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G3: Introduction to Lie Groups
Overview of group axioms
Introduction to SU(N) and SO(N)
SU(3) and subgroups
U(1) as limit of ZN

U(1) is isomorphic to SO(2)
Lie groups



Group axioms
A group is a set of elements a,b,... which can 
be combined together with ab inside the set
(ab)c=a(bc)
One element e satisfies ae=ea=a for all a
For each element a there is an element a-1 

which satisfies aa-1=a-1a=e
e.g. special orthogonal or unitary matrices 
form groups under matrix multiplication



Orthogonal (real) matrix O(N)
OTO = I

Unitary (complex) matrix U(N)
U †U = I

implies U † = U�1 inverse
U † = (U⇤)Twhere

NxN



SU(N) and SO(N) form groups

U †U = I

Unit determinant

detU = 1

SU(N) = Special Unitary NxN matrices

Unitary

Unit determinant

SO(N) = Special Orthogonal NxN matrices

Orthogonal

OTO = IdetO = 1

Unit matrix



SU(3) and a few of its subgroups

SO(3)

SU(3)

SU(2)

U(1) SO(2)

Subgroups Subgroups

Isomorphic



SU(3) and a few of its subgroups

SU(3)

SU(2)

U(1)

Unitary 2x2 
matrices with 

unit determinant

Unitary 1x1 
matrices are 

complex numbers
ei✓, det ei✓ = ei✓ 6= 1 so U(1) not SU(1)

U †U = I
detU = 1

Unitary 

Special  

Unitary 3x3 
matrices with 

unit determinant



SU(3) and a few of its subgroups

SU(3)

SU(2)

U(1)

Unitary 3x3 
matrices with 

unit determinant
Unitary 2x2 

matrices with 
unit determinant

Unitary 1x1 
matrix Standard 

Model



SU(3) and a few of its subgroups

SO(3)

SU(3)

SU(2)

U(1) SO(2)



SU(3) and a few of its subgroups

SO(3)

SU(3)

SO(2)

Orthogonal 3x3 
matrices with 

unit determinant
Orthogonal 2x2 
matrices with 

unit determinant

OTO = I
Orthogonal

Special  

detO = 1

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆



SU(3) and a few of its subgroups

SO(3)

SU(3)

SO(2)

Orthogonal 3x3 
matrices with 

unit determinant

Orthogonal 2x2 
matrices with 

unit determinant

OTO = I

Rotation 
Groups



SU(3) and a few of its subgroups

SO(3)

SU(3)

SU(2)

U(1) SO(2)

We start with U(1) and SO(2)
where U(1) is limiting case of ZN



Z4 is square, Z5 is pentagon, Z6 hexagon, etc.
ZN generators given by 2pi/N rotation
Order = N group elements {e,a,a2,...,aN-1}
We write e.g. a=ρ where 

ZN,  rotation group of regular N-polygon

⇢ = ei2⇡/N , ⇢N = 1



Now take limit: N ! 1
Z3 Z4

Z14Z13Z12Z11

Z10

Z5 Z6

Z7 Z8 Z9

· · · U(1)

“circle 
group”



In the limit N→∞ discrete group ZN  becomes 
continuous group U(1) parameterised by the 
real angle θ

U(1)group 
element

“circle group”

⇢n = ei2⇡n/N �! ei✓, ✓ ⌘ 2⇡n/N
N ! 1



U(1) is isomorphic to SO(2)
Argand 
plane

z ! ei✓z

✓
x

y

◆
!

