# Group Theory 

# Day 2: Continuous Groups <br> G3: Introduction to Lie Groups <br> G4: SU(N) groups <br> G5: SO(N) groups 

Steve King, Dresden,
Germany 29th-30th August,
2016

## G3: Introduction to Lie Groups

- Overview of group axioms
- Introduction to $\mathrm{SU}(\mathrm{N})$ and $\mathrm{SO}(\mathrm{N})$
- $\operatorname{SU}(3)$ and subgroups
- $U(1)$ as limit of $Z_{N}$
- $\mathrm{U}(1)$ is isomorphic to $\mathrm{SO}(2)$
- Lie groups


## Group axioms

- A group is a set of elements $a, b, \ldots$ which can be combined together with ab inside the set
- ( ab ) $\mathrm{c}=\mathrm{a}(\mathrm{bc})$
- One element e satisfies ae=ea=a for all a
- For each element a there is an element $a^{-1}$ which satisfies $a a^{-1}=a^{-1} a=e$
- e.g. special orthogonal or unitary matrices form groups under matrix multiplication

$$
U^{\dagger} U=I
$$

implies $U^{\dagger}=U^{-1}$ inverse
where $U^{\dagger}=\left(U^{*}\right)^{T}$

##  $\mathrm{SU}(\mathrm{N})$ and $\mathrm{SO}(\mathrm{N})$ form groups

SU(N) = Special Unitary NxN matrices
Unit determinant Unitary Unit matrix $\operatorname{det} U=1$ $U^{\dagger} U=I^{\swarrow}$
$\mathrm{SO}(\mathrm{N})=$ Special Orthogonal NxN matrices /
Unit determinant Orthogonal
$\operatorname{det} O=1 \quad O^{T} O=I$
$\mathrm{Z}_{\mathrm{N}}$, rotation group of regular N -polygon

- $Z_{4}$ is square, $Z_{5}$ is pentagon, $Z_{6}$ hexagon, etc.
- $Z_{N}$ generators given by $2 p i / N$ rotation
- Order $=\mathrm{N}$ group elements $\left\{\mathrm{e}, \mathrm{a}, \mathrm{a}^{2}, \ldots, \mathrm{a}^{\mathrm{N}-1}\right\}$
- We write e.g. a=p where

$$
\rho=e^{i 2 \pi / N}, \quad \rho^{N}=1
$$



In the limit $\mathrm{N} \rightarrow \infty$ discrete group $\mathrm{Z}_{\mathrm{N}}$ becomes continuous group $\mathrm{U}(1)$ parameterised by the real angle $\theta$
group element

$\rho^{n}=e^{i 2 \pi n / N} \xrightarrow{N \rightarrow \infty} e^{i \theta}, \quad \theta \equiv 2 \pi n / N$
$\mathrm{U}(1)$ is isomorphic to $\mathrm{SO}(2)$
Argand $\quad z=x+i y=r e^{i \theta}=r(\cos \theta+i \sin \theta)$ plane
$\mathrm{U}(1)$ transformation

$$
z \rightarrow e^{i \theta} z
$$

equivalent to rotation
$\binom{x}{y} \rightarrow\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{x}{y}$
$\mathrm{SO}(2)=$ orthogonal $2 \times 2$ matrices with det $=1$

## Lie Groups

A Lie group is a group whose elements are labelled by a set of continuous parameters with a multiplication law that depends smoothly on the parameters

For Lie groups $\mathrm{U}(1)$ or $\mathrm{SO}(2)$ the continuous Lie parameter is just angle $\theta$ The Lie group is compact since $\theta=[0 . .2 \pi]$

## Quantum Mechanics

Physical states represented by state vectors,

$$
|v\rangle
$$

Physical transformations on physical states represented by Unitary operators,

$$
U|v\rangle=\left|v^{\prime}\right\rangle
$$

## Unitary operators as matrices

Consider U acting on some orthonormal basis vectors,

$$
|i\rangle,|j\rangle, \cdots
$$

Then U may be represented by the Unitary matrix

$$
U_{i j}=\langle i| U|j\rangle
$$

## Lie Groups

Any representation of compact Lie group is equivalent to a representation by Unitary operators U

So Lie groups correspond to unitary transformations in quantum mechanics

Lie group $\quad$ U quantum mechanics

## Lie Groups

Any group element which can be obtained from the identity by continuous changes in parameters can be written as:
$U=e^{i \alpha_{a} X_{a}}=e^{i\left(\alpha_{1} X_{1}+\cdots \alpha_{N} X_{N}\right)}$
where $\alpha_{a}$ are real Lie parameters, and $X_{a}$ are linearly independent Hermitian operators.

