.B. $1+\omega+\omega^{2}=0$)

- In another basis the faithful doublet satisfies $\operatorname{Tr}(\mathrm{a})=-1$ and $\operatorname{Tr}(\mathrm{b})=0$ as in the original basis
$2: \quad a=\left(\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right) \quad b=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad$ 口 $\begin{aligned} & \text { Shows that } \\ & \text { irrep } 2 \text { is real }\end{aligned}$
- Trace of elements as shown characterises that irrep

	e	a	b
$\mathbf{1}$	1	1	1
$\mathbf{1}^{\prime}$	1	1	-1
$\mathbf{2}$	2	-1	0

- Notation for characters=traces: $\chi_{i}^{[\mathbf{1}]}, \chi_{i}^{\left[\mathbf{1}^{\prime}\right]}, \chi_{i}^{[\mathbf{2]}}$

ㅁ E.g. irrep 2 has $\chi_{e}^{[2]}=2, \chi_{a}^{[2]}=-1, \chi_{b}^{[2]}=0$

- One dimensional irreps have trivial traces
- All elements in same class have same trace
- $\operatorname{Tr}\left(\right.$ gag $\left.^{-1}\right)=\operatorname{Tr}(\mathrm{a})=-1, \operatorname{Tr}\left(\mathrm{gbg}^{-1}\right)=\operatorname{Tr}(\mathrm{b})=0$ for 2 irrep
- Recall $1 C^{1}(e)=\{e\}, 2 C^{3}(a)=\left\{a, a^{2}\right\}, 3 C^{2}(b)=\{b, a b, b a\}$

G2: larger groups

- A_{4} a.k.a. T
- Z_{N} a.k.a. C_{N}
- S_{N}
- S_{4} a.k.a. O
- Subgroups
- D_{N} or $\mathrm{Dih}_{\mathrm{N}}$
- Symmetries in molecules and crystals

- rotation by 180°
S

$$
\left.\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \underset{\substack{\text { rotation } \\
\text { mathix }}}{\left(\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4} \\
t_{4} \\
\text { statate }
\end{array}\right.}\right)=\left(\begin{array}{c}
t_{4} \\
t_{3} \\
t_{2} \\
t_{1}
\end{array}\right)
$$

Writing $a_{1}=e, a_{2}=S, b_{1}=T$ then
multiplying S and T we generate 12 group elements

$$
\begin{aligned}
a_{1}= & \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), a_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), a_{3}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), a_{4}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
b_{1}= & \left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), b_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right), b_{3}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right), b_{4}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
-1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
c_{1}= & \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), c_{2}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right), c_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right), c_{4}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{array}\right) \\
& \text { With } \\
& \text { eigenvectors }\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad\left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right) \quad\left(\begin{array}{c}
\pm \frac{1}{\sqrt{3}} \\
\pm \frac{\sqrt{\sqrt{3}}}{\sqrt{3}} \\
\pm
\end{array}\right)
\end{aligned}
$$

ㅁ A4 Presentation: $<S, T \mid S^{2}=T^{3}=e,(S T)^{3}=e>$

- Group elements in four conjugacy classes:
- $1 \mathrm{C}^{1}(\mathrm{e})=\{\mathrm{e}\}, 3 \mathrm{C}^{2}(\mathrm{~S})=\left\{\mathrm{S}, \mathrm{TST}^{2}, \mathrm{~T}^{2} \mathrm{ST}\right\}=\left\{\mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right\}$,
$4 C^{3}\left(b_{i}\right)=\{T, T S, S T, S T S\}, 4 C^{3}\left(c_{i}\right)=\left\{T^{2}, S T^{2}, T^{2} S, T S T\right\}$
- Character table:
- Rule 1: \#irreps= \#classes=4
- Rule 2: sum square \quad Since $T^{3}=1$ it may be

	e	S	T	T^{2}
$\mathbf{1}$	1	1	1	1
$\mathbf{1}^{\prime}$	1	1	ω	ω^{2}
$\mathbf{1}^{\prime \prime}$	1	1	ω^{2}	ω
$\mathbf{3}$	3	-1	0	0

irreps =group order $1^{2}+1^{2}+1^{2}+3^{2}=12$
represented by any of the cube roots of unity:
$\mathbf{1}=1, \mathbf{1}^{\prime}=\omega, \mathbf{1}^{\prime \prime}=\omega^{2}$