✓
cos ✓ � sin ✓

sin ✓ cos ✓

◆✓
x

y

◆

U(1) transformation

equivalent to rotation

SO(2) = orthogonal 2x2 
matrices with det = 1

z = x+ iy = re

i✓
= r(cos ✓ + i sin ✓)

r



Lie Groups
A Lie group is a group whose elements are 
labelled by a set of continuous parameters 
with a multiplication law that depends 
smoothly on the parameters

For Lie groups U(1) or SO(2) the continuous 
Lie parameter is just angle θ
The Lie group is compact since θ=[0..2π]



Quantum Mechanics
Physical states represented by state 
vectors, 

Physical transformations on physical states 
represented by Unitary operators, 

|vi

U |vi = |v0i



Unitary operators as matrices
Consider U acting on some orthonormal 
basis vectors, 

Then U may be represented by the Unitary 
matrix

|ii, |ji, · · ·

Uij = hi|U |ji



Lie Groups
Any representation of compact Lie group is 
equivalent to a representation by Unitary 
operators U

So Lie groups correspond to unitary 
transformations in quantum mechanics

Lie group          U          quantum mechanics



Any group element which can be obtained 
from the identity by continuous changes in 
parameters can be written as:

U = ei↵aXa = ei(↵1X1+···↵NXN )

where          are real Lie parameters,                  
and         are linearly independent 
Hermitian operators. 

Xa

↵a

Lie Groups



generators of 
the Lie group 

Lie Groups
For infinitesimal transformations

U = ei↵aXa ⇡ 1 + i↵aXa

Their commutation relations determine the 
full structure of the group

[Xa, Xb] = ifabcXc “Lie algebra”

“structure constants”



G4: SU(N) groups
SU(2) and angular momentum
U(2), subalgebras, simple groups
SU(2)xSU(2) as a semi-simple group
SU(2) representations
SU(2) ~ SO(3) 
U(3) and its subgroups
SU(3)
SU(N)



SU(3) and a few of its subgroups

SO(3)

SU(3)

SU(2)

U(1) SO(2)

We now consider SU(2) ~ SO(3) as 
examples of Lie groups



SU(2)
Lie algebra is just algebra of the angular 
momentum operators

[Ja, Jb] = i"abcJc
totally antisymmetric 
Levi-Civita tensor

"123 = "312 = "231 = 1

"132 = "213 = "321 = �1

J1, J2, J3

U = ei✓aJa

SU(2) 
group 
element

SU(2) 
generator



Angular momentum eigenstates
J3|j,mi = m|j,mi

e.g. spin 1/2

give matrix representation of Lie algebra
hj,m0|Ja|j,mi

j = 1/2, m,m0 = ±1/2

�1 =

✓
0 1
1 0

◆
,�2 =

✓
0 �i
i 0

◆
,�3 =

✓
1 0
0 �1

◆
Pauli matrices

(JaJ
a)|j,mi = j(j + 1)|j,mi

|+i |�i
hm0|Ja|mi = h±|Ja|±i = 1

2
�a



Tr(T aT b) =
1

2
�ab

U(1) SU(2)

In the fundamental representation the generators of
U(2) group can be written as

T 0 =
1

2

(

1 0

0 1

)

, T a =
1

2
σa , a = 1, 2, 3 .

where σa are the Pauli matrices

σ1 =





0 1

1 0



 , σ2 =





0 −i

i 0



 , σ3 =





1 0

0 −1



 .

A subalgebra is a subset of the generators of a group G
that form an algebra by themselves. This subalgebra is
the Lie algebra of a subgroup of the group G.
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U(2) ⇠ SU(2)⌦ U(1)



Generators T a form a subalgebra of U(2) because
[

T a, T b
]

= iεabcT
c , a, b, c = 1, 2, 3 .

The set of generators T 1, T 2, T 3 represents the Lie
algebra of SU(2) which elements satisfy the conditions

UU † = 1 , det U = 1 .

Thus in the fundamental representation the elements of
SU(2) group are Special (det U = 1), Unitary, 2 × 2
matrices.

The determinant of these matrices is equal to unity because T a

are traceless (Tr (T a) = 0).
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An invariant subalgebra is a set of generators, Xa,
which when commuted with any of the generators of the
Lie group either gives zero or another generator in the
set, Xa.

In the U(2) group T a and T 0 form two invariant subalgebras
corresponding to SU(2) and U(1) groups.

Groups which do not possess invariant subalgebras are
called simple groups.

SU(2) is an example of a simple group while U(2) is not simple.

Groups that do not possess an Abelian invariant
subalgebra are called semi–simple Lie groups.