## Lie Groups

For infinitesimal transformations

$$
U=e^{i \alpha_{a} X_{a}} \approx 1+i \alpha_{a} X_{a} \quad \begin{aligned}
& \text { generators of } \\
& \text { the Lie group }
\end{aligned}
$$

Their commutation relations determine the full structure of the group

$$
\begin{gathered}
{\left[X_{a}, X_{b}\right]=i f_{a b c} X_{c} \text { "Lie algebra" }} \\
\text { "structure constants" }
\end{gathered}
$$

## G4: SU(N) groups

- $\operatorname{SU}(2)$ and angular momentum
- $\mathrm{U}(2)$, subalgebras, simple groups
- $\operatorname{SU}(2) x S U(2)$ as a semi-simple group
- $\mathrm{SU}(2)$ representations
- $\mathrm{SU}(2) \sim \mathrm{SO}(3)$
- $U(3)$ and its subgroups
- $\operatorname{SU}(3)$
- $\operatorname{SU}(\mathrm{N})$


## SU(2)

Lie algebra is just algebra of the angular momentum operators $\quad J_{1}, J_{2}, J_{3}$
$U=e^{i \theta_{a} J_{a}} \quad\left[J_{a}, J_{b}\right]=i \varepsilon_{a b c} J_{c}$
$\mathrm{SU}(2)$ totally antisymmetric
SU(2) generator Levi-Civita tensor group element

$$
\begin{aligned}
& \varepsilon_{123}=\varepsilon_{312}=\varepsilon_{231}=1 \\
& \varepsilon_{132}=\varepsilon_{213}=\varepsilon_{321}=-1
\end{aligned}
$$ Angular momentum eigenstates

$J_{3}|j, m\rangle=m|j, m\rangle \quad\left(J_{a} J^{a}\right)|j, m\rangle=j(j+1)|j, m\rangle$
give matrix representation of Lie algebra

$$
\left\langle j, m^{\prime}\right| J^{a}|j, m\rangle
$$

e.g. spin $1 / 2 \quad j=1 / 2, \quad m, m^{\prime}= \pm 1 / 2$
$\left\langle m^{\prime}\right| J^{a}|m\rangle=\langle \pm| J^{a}| \pm\rangle=\frac{1}{2} \sigma^{a}$ Pauli matrices
$\sigma^{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma^{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma^{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

## $U(2) \sim S U(2) \otimes U(1)$

In the fundamental representation the generators of $U(2)$ group can be written as


$$
\begin{array}{rl}
S U(2) \\
T^{a}=\frac{1}{2} \sigma^{a} & a
\end{array} \quad 1,2,3
$$

where $\sigma^{a}$ are the Pauli matrices

$$
\sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Generators $T^{a}$ form a subalgebra of $U(2)$ because

$$
\left[T^{a}, T^{b}\right]=i \varepsilon_{a b c} T^{c}, \quad a, b, c=1,2,3
$$

The set of generators $T^{1}, T^{2}, T^{3}$ represents the Lie algebra of $S U(2)$ which elements satisfy the conditions

$$
U U^{\dagger}=1, \quad \operatorname{det} U=1
$$

Thus in the fundamental representation the elements of $S U(2)$ group are Special ( $\operatorname{det} U=1$ ), Unitary, $2 \times 2$ matrices.

An invariant subalgebra is a set of generators, $X^{a}$, which when commuted with any of the generators of the Lie group either gives zero or another generator in the set, $X^{a}$.

- In the $U(2)$ group $T^{a}$ and $T^{0}$ form two invariant subalgebras corresponding to $S U(2)$ and $U(1)$ groups.
Groups which do not possess invariant subalgebras are called simple groups.
- $S U(2)$ is an example of a simple group while $U(2)$ is not simple.

Groups that do not possess an Abelian invariant subalgebra are called semi-simple Lie groups.