Clebsch Gordan coefficients

Irreducible reps
$1,1^{\prime}, 1^{\prime \prime}, 3$

$$
S=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

$T=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$

$$
\begin{array}{cr}
1 \otimes 1=1 \quad 1^{\prime} \otimes 1^{\prime \prime}=1 \quad 1^{\prime} \otimes 1^{\prime}=1^{\prime \prime} & 1^{\prime \prime} \otimes 1^{\prime \prime}=1^{\prime} \\
(a b)_{1}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} & 3 \otimes 3= \\
(a b)_{1^{\prime}}=a_{1} b_{1}+\omega^{2} a_{2} b_{2}+\omega a_{3} b_{3} & \oplus \\
(a b)_{1^{\prime \prime}}=a_{1} b_{1}+\omega a_{2} b_{2}+\omega^{2} a_{3} b_{3} & \oplus \\
(a b)_{3_{1}}=\left(a_{2} b_{3}, a_{3} b_{1}, a_{1} b_{2}\right) & \oplus \\
(a b)_{3_{2}}=\left(a_{3} b_{2}, a_{1} b_{3}, a_{2} b_{1}\right) & \oplus
\end{array}
$$

$$
3 \otimes 3=1
$$

$\oplus 1^{\prime}$
$\oplus 1^{\prime \prime}$
$\oplus 3_{1}$
$\oplus 3_{2}$
where $\omega^{3}=1, a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}\right)$

- Z_{4} is square, Z_{5} is pentagon, Z_{6} hexagon, etc.
- Z_{N} generators a given by $2 \mathrm{pi} / \mathrm{N}$ rotation
- Order $=\mathrm{N}$ group elements $\left\{\mathrm{e}, \mathrm{a}, \mathrm{a}^{2}, \ldots, \mathrm{a}^{\mathrm{N}-1}\right\}$
- We write $\rho=e^{i 2 \pi / N}, \rho^{N}=1 \quad$ "Character table"

	e	a	a^{2}	\ldots			e	a	a^{2}	\ldots
e	e	a	a^{2}	\ldots		$\mathbf{1}$	1	1	1	\ldots
a	a	a^{2}	a^{3}	\ldots		$\mathbf{1}^{\prime}$	1	ρ	ρ^{2}	\ldots
a^{2}	a^{2}	a^{3}	a^{4}	\ldots		$\mathbf{1}^{\prime \prime}$	1	ρ^{2}	ρ	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots		\ldots	\ldots	\ldots	\ldots	\ldots

- $(A, B, C, \ldots) \rightarrow(A, B, C, \ldots),(A, C, B, \ldots),(C, A, B, \ldots), \ldots$
- even/odd refers to number of two-element swaps
- A_{N} subgroup consists of the $N!/ 2$ even perms
- A_{N} contains the alternating group elements of S_{N}
- E.g. $A_{4} \subset S_{4}$ (also trivial example $A_{3}=Z_{3} \subset S_{3}$)
- S_{4} is the full symmetry group of the tetrahedron
- S_{4} is also the rotation symmetry of a cube

 - S_{4} rotation symmetry of a cube

- S_{4} rotation symmetry of a cube

- 2 fold symmetry of the tetrahedron S

- 3 fold symmetry of the tetrahedron T

- Not a symmetry of the tetrahedron U

$$
S=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad T=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad U=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Presentation $\quad S^{2}=T^{3}=U^{2}=(S T)^{3}=(S U)^{2}=(T U)^{2}=(S T U)^{4}=1$
Representation

$$
a_{2}=S, \quad b_{1}=T, \quad d_{1}=U
$$

$$
\begin{aligned}
& a_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), a_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), a_{3}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), a_{4}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& b_{1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), b_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right), b_{3}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right), b_{4}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
-1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& c_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), c_{2}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right), c_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right), c_{4}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{array}\right) \\
& d_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), d_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right), d_{3}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right), d_{4}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \\
& e_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), e_{2}\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), e_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), e_{4}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& f_{1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), f_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right), f_{3}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right), f_{4}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$ Subgroups