Any simple Lie group is semi–simple.

U(2) is not semi–simple group because T 0 form Abelian invariant
subalgebra.
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SU(2)xSU(2): semi-simple group
Group SU(2) ⊗ SU(2) has six generators which in the
fundamental representation can be written in the block
diagonal form

T a =
1

2





σa 0

0 0



 , T b+3 =
1

2





0 0

0 σb



 , a, b = 1, 2, 3.

The first three generators of this group form an invariant
SU(2) subalgebra.
Therefore SU(2) ⊗ SU(2) group is not simple.
But SU(2) ⊗ SU(2) is semi–simple because it does not
possess an Abelian invariant subalgebra.
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spin 1 representation

hm0|Ja|mi = T a

j = 1, m,m0 = +1, 0,�1

J3|j,mi = m|j,mi

T 1 =
1p
2

0

@
0 1 0
1 0 1
0 1 0

1

A , T 2 =
1p
2

0

@
0 �i 0
i 0 �i
0 i 0

1

A , T 3 =

0

@
1 0 0
0 0 0
0 0 �1

1

A

SU(2) algebra representations

matrix representation 
of the algebra

Tr(T aT b) =
1

2
�ab normalisation of generators 



equivalent to 
spin 1 rep

(T a)bc = �i"abc

Adjoint rep of algebra is defined as

"123 = "312 = "231 = 1

"132 = "213 = "321 = �1

T 1 =

0

@
0 0 0
0 0 �i
0 i 0

1

A , T 2 =

0

@
0 0 i
0 0 0
�i 0 0

1

A , T 3 =

0

@
0 �i 0
i 0 0
0 0 0

1

A

SU(2) algebra representations

T a ! WT aW�1



In QM the action of rotating a spin j particle 
through angle θ3 about 3-axis is given by

SU(2) is rotation group in QM

In general a rotation through angle θ about 
unit axis n=n1i+n2j+n3k is given by

|ji ! R3(✓3)|ji = ei✓3J3 |ji

where θ1 = θn1 , θ2 = θn2  , θ3 = θn3

SU(2) 
group 
element

|ji ! Rn(✓)|ji = ei✓J.n|ji = ei✓aJ
a

|ji



SU(2) group representations
spin 1/2 representation 
of group

Special Unitary 2x2 matrices with unit determinant:

eAeB = eA+B+ 1
2 [A,B]

Baker-Campbell-
Hausdorff (BCH)

Proof
detU = eTr(i✓a 1

2�
a) = e0 = 1

U †U = e�i✓aJ
a

ei✓bJ
b

= I

Uij = [Rn(✓)]ij = ei✓a
1
2�

a
ij



SU(2) group representations
spin 1/2 representation 
of group Uij = [Rn(✓)]ij = ei✓a

1
2�

a
ij

[R2(✓)]ij =

✓
cos

✓
2 sin

✓
2

� sin

✓
2 cos

✓
2

◆
For rotations about the 2-axis

[R3(✓)]ij =

 
ei

✓
2 0

0 e�i ✓
2

!For rotations about the 3-axis

These are 
subgroups: 
SU(2) is the 
group of 
rotations 
about all 
axes



spin 1 adjoint representation of 
group

T 1 =

0

@
0 0 0
0 0 �i
0 i 0

1

A , T 2 =

0

@
0 0 i
0 0 0
�i 0 0

1

A , T 3 =

0

@
0 �i 0
i 0 0
0 0 0

1

A

Oij are special orthogonal 3x3 matrices, 
real with unit determinant, i.e. SO(3)

Oij = [Rn(✓)]ij = ei✓aT
a
ij

OTO = ei✓a(T
a)T ei✓bT

b

= e�i✓aT
a

ei✓bT
b

= I

SU(2) ~ SO(3)



spin 1 adjoint representation of 
group Oij = [Rn(✓)]ij = ei✓aT

a
ij

R3(✓) = ei✓T3 ! T3 =
1

i

dR3(✓)

d✓
|✓=0

R1(✓) =

0

@
1 0 0

0 cos ✓ sin ✓
0 � sin ✓ cos ✓

1

A R2(✓) =

0

@
cos ✓ 0 � sin ✓
0 1 0

sin ✓ 0 cos ✓

1

A

R3(✓) =

0

@
cos ✓ sin ✓ 0

� sin ✓ cos ✓ 0

1 0 0

1

A

special orthogonal 3x3

Ex. check: 