Group $S U(2) \otimes S U(2)$ has six generators which in the fundamental representation can be written in the block diagonal form

$$
T^{a}=\frac{1}{2}\left(\begin{array}{cc}
\sigma^{a} & 0 \\
0 & 0
\end{array}\right), \quad T^{b+3}=\frac{1}{2}\left(\begin{array}{cc}
0 & 0 \\
0 & \sigma^{b}
\end{array}\right), \quad a, b=1,2,3 .
$$

The first three generators of this group form an invariant $S U(2)$ subalgebra.
Therefore $S U(2) \otimes S U(2)$ group is not simple.

## SU(2) algebra representations

 spin 1 representation $\quad J_{3}|j, m\rangle=m|j, m\rangle$$$
j=1, \quad m, m^{\prime}=+1,0,-1
$$

$\left\langle m^{\prime}\right| J^{a}|m\rangle=T^{a} \quad$ matrix representation of the algebra
$T^{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), T^{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0\end{array}\right), T^{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right)$
$\operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b}$ normalisation of generators

## SU(2) algebra representations

 Adjoint rep of algebra is defined as$$
\left(T^{a}\right)_{b c}=-i \varepsilon_{a b c}
$$

equivalent to

$$
\varepsilon_{123}=\varepsilon_{312}=\varepsilon_{231}=1
$$ spin 1 rep $T^{a} \rightarrow W T^{a} W^{-1}$

$T^{1}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right), T^{2}=\left(\begin{array}{ccc}0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0\end{array}\right), T^{3}=\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

# $\mathrm{SU}(2)$ is rotation group in QM 

In QM the action of rotating a spin j particle through angle $\theta_{3}$ about 3-axis is given by

$$
|j\rangle \rightarrow R_{3}\left(\theta_{3}\right)|j\rangle=e^{i \theta_{3} J_{3}}|j\rangle
$$

In general a rotation through angle $\theta$ about unit axis $n=n_{1} i+n_{2} j+n_{3} k$ is given by SU(2)
$\left.|j\rangle \rightarrow R_{\mathbf{n}}(\theta)|j\rangle=e^{i \theta \mathbf{J} \cdot \mathbf{n}}|j\rangle=e^{i \theta_{a} J^{a}} \overleftarrow{j}\right\rangle$ group where $\theta_{1}=\theta n_{1}, \theta_{2}=\theta n_{2}, \theta_{3}=\theta n_{3}$

## SU(2) group representations

 spin $1 / 2$ representation of group $\quad U_{i j}=\left[R_{\mathbf{n}}(\theta)\right]_{i j}=e^{i \theta_{a} \frac{1}{2} \sigma_{i j}^{a}}$Special Unitary $2 \times 2$ matrices with unit determinant:
Proof

$$
\begin{aligned}
\operatorname{det} U & =e^{\operatorname{Tr}\left(i \theta_{a} \frac{1}{2} \sigma^{a}\right)}=e^{0}=1 \\
U^{\dagger} U & =e^{-i \theta_{a} J^{a}} e^{i \theta_{b} J^{b}}=I \\
& \quad \text { Baker-Campbell- } \\
e^{A} e^{B}=e^{A+B+\frac{1}{2}[A, B]} \quad & \text { Hausdorff (BCH) }
\end{aligned}
$$

SU(2) group representations spin $1 / 2$ representation of group $\quad U_{i j}=\left[R_{\mathbf{n}}(\theta)\right]_{i j}=e^{i \theta_{a} \frac{1}{2} \sigma_{i j}^{a}}$
For rotations about the 2-axis These are

$$
\left[R_{2}(\theta)\right]_{i j}=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\
-\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right)
$$ subgroups:

$S U(2)$ is the
For rotations about the 3-axis

$$
\left[R_{\mathbf{3}}(\theta)\right]_{i j}=\left(\begin{array}{cc}
e^{i \frac{\theta}{2}} & 0 \\
0 & e^{-i \frac{\theta}{2}}
\end{array}\right)
$$

group of rotations about all axes

$$
S U(2) \sim S O(3)
$$

spin 1 adjoint representation of group $\quad O_{i j}=\left[R_{\mathbf{n}}(\theta)\right]_{i j}=e^{i \theta_{a} T_{i j}^{a}}$
$T^{1}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right), T^{2}=\left(\begin{array}{ccc}0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0\end{array}\right), T^{3}=\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\mathrm{O}_{\mathrm{ij}}$ are special orthogonal $3 \times 3$ matrices, real with unit determinant, i.e. $\mathrm{SO}(3)$
$O^{T} O=e^{i \theta_{a}\left(T^{a}\right)^{T}} e^{i \theta_{b} T^{b}}=e^{-i \theta_{a} T^{a}} e^{i \theta_{b} T^{b}}=I$