- Subgroup H of group G are subsets of elements of G which form a group by themselves
- Order of H must be a divisor of the order of G
- E.g. if G is order 6 then H must be order 2 or 3
- E.g. S_{3} is order 6 so H could be Z_{2} or Z_{3}
- Normal subgroup N satisfies $\mathrm{gNg}^{-1}=\mathrm{N}$ for all $\mathrm{g} \in \mathrm{G}$
- Elements of N form complete conjugacy class +e
- N is sometimes called the Invariant subgroup
- $1 C^{1}(e)=\{e\}, 2 C^{3}(a)=\left\{a_{1}, a_{2}\right\}, 3 C^{2}(b)=\left\{b_{1}, b_{2}, b_{3}\right\}$
$\square Z_{3}$ rotation subgroup is $\left\{e, a_{1}, a_{2}\right\}$, the even perms
- Z_{3} is a normal subgroup satisfying $\mathrm{gNg}^{-1}=\mathrm{N}$
- This is because $\left\{\mathrm{e}, \mathrm{a}_{1}, \mathrm{a}_{2}\right\}=\mathrm{e}+$ complete a_{i} class
- Z_{2} subgroups: $\left\{e, b_{1}\right\},\left\{e, b_{2}\right\},\left\{e, b_{3}\right\}$ not commute
- $\left\{b_{1}\right\}$ not complete class so Z_{2} not normal
$\square S_{3}$ is isomorphic to $Z_{3} \rtimes Z_{2}=\left\{e, a_{1}, a_{2}\right\} \rtimes\left\{e, b_{1}\right\}$
- Semi-direct product \rtimes opens towards the normal subgroup Z_{3} which does not commute with the Z_{2}

Example A_{4} :

- $1 C^{1}(e)=\{e\}, 3 C^{2}(S)=\left\{S, T S T^{2}, T^{2} S T\right\}=\left\{\mathrm{a}_{2}, a_{3}, a_{4}\right\}$,
$4 C^{3}\left(b_{i}\right)=\{T, T S, S T, S T S\}, 4 C^{3}\left(c_{i}\right)=\left\{T^{2}, S T^{2}, T^{2} S, T S T\right\}$
- A_{4} is order 12 so H must be order 2,3,4,6
- $Z_{2} \times Z_{2}$ normal subgroup: $\left\{e, a_{2}, a_{3}, a_{4}\right\}=e+a_{i}$ class
- Z_{3} subgroup is $\left\{\mathrm{e}, \mathrm{T}, \mathrm{T}^{2}\right\}$ not normal, $\left\{\mathrm{T}, \mathrm{T}^{2}\right\}$ not class
- A_{4} is isomorphic to $Z_{2} \times Z_{2} \rtimes Z_{3}=\{e, a i\} \rtimes\left\{e, T, T^{2}\right\}$
- Semi-direct product \rtimes opens towards the normal subgroup $Z_{2} \times Z_{2}$ which does not commute with Z_{3}
- S_{3} not subgroup of A_{4} even perms (S_{3} incl. odd)