SU(2) ~ SO(3)



spin 1 adjoint representation of 
group Oij = [Rn(✓)]ij = ei✓aT

a
ij

R1(✓) =

0

@
1 0 0

0 cos ✓ sin ✓
0 � sin ✓ cos ✓

1

A R2(✓) =

0

@
cos ✓ 0 � sin ✓
0 1 0

sin ✓ 0 cos ✓

1

A

R3(✓) =

0

@
cos ✓ sin ✓ 0

� sin ✓ cos ✓ 0

1 0 0

1

A Ex. using BCH show: 
R1(✓23)R2(✓13)R3(✓12) = ei✓aT

a
ij

special orthogonal 3x3 where: R1(✓23) = ei✓23T
1
ij

SU(2) ~ SO(3)



SU(3) and a few of its subgroups

SO(3)

SU(3)

SU(2)

U(1) SO(2)

We first consider SU(3) then  
SU(N) and SO(N)



SU(3) group and strong interactions
In the fundamental representation the elements of the
U(3) group are 3 × 3 unitary matrices, i.e.

UU † = 1, =⇒ U = exp

{

iωαT α

}

, T α = T α† ,

T 0 =
1

2









1 0 0

0 1 0

0 0 1









, T 1 =
1

2









0 1 0

1 0 0

0 0 0









, T 2 =
1

2









0 −i 0

i 0 0

0 0 0









,

T 3 =
1

2









1 0 0

0 −1 0

0 0 0









, T 4 =
1

2









0 0 1

0 0 0

1 0 0









, T 5 =
1

2









0 0 −i

0 0 0

i 0 0









,

T 6 =
1

2









0 0 0

0 0 1

0 1 0









, T 7 =
1

2









0 0 0

0 0 −i

0 i 0









, T 8 =
1

2
√

3









1 0 0

0 1 0

0 0 −2









.
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U(3) ⇠ SU(3)⌦ U(1)



SU(3) group and strong interactions
In the fundamental representation the elements of the
U(3) group are 3 × 3 unitary matrices, i.e.

UU † = 1, =⇒ U = exp

{

iωαT α

}

, T α = T α† ,

T 0 =
1

2









1 0 0

0 1 0

0 0 1









, T 1 =
1

2









0 1 0

1 0 0

0 0 0









, T 2 =
1

2









0 −i 0

i 0 0

0 0 0









,

T 3 =
1

2









1 0 0

0 −1 0

0 0 0









, T 4 =
1

2









0 0 1

0 0 0

1 0 0









, T 5 =
1

2









0 0 −i

0 0 0

i 0 0









,

T 6 =
1

2









0 0 0

0 0 1

0 1 0









, T 7 =
1

2









0 0 0

0 0 −i

0 i 0









, T 8 =
1

2
√

3









1 0 0

0 1 0

0 0 −2









.
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U(3) ⇠ SU(3)⌦ U(1)

U(1)



SU(3) group and strong interactions
In the fundamental representation the elements of the
U(3) group are 3 × 3 unitary matrices, i.e.

UU † = 1, =⇒ U = exp

{

iωαT α

}

, T α = T α† ,

T 0 =
1

2









1 0 0

0 1 0

0 0 1









, T 1 =
1

2









0 1 0

1 0 0

0 0 0









, T 2 =
1

2









0 −i 0

i 0 0

0 0 0









,

T 3 =
1

2









1 0 0

0 −1 0

0 0 0









, T 4 =
1

2









0 0 1

0 0 0

1 0 0









, T 5 =
1

2









0 0 −i

0 0 0

i 0 0









,

T 6 =
1

2









0 0 0

0 0 1

0 1 0









, T 7 =
1

2









0 0 0

0 0 −i

0 i 0









, T 8 =
1

2
√

3









1 0 0

0 1 0

0 0 −2









.
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U(3) ⇠ SU(3)⌦ U(1)

SU(2)



SU(3) group and strong interactions
In the fundamental representation the elements of the
U(3) group are 3 × 3 unitary matrices, i.e.