$$
S U(2) \sim S O(3)
$$

spin 1 adjoint representation of group $\quad O_{i j}=\left[R_{\mathbf{n}}(\theta)\right]_{i j}=e^{i \theta_{a} T_{i j}^{a}}$
$R_{\mathbf{1}}(\theta)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta\end{array}\right) \quad R_{\mathbf{2}}(\theta)=\left(\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right)$
$R_{\mathbf{3}}(\theta)=\left(\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 1 & 0 & 0\end{array}\right)$
special orthogonal $3 \times 3$

$$
S U(2) \sim S O(3)
$$

spin 1 adjoint representation of group $\quad O_{i j}=\left[R_{\mathbf{n}}(\theta)\right]_{i j}=e^{i \theta_{a} T_{i j}^{a}}$
$R_{\mathbf{1}}(\theta)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta\end{array}\right) \quad R_{\mathbf{2}}(\theta)=\left(\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right)$
$R_{\mathbf{3}}(\theta)=\left(\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 1 & 0 & 0\end{array}\right) \quad \underset{R_{1}\left(\theta_{23}\right) R_{\mathbf{2}}\left(\theta_{13}\right) R_{\mathbf{3}}\left(\theta_{12}\right)=e^{i \theta_{a} T_{i,}^{a}}}{\text { Ex. using BCH show: }}$
special orthogonal $3 \times 3$ where: $R_{1}\left(\theta_{23}\right)=e^{i \theta_{23} T_{i j}^{1}}$

- In the fundamental representation the elements of the $U(3)$ group are $3 \times 3$ unitary matrices, i.e.

$$
\begin{gathered}
U U^{\dagger}=1, \quad \Longrightarrow \quad U=\exp \left\{i \omega^{\alpha} T^{\alpha}\right\}, \quad T^{\alpha}=T^{\alpha \dagger}, \\
T^{0}=\frac{1}{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), T^{1}=\frac{1}{2}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), T^{2}=\frac{1}{2}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
T^{3}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), T^{4}=\frac{1}{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), T^{5}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \\
T^{6}=\frac{1}{2}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), T^{7}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), T^{8}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{gathered}
$$

$$
U(3) \sim S U(3) \otimes U(1)
$$

- In the fundamental representation the elements of the $U(3)$ group are $3 \times 3$ unitary matrices, i.e.

$$
\left.\begin{array}{c}
U(\beth) \quad U=\exp \left\{i \omega^{\alpha} T^{\alpha}\right\}, \quad T^{\alpha}=T^{\alpha \dagger}, \\
T^{0}=\frac{1}{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}\right) T^{1}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), T^{2}=\frac{1}{2}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

## $\underset{U(3)}{ }$

- In the fundamental representation the elements of the $U(3)$ group are $3 \times 3$ unitary matrices, i.e.

$$
\begin{aligned}
& U U^{\dagger}=1, \quad \Longrightarrow \quad U=\exp \left\{i \omega^{\alpha} T^{\alpha}\right\}, \quad T^{\alpha}=T^{\alpha \dagger}, \quad S U(2) \\
& T^{0}=\frac{1}{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), T^{1}=\frac{1}{2}\left(\begin{array} { l l } 
{ 0 } & { 1 }
\end{array} 0 ^ { 1 } \left(\begin{array}{ll}
1 & 0
\end{array} 0\right.\right.
\end{aligned}
$$

$$
U(3) \sim S U(3) \otimes U(1)
$$

- In the fundamental representation the elements of the $U(3)$ group are $3 \times 3$ unitary matrices, i.e.

$$
\begin{gathered}
U U^{\dagger}=1, \Longrightarrow U=\exp \left\{i \omega^{\alpha} T^{\alpha}\right\}, \quad T^{\alpha}=T^{\alpha \dagger}, \quad S U\binom{3}{0} \\
T^{0}=\frac{1}{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), T^{1}=\frac{1}{2}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), T^{2}=\frac{1}{2}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
T^{0}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{array}\right), T^{4}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \\
T^{3}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), T^{8}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{gathered}
$$

SU(3)

The set of generators $T^{a}$, where $a=1, \ldots 8$, form invariant subalgebra of $U(3)$ that corresponds to $S U(3)$