Dihedral group D_{n} or Dih $_{\mathrm{n}}$

Symmetry group of
$D_{n}=\Delta(2 n)=Z_{n} \rtimes Z_{2}$ regular n sided polygon including reflections Symmetry of
$S_{3}=D_{3}=Z_{3} \rtimes Z_{2}$ equilateral triangle including reflections

$$
D_{4}=Z_{4} \rtimes Z_{2}
$$

Symmetry of square including reflections

Symmetries in molecules and crystals

Isometry groups	Abstract group
\boldsymbol{C}_{1}	Z_{1}
$\boldsymbol{C}_{2}, \boldsymbol{C}_{i}, \boldsymbol{C}_{\mathbf{s}}$	Z_{2}
\boldsymbol{C}_{3}	Z_{3}
$\boldsymbol{C}_{4}, \boldsymbol{S}_{4}$	Z_{4}
\boldsymbol{C}_{5}	Z_{5}
$\boldsymbol{C}_{6}, \boldsymbol{S}_{6}, \boldsymbol{C}_{3 h}$	$\mathrm{Z}_{6}=\mathrm{Z}_{3} \times \mathrm{Z}_{2}$
\boldsymbol{C}_{7}	Z_{7}
$\boldsymbol{C}_{8}, \boldsymbol{S}_{8}$	Z_{8}
\boldsymbol{C}_{9}	Z_{9}
$\boldsymbol{C}_{10}, S_{10}, \boldsymbol{C}_{5 h}$	$\mathrm{Z}_{10}=\mathrm{Z}_{5} \times \mathrm{Z}_{2}$

Isometry groups	Abstract group	Isometry group	Abstract group
$\boldsymbol{D}_{2}, \boldsymbol{C}_{2 v}, \boldsymbol{C}_{2 h}$	$\mathrm{Dih}_{2}=\mathrm{Z}_{2} \times \mathrm{Z}_{2}$	$C_{4 n}$	$\mathrm{Z}_{4} \times \mathrm{Z}_{2}$
$D_{3}, C_{3 v}$	Dih_{3}	$C_{6 n}$	$\mathrm{Z}_{6} \times \mathrm{Z}_{2}=\mathrm{Z}_{3} \times \mathrm{Z}^{2}{ }^{2}=\mathrm{Z}_{3} \times \mathrm{Dih}_{2}$
$\boldsymbol{D}_{4}, \boldsymbol{C}_{4 v}, \boldsymbol{D}_{2 d}$	Dih_{4}	$C_{s h}$	$\mathrm{Z}_{8} \times \mathrm{Z}_{2}$
D_{5}, C_{5} V	Dih_{5}	$C_{\text {ton }}$	$Z_{10} \times Z_{2}=Z_{5} \times \mathrm{Z}_{2}{ }^{2}=Z_{5} \times \mathrm{Dih}_{2}$
	$\mathrm{Dih}_{6}=\mathrm{Dih}_{3} \times$	$D_{2 n}$	$\mathrm{Dih}_{2} \times \mathrm{Z}_{2}$
$\boldsymbol{D}_{6}, \boldsymbol{C}_{6 v}$	Z_{2}	$D_{4 n}$	$\mathrm{Dih}_{4} \times \mathrm{Z}_{2}$
$D_{7}, C_{7} \mathrm{~V}$	Dih_{7}	$D_{\text {6n }}$	$\mathrm{Dih}_{6} \times \mathrm{Z}_{2}=\mathrm{Dih}_{3} \times \mathrm{Z}^{2}{ }^{2}$
		$D_{8 h}$	$\mathrm{Dih}_{8} \times \mathrm{Z}_{2}$
$D_{8}, C_{8} v, D_{4} d$	Dih_{8}	Th	$A_{4} \times \mathrm{Z}_{2}$
$D_{9}, C_{9} v$	Dih9	O_{h}	$S_{4} \times \mathrm{Z}_{2}$
$\mathrm{D}_{9}, \mathrm{C}_{9} \mathrm{~V}$		1	A_{5}
$D_{10}, C_{10} \mathrm{~V}, D_{5} h, D_{5} d$	$\mathrm{Dih}_{10}=D_{5} \times \mathrm{Z}_{2}$	I_{n}	$A_{5} \times \mathrm{Z}_{2}$
		T, 0	S_{4}
		T	A_{4}

crystals
Graphic overview of the 32 crystallographic point groups
molecules
http://newton.ex.ac.uk/research/asystems/people/goss/ symmetry/Molecules.html