UU † = 1, =⇒ U = exp

{

iωαT α

}

, T α = T α† ,

T 0 =
1

2









1 0 0

0 1 0

0 0 1









, T 1 =
1

2









0 1 0

1 0 0

0 0 0









, T 2 =
1

2









0 −i 0

i 0 0

0 0 0









,

T 3 =
1

2









1 0 0

0 −1 0

0 0 0









, T 4 =
1

2









0 0 1

0 0 0

1 0 0









, T 5 =
1

2









0 0 −i

0 0 0

i 0 0









,

T 6 =
1

2









0 0 0

0 0 1

0 1 0









, T 7 =
1

2









0 0 0

0 0 −i

0 i 0









, T 8 =
1

2
√

3









1 0 0

0 1 0

0 0 −2









.
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U(3) ⇠ SU(3)⌦ U(1)

SU(3)



SU(3)

3

(�T a)⇤ also satisfy the algebra3

Other reps include 1,3,6,8,15, . . .

The set of generators T a, where a = 1, ...8, form
invariant subalgebra of U(3) that corresponds to SU(3)

[

T a, T b

]

= ifabcT
c

U(3) group is neither simple nor semi–simple group.
Because T a are traceless the elements of SU(3) group
obey the conditions

UU † = 1 , det U = 1 .
The set of generators T 1, T 2 and T 3 form subalgebra of
SU(3), because

[

T a, T b
]

= iεabcT
c , a, b, c = 1, 2, 3 .

This subalgebra represent the Lie algebra of SU(2)
which is a subgroup of SU(3).
However SU(3) does not possess invariant subalgebras
so that SU(3) is a simple group.
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SU(N)
The elements of SU(N) group obey the relations

UU † = 1 , det U = 1 .

SU(N − 1),... , SU(2) are subgroups of SU(N).
But SU(N) does not possess invariant subalgebras, i.e.
SU(N) is a simple group.

The quadratic Casimir operator
∑

(T a)2 commutes with
all generators of SU(N) group.
The irreducible representation are therefore eigenstates
of this Casimir operator.
In the fundamental representation of SU(N) we have

∑

(T a)2 = CF I, CF =
N2 − 1

2N
.
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The Cartan subalgebra of SU(N) group involves N − 1
traceless diagonal matrices

H1 =
1

2





















1

−1

0

...

0





















, H2 =
1

2
√

3





















1

1

−2

...

0





















, ...

...HN−1 =
1

√

2N(N − 1)





















1

1

1

...

−(N − 1)





















.
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The Cartan subalgebra of SU(N) group involves N − 1
traceless diagonal matrices

H1 =
1

2





















1

−1

0

...

0





















, H2 =
1

2
√

3





















1

1

−2

...

0





















, ...

...HN−1 =
1

√

2N(N − 1)





















1

1

1

...

−(N − 1)





















.
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T3 T8

SU(3) rank 2



G5: SO(N) groups
SO(N) and Clifford algebra
SO(3) vector rep
SO(2N+1) spinor rep
SO(3) spinor rep
SO(5) spinor rep
SO(2N) vector and spinor reps
SO(6) spinor rep
SO(6) ~ SU(4) and SU(3) subgroup



SO(N) groups and Clifford algebra
SO(N) is the group of rotations in N dimensions.

This group has 1
2(N2 − N) generators Mab = −Mba,

which represent rotations in the a − b plane, i.e.
(

Mab

)

kl
= i

(

δalδbk − δakδbl

)

, a, b = 1, ...(2N + 1)

The generators of SO(N) group obey algebra
[

Mab, Mcd

]

= −i

(

δbcMad − δacMbd − δbdMac + δadMbc

)

.