3

$$
\left[T^{a}, T^{b}\right]=i f_{a b c} T^{c}
$$

$\overline{\mathbf{3}} \quad\left(-T^{a}\right)^{*}$ also satisfy the algebra
Other reps include $\mathbf{1}, \mathbf{3}, \mathbf{6}, \mathbf{8}, \mathbf{1 5}, \ldots$

## SU(N)

The elements of $S U(N)$ group obey the relations

$$
U U^{\dagger}=1, \quad \operatorname{det} U=1
$$

$S U(N-1), \ldots, S U(2)$ are subgroups of $S U(N)$.
But $S U(N)$ does not possess invariant subalgebras, i.e. $S U(N)$ is a simple group.
The quadratic Casimir operator $\sum\left(T^{a}\right)^{2}$ commutes with all generators of $S U(N)$ group.

The Cartan subalgebra of $S U(N)$ group involves $N-1$ traceless diagonal matrices

The Cartan subalgebra of $S U(N)$ group involves $N-1$ traceless diagonal matrices

$S U(3)$ rank 2

$$
\ldots H_{N-1}=\frac{1}{\sqrt{2 N(N-1)}}
$$

1

1

- SO(N) and Clifford algebra
- SO(3) vector rep
- SO(2N+1) spinor rep
- SO(3) spinor rep
- SO(5) spinor rep
- SO(2N) vector and spinor reps
- SO(6) spinor rep
- $\mathrm{SO}(6) \sim \mathrm{SU}(4)$ and $\mathrm{SU}(3)$ subgroup

$S O(N)$ is the group of rotations in $N$ dimensions.
This group has $\frac{1}{2}\left(N^{2}-N\right)$ generators $M_{a b}=-M_{b a}$, which represent rotations in the $a-b$ plane, i.e.

$$
\left(M_{a b}\right)_{k l}=i\left(\delta_{a l} \delta_{b k}-\delta_{a k} \delta_{b l}\right), \quad a, b, k, l=1, \cdots, N
$$

The generators of $S O(N)$ group obey algebra

$$
\left[M_{a b}, M_{c d}\right]=-i\left(\delta_{b c} M_{a d}-\delta_{a c} M_{b d}-\delta_{b d} M_{a c}+\delta_{a d} M_{b c}\right)
$$

$$
T^{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), T^{2}=\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right), T^{3}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The generators of the Cartan subalgebra may be written in $2 \times 2$ block form

$$
M_{12}=\left(\begin{array}{llll}
\sigma_{2} & & & 0 \\
& 0 & & 0 \\
& & \ldots & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \ldots \quad M_{2 N-1,2 N}=\left(\begin{array}{cccc}
0 & & & 0 \\
& \ldots & & 0 \\
& & \sigma_{2} & 0 \\
& & \sigma^{\sigma_{2}} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

## SO( $2 \mathrm{~N}+1$ ) spinor rep

In order to find generators of $S O(2 N+1)$ in the spinor representation we consider the Clifford algebra

$$
\left\{\Gamma_{a}, \Gamma_{b}\right\}=2 \delta_{a b} I, \quad a, b=1, \ldots,(2 N+1),
$$

where $\Gamma_{a}$ is a set of $(2 N+1)$ matrices of size $2^{N} \times 2^{N}$. In the spinor representation the generators of $S O(2 N+1)$ group are given by

$$
M_{a b}=-\frac{i}{4}\left[\Gamma_{a}, \Gamma_{b}\right] .
$$

## SO(3) spinor rep

## 2

For the case of $S O(3)$ the matrices $\Gamma_{a}$ are given by the three Pauli matrices

$$
\left\{\sigma_{a}, \sigma_{b}\right\}=2 \delta_{a b}, \quad M_{a b}=-\frac{i}{4}\left[\sigma_{a}, \sigma_{b}\right]=\frac{1}{2} \varepsilon_{a b c} \sigma_{c},
$$

where $a, b, c=1,2,3 . \quad \sigma^{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma^{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma^{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
$2 \times 2$ dimensional spinor rep of $\mathrm{SO}(3)$ with generators $\mathrm{M}_{12}=-\mathrm{M}_{21}, \mathrm{M}_{13}=-\mathrm{M}_{31}, \mathrm{M}_{23}=-\mathrm{M}_{32}$
$\mathrm{SU}(2)$ double cover of $\mathrm{SO}(3)$ (same algebra and reps)

$$
M_{12}=\frac{1}{2} \sigma_{3} \quad M_{13}=-\frac{1}{2} \sigma_{2} \quad M_{23}=\frac{1}{2} \sigma_{1}
$$