The subset of N generators M12,M34, ...M2N−1,2N form
a Cartan subalgebra of SO(2N + 1), i.e. SO(2N + 1)
group has rank N .
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SO(N) groups and Clifford algebra
SO(N) is the group of rotations in N dimensions.

This group has 1
2(N2 − N) generators Mab = −Mba,

which represent rotations in the a − b plane, i.e.
(

Mab

)

kl
= i

(

δalδbk − δakδbl

)

, a, b = 1, ...(2N + 1)

The generators of SO(N) group obey algebra
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Mab, Mcd

]

= −i

(
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)
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a Cartan subalgebra of SO(2N + 1), i.e. SO(2N + 1)
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SO(N) groups and Clifford algebra
SO(N) is the group of rotations in N dimensions.

This group has 1
2(N2 − N) generators Mab = −Mba,

which represent rotations in the a − b plane, i.e.
(

Mab

)

kl
= i

(

δalδbk − δakδbl

)
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= −i
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SO(N) groups and Clifford algebra
SO(N) is the group of rotations in N dimensions.

This group has 1
2(N2 − N) generators Mab = −Mba,

which represent rotations in the a − b plane, i.e.
(

Mab

)

kl
= i

(

δalδbk − δakδbl

)

, a, b = 1, ...(2N + 1)

The generators of SO(N) group obey algebra
[

Mab, Mcd

]

= −i

(

δbcMad − δacMbd − δbdMac + δadMbc

)

.

The subset of N generators M12,M34, ...M2N−1,2N form
a Cartan subalgebra of SO(2N + 1), i.e. SO(2N + 1)
group has rank N .
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a, b, k, l = 1, · · · , N



The generators of the Cartan subalgebra may be
written in 2 × 2 block form

M12 =















σ2 0

0 0

... 0

0 0 0 0















, ... M2N−1,2N =















0 0

... 0

σ2 0

0 0 0 0















.

The eigenstates of these generators are




















1

i

0

...

0





















,





















1

−i

0

...

0





















, ...





















0

...

1

i

0





















,





















0

...

1

−i

0





















.
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e.g. SO(3) identify T1=M23, T2=M13,T3=M12

T 1 =

0

@
0 0 0
0 0 �i
0 i 0

1

A , T 2 =

0

@
0 0 i
0 0 0
�i 0 0

1

A , T 3 =

0

@
0 �i 0
i 0 0
0 0 0

1

A
�2

SO(3) vector rep



In order to find generators of SO(2N + 1) in the spinor
representation we consider the Clifford algebra

{Γa, Γb} = 2δab I, a, b = 1, ..., (2N + 1),

where Γa is a set of (2N + 1) matrices of size 2N × 2N .
In the spinor representation the generators of
SO(2N + 1) group are given by

Mab = −
i

4

[

Γa, Γb

]

.

Then we have
[

Mab, Γc

]

= i

(

δac Γb − δbc Γa

)

.
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SO(2N+1) spinor rep



For the case of SO(3) the matrices Γa are given by the
three Pauli matrices

{σa, σb} = 2 δab, Mab = −
i

4

[

σa, σb

]

=
1

2
εabcσc,

where a, b, c = 1, 2, 3.
Thus the eigenvectors of SO(3) generators in the spinor
representation are two component spinors.
There are many possible ways to construct Γa matrices
and they are related to each other by a similarity
transformation

Γ′
a = S−1ΓaS, S−1S = I,

which preserves the Clifford algebra.
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2x2 dimensional spinor rep of SO(3) with generators 
M12=-M21, M13=-M31, M23=-M32 
SU(2) double cover of SO(3) (same algebra and reps)

�1 =

✓
0 1
1 0

◆
,�2 =

✓
0 �i
i 0

◆
,�3 =

✓
1 0
0 �1

◆

SO(3) spinor rep

M12 =
1

2
�3 M13 = �1

2
�2 M23 =

1

2
�1

2



SO(5) spinor rep
In the case of SO(5) there are five 4 × 4 Γ matrices which may be
written in block form as

Γa =





0 iσa

−iσa 0



 , Γ4 =





0 I

I 0



 , Γ5 =





I 0

0 −I



 ,

The generators of SO(5) in the spinor representation are given by

Mab =
εabc

2





σc 0

0 σc



 , Ma4 =
1

2





σa 0

0 −σa



 ,

M45 =
1

2





0 iI

−iI 0



 , Ma5 =
1

2





0 −σa

−σa 0



 ,

where a and b run from 1 to 3.

The Cartan subalgebra of SO(5) consists of the generators M12 and
M34.
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4



SO(5) spinor rep

M12 =
1

2

✓
�3 0
0 �3

◆Cartan generators are M12 and M34

M34 =
1

2

✓
�3 0
0 ��3

◆
�3 =

✓
1 0
0 �1

◆where

4

|++i, |��i, |+�i, |�+i

h1|M12|1i = +1/2

h2|M12|2i = �1/2

h3|M12|3i = +1/2

h4|M12|4i = �1/2

h1|M34|1i = +1/2

h2|M34|2i = �1/2

h3|M34|3i = �1/2

h4|M34|4i = +1/2

M12M34 M12M34 M12M34M12M34

in basis of two SO(3) spinors of M12 and M34

|1i, |2i, |3i, |4i =



The Cartan subalgebra of SO(2N) has N generators,
M12,M34, ...M2N−1,2N which in 2N dimensional space
can be written in 2 × 2 block form

M12 =















σ2

0

...

0















, ... M2N−1,2N =















0

...

0

σ2















.

The eigenvectors of these generators are
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i

0

...

0





















,





















1

−i

0

...

0
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...

0

1

i





















,
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...

0

1

−i





















.
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SO(2N) vector rep

SO(N) groups and Clifford algebra
SO(N) is the group of rotations in N dimensions.

This group has 1
2(N2 − N) generators Mab = −Mba,

which represent rotations in the a − b plane, i.e.
(

Mab

)

kl
= i

(

δalδbk − δakδbl

)

, a, b = 1, ...(2N + 1)

The generators of SO(N) group obey algebra
[

Mab, Mcd

]

= −i

(

δbcMad − δacMbd − δbdMac + δadMbc

)

.

The subset of N generators M12,M34, ...M2N−1,2N form
a Cartan subalgebra of SO(2N + 1), i.e. SO(2N + 1)
group has rank N .
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a, b, k, l = 1, · · · , 2N



SO(2N) spinor rep
The spinor representation of the generators of the
SO(2N) group are constructed from the 2N × 2N

Γ–matrices which satisfy the Clifford algebra so that

Mab = −
i

4

[

Γa, Γb

]

, {Γa, Γb} = 2δab I, a, b = 1, ..., 2N.

The first 2N Γ–matrices of SO(2N + 1) may form a
complete set of Γa of the group SO(2N), i.e.

Γ2N
c =





0 iΓ(2N−1)
a

−iΓ(2N−1)
a 0



 ,





0 I

I 0



 ,

where c = 1, ..., 2N and a = 1, ..., (2N − 1).
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The last Γ–matrix of SO(2N + 1) anticommutes with all
other SO(2N) Γ–matrices and can always be written as

Γ2N+1 = (−i)N
2N
∏

a=1

Γa =

(

I 0

0 −I

)

.

Γ2N+1 allows to construct two projection operators

PL =
1

2

(

I+Γ2N+1

)

=





I 0

0 0



 , PR =
1

2

(

I−Γ2N+1

)

=





0 0

0 I



 .

The projection operators reduce 2N spinor to the two
irreducible spinors which have 2N−1 components

ΨL = PL Ψ, ΨR = PR Ψ.