In the case of $S O(5)$ there are five $4 \times 4 \Gamma$ matrices which may be written in block form as

$$
\Gamma_{a}=\left(\begin{array}{cc}
0 & i \sigma_{a} \\
-i \sigma_{a} & 0
\end{array}\right), \quad \Gamma_{4}=\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right), \quad \Gamma_{5}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right),
$$

The generators of $S O(5)$ in the spinor representation are given by

$$
\begin{array}{ll}
M_{a b}=\frac{\varepsilon_{a b c}}{2}\left(\begin{array}{cc}
\sigma_{c} & 0 \\
0 & \sigma_{c}
\end{array}\right), \quad M_{a 4}=\frac{1}{2}\left(\begin{array}{cc}
\sigma_{a} & 0 \\
0 & -\sigma_{a}
\end{array}\right), \\
M_{45}=\frac{1}{2}\left(\begin{array}{cc}
0 & i I \\
-i I & 0
\end{array}\right), \quad M_{a 5}=\frac{1}{2}\left(\begin{array}{cc}
0 & -\sigma_{a} \\
-\sigma_{a} & 0
\end{array}\right),
\end{array}
$$

where $a$ and $b$ run from 1 to 3 .

Cartan generators are $\mathrm{M}_{12}$ and $\mathrm{M}_{34}$
$M_{12}=\frac{1}{2}\left(\begin{array}{cc}\sigma_{3} & 0 \\ 0 & \sigma_{3}\end{array}\right) \quad M_{34}=\frac{1}{2}\left(\begin{array}{cc}\sigma_{3} & 0 \\ 0 & -\sigma_{3}\end{array}\right) \quad \begin{aligned} & \text { where } \\ & \sigma_{3}=\end{aligned}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
in basis of two $\mathrm{SO}(3)$ spinors of $\mathrm{M}_{12}$ and $\mathrm{M}_{34}$

$\langle 1| M_{12}|1\rangle=+1 / 2 \quad\langle 1| M_{34}|1\rangle=+1 / 2$
$\langle 2| M_{12}|2\rangle=-1 / 2 \quad\langle 2| M_{34}|2\rangle=-1 / 2$
$\langle 3| M_{12}|3\rangle=+1 / 2 \quad\langle 3| M_{34}|3\rangle=-1 / 2$
$\langle 4| M_{12}|4\rangle=-1 / 2$
$\langle 4| M_{34}|4\rangle=+1 / 2$

SO(2N) vector rep

$$
\left(M_{a b}\right)_{k l}=i\left(\delta_{a l} \delta_{b k}-\delta_{a k} \delta_{b l}\right), \quad a, b, k, l=1, \cdots, 2 N
$$

The Cartan subalgebra of $S O(2 N)$ has $N$ generators, $M_{12}, M_{34}, \ldots M_{2 N-1,2 N}$ which in $2 N$ dimensional space can be written in $2 \times 2$ block form

$$
\left.M_{12}=\left(\begin{array}{cccc}
\sigma_{2} & & & \\
& 0 & & \\
& & \ldots & \\
& & & 0
\end{array}\right), \ldots \begin{array}{lll}
0 & & \\
& \ldots & \\
& \ldots & \\
& & 0 \\
\\
& & \\
& \sigma_{2}
\end{array}\right)
$$ SO(2N) spinor rep

The spinor representation of the generators of the $S O(2 N)$ group are constructed from the $2^{N} \times 2^{N}$ $\Gamma$-matrices which satisfy the Clifford algebra so that
$M_{a b}=-\frac{i}{4}\left[\Gamma_{a}, \Gamma_{b}\right]$,

$$
\left\{\Gamma_{a}, \Gamma_{b}\right\}=2 \delta_{a b} I, \quad a, b=1, \ldots, 2 N .
$$

The projection operators reduce $2^{N}$ spinor to the two irreducible spinors which have $2^{N-1}$ components

$$
\Psi_{L}=P_{L} \Psi, \quad \Psi_{R}=P_{R} \Psi . \quad P_{L, R}=\frac{1}{2}\left(I \pm \Gamma_{2 N-1}\right)
$$

Thus the generators of $S O(2 N)$ can be written as $2^{N-1} \times 2^{N-1}$ matrices.