Scottish Universities Physics Alliance (SUPA) Graduate School lectures – p.84/120Thus the generators of SO(2N) can be written as
2N−1 × 2N−1 matrices.
Therefore group SO(6) has two four dimensional spinor
representation.
The 15 generators of SO(6) in the spinor representation
can be presented in the following form:

±
1

2





0 iσa

−iσa 0



 , ±
1

2





0 I

I 0



 , ±
1

2





I 0

0 −I



 ,

εabc

2





σc 0

0 σc



 ,
1

2





σa 0

0 −σa



 ,
1

2





0 −σa

−σa 0



 ,
1

2





0 iI

−iI 0



 ,

where a = 1, 2, 3 and ± refers to the "left–handed" and
"right–handed" representations.
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PL,R =
1

2
(I ± �2N�1)



Thus the generators of SO(2N) can be written as
2N−1 × 2N−1 matrices.
Therefore group SO(6) has two four dimensional spinor
representation.
The 15 generators of SO(6) in the spinor representation
can be presented in the following form:

±
1

2





0 iσa

−iσa 0



 , ±
1

2





0 I

I 0



 , ±
1

2





I 0

0 −I



 ,

εabc

2





σc 0

0 σc



 ,
1

2





σa 0

0 −σa



 ,
1

2





0 −σa

−σa 0



 ,
1

2





0 iI

−iI 0



 ,

where a = 1, 2, 3 and ± refers to the "left–handed" and
"right–handed" representations.

Scottish Universities Physics Alliance (SUPA) Graduate School lectures – p.86/120

SO(6) spinor reps 4,4

4,4 (complex conjugates)



Thus the generators of SO(2N) can be written as
2N−1 × 2N−1 matrices.
Therefore group SO(6) has two four dimensional spinor
representation.
The 15 generators of SO(6) in the spinor representation
can be presented in the following form:

±
1

2





0 iσa

−iσa 0



 , ±
1

2





0 I

I 0



 , ±
1

2





I 0

0 −I



 ,

εabc

2





σc 0

0 σc



 ,
1

2





σa 0

0 −σa



 ,
1

2





0 −σa

−σa 0



 ,
1

2





0 iI

−iI 0



 ,

where a = 1, 2, 3 and ± refers to the "left–handed" and
"right–handed" representations.
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SO(6) spinor reps

Mab

�a

4,4

4,4 (complex conjugates)



SO(6) spinor reps 4,4

M12 =
1

2

✓
�3 0
0 �3

◆As in SO(5), Cartan generators are M12, M34

M34 =
1

2

✓
�3 0
0 ��3

◆
�3 =

✓
1 0
0 �1

◆where

in basis of two SO(3) spinors of M12 and M34

|++i, |��i, |+�i, |�+i
But SO(6) has further Cartan generators

��
5 = �1

2

✓
I 0
0 �I

◆
4,4for

|+i, |+i, |�i, |�i |�i, |�i, |+i, |+i spinors of 𝛤5

�+
5 = +

1

2

✓
I 0
0 �I

◆
,



SO(6) spinor rep 4� 4
The reducible            can be written in basis 
of three SO(3) spinors of M12,M34 and 𝛤5

4� 4

|+++i, |��+i, |+��i, |�+�i

|++�i, |���i, |+�+i, |�++i
M12M34�5 M12M34�5 M12M34�5 M12M34�5

4

4

Note that the     has even number of - states 4
and that the     has odd number of - states 4



SO(6) ~ SU(4)
|+++i, |��+i, |+��i, |�+�i

4identified as    of SU(4) with Cartan generators

H1 =
1

2
p
2
(M12 +M34) =

1

2
diag(1,�1, 0, 0)

H2 =
1p
12

(�M12 +M34 + 2�+
5 ) =

1

2
p
3
diag(1, 1,�2, 0)

H3 =
1p
6
(M12 �M34 + �+

5 ) =
1p
24

diag(1, 1, 1,�3)

4



SU(4) has SU(3) subgroup
|+++i, |��+i, |+��i, |�+�i

Subgroup SU(3) involves Cartan generators 
H1 and H2 in the same basis as above
H1 =

1

2
p
2
(M12 +M34) =

1

2
diag(1,�1, 0, 0)

H2 =
1p
12

(�M12 +M34 + 2�+
5 ) =

1

2
p
3
diag(1, 1,�2, 0)

3 1states state