## SO(6) spinor reps 4,4

Therefore group $S O(6)$ has two four dimensional spinor representation.
The 15 generators of $S O(6)$ in the spinor representation can be presented in the following form:

$$
\begin{gathered}
\pm \frac{1}{2}\left(\begin{array}{cc}
0 & i \sigma_{a} \\
-i \sigma_{a} & 0
\end{array}\right), \quad \pm \frac{1}{2}\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right), \quad \pm \frac{1}{2}\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right), \\
\frac{\varepsilon_{a b c}}{2}\left(\begin{array}{cc}
\sigma_{c} & 0 \\
0 & \sigma_{c}
\end{array}\right), \frac{1}{2}\left(\begin{array}{cc}
\sigma_{a} & 0 \\
0 & -\sigma_{a}
\end{array}\right), \frac{1}{2}\left(\begin{array}{cc}
0 & -\sigma_{a} \\
-\sigma_{a} & 0
\end{array}\right), \frac{1}{2}\left(\begin{array}{cc}
0 & i I \\
-i I & 0
\end{array}\right)
\end{gathered}
$$

where $a=1,2,3$ and $\pm$ refers to the "left-handed" and "right-handed" representations. 4, $\overline{4}$ (complex conjugates)


## SO(6) spinor reps 4,4

Therefore group $S O(6)$ has two four dimensional spinor representation.
The 15 generators of $S O(6)$ in the spinor representation can be presented in the following form:

where $a=1,2,3$ and $\pm$ refers to the "left-handed" and "right-handed" representations. 4,4 (complex conjugates)

As in $\mathrm{SO}(5)$, Cartan generators are $\mathrm{M}_{12}, \mathrm{M}_{34}$ $M_{12}=\frac{1}{2}\left(\begin{array}{cc}\sigma_{3} & 0 \\ 0 & \sigma_{3}\end{array}\right) \quad M_{34}=\frac{1}{2}\left(\begin{array}{cc}\sigma_{3} & 0 \\ 0 & -\sigma_{3}\end{array}\right) \quad \begin{aligned} & \text { where } \\ & \sigma_{3}= \\ & \left.\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right)\end{aligned}$ in basis of two $\mathrm{SO}(3)$ spinors of $\mathrm{M}_{12}$ and $\mathrm{M}_{34}$

But SO(6) has further Cartan generators $\Gamma_{5}^{+}=+\frac{1}{2}\left(\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right), \quad \Gamma_{5}^{-}=-\frac{1}{2}\left(\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right)$ for $\mathbf{4}, \overline{\mathbf{4}}$
 SO(6) spinor rep $4 \oplus \overline{4}$
The reducible $4 \oplus \overline{4}$ can be written in basis of three $\mathrm{SO}(3)$ spinors of $\mathrm{M}_{12}, \mathrm{M}_{34}$ and $\Gamma_{5}$


Note that the $\underline{4}$ has even number of - states and that the 4 has odd number of - states
identified as 4 of $\operatorname{SU}(4)$ with Cartan generators

$$
\begin{aligned}
& H_{1}=\frac{1}{2 \sqrt{2}}\left(M_{12}+M_{34}\right)=\frac{1}{2} \operatorname{diag}(1,-1,0,0) \\
& H_{2}=\frac{1}{\sqrt{12}}\left(-M_{12}+M_{34}+2 \Gamma_{5}^{+}\right)=\frac{1}{2 \sqrt{3}} \operatorname{diag}(1,1,-2,0) \\
& H_{3}=\frac{1}{\sqrt{6}}\left(M_{12}-M_{34}+\Gamma_{5}^{+}\right)=\frac{1}{\sqrt{24}} \operatorname{diag}(1,1,1,-3)
\end{aligned}
$$

## SU(4) has SU(3) subgroup


3 states $\quad 1$ state
Subgroup SU(3) involves Cartan generators $\mathrm{H}_{1}$ and $\mathrm{H}_{2}$ in the same basis as above
$H_{1}=\frac{1}{2 \sqrt{2}}\left(M_{12}+M_{34}\right)=\frac{1}{2} \operatorname{diag}(1,-1,0,0)$
$H_{2}=\frac{1}{\sqrt{12}}\left(-M_{12}+M_{34}+2 \Gamma_{5}^{+}\right)=\frac{1}{2 \sqrt{3}} \operatorname{diag}(1,1,-2,0)$

