Group Theory

Day 1: Solutions

Steve King, Dresden,
Germany 29th-30th August, 2016

S_{3}	e	a_{1}	a_{2}	b_{1}	b_{2}	b_{3}
e	e	a_{1}	a_{2}	b_{1}	b_{2}	b_{3}

$a_{1} a_{1} a_{2} \quad e \quad b_{2} \quad b_{3} \quad b_{1}$
$a_{2} a_{2} \quad e \quad a_{1} \quad b_{3} \quad b_{1} \quad b_{2}$
$b_{1} \quad b_{1} \quad b_{3} \quad b_{2} \quad e \quad a_{2} \quad a_{1}$
$b_{2} \quad b_{2} \quad b_{1} \quad b_{3} \quad a_{1} \quad e \quad a_{2}$

g	$g e g^{-1}$	$g a_{1} g^{-1}$	$g a_{2} g^{-1}$	$g b_{1} g^{-1}$	$g b_{2} g^{-1}$	$g b_{3} g^{-1}$
e						
a_{1}						
a_{2}						
b_{1}						
b_{2}						
b_{3}	a_{1}	a_{2}				
a_{1}	a_{2}					
a_{1}	a_{2}					
a_{2}	a_{1}					
a_{2}	a_{1}					
e						
a_{2}	a_{1}	b_{2}	b_{1}	b_{3}		
b_{2}	b_{3}	b_{1}				
b_{1}	b_{3}	b_{2}				
b_{3}	b_{2}	b_{1}				
b_{2}	b_{1}	b_{3}				

is a unitary matrix $U U^{\dagger}=I \quad$ but $\quad \operatorname{det} U \neq 1$ Hence show

$$
\begin{array}{ll}
U^{-1} a U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) & U^{-1} b U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & \omega \\
0 & \omega^{2} & 0
\end{array}\right) \\
\text { re } a=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) & b=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{array}
$$

Solution:

$$
\begin{gathered}
\omega=e^{i 2 \pi / 3} \\
U=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & \omega & \omega^{2} \\
1 & 1 & 1 \\
1 & \omega^{2} & \omega
\end{array}\right) \quad \begin{array}{l}
\omega^{3}=1 \\
1+\omega+\omega^{2}=0 \\
U^{\dagger}=\left(U^{T}\right)^{*}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\omega^{*} & 1 & \omega^{2 *} \\
\omega^{2 *} & 1 & \omega^{*}
\end{array}\right)=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\omega^{2} & 1 & \omega \\
\omega & 1 & \omega^{2}
\end{array}\right) \\
U U^{\dagger}=\frac{1}{3}\left(\begin{array}{ccc}
1 & \omega & \omega^{2} \\
1 & 1 & 1 \\
1 & \omega^{2} & \omega
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
\omega^{2} & 1 & \omega \\
\omega & 1 & \omega^{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\text { Hence } U U^{\dagger}=I
\end{array},
\end{gathered}
$$

Solution:

$\operatorname{det} U=\left(\frac{1}{\sqrt{3}}\right)^{3}\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ 1 & 1 & 1 \\ 1 & \omega^{2} & \omega\end{array}\right|$
$\operatorname{det} U=\frac{1}{3 \sqrt{3}}\left|\begin{array}{cc}1 & 1 \\ \omega^{2} & \omega\end{array}\right|-\frac{\omega}{3 \sqrt{3}}\left|\begin{array}{cc}1 & 1 \\ 1 & \omega\end{array}\right|+\frac{\omega^{2}}{3 \sqrt{3}}\left|\begin{array}{cc}1 & 1 \\ 1 & \omega^{2}\end{array}\right|$
$\operatorname{det} U=\frac{1}{3 \sqrt{3}}\left(\omega-\omega^{2}\right)-\frac{\omega}{3 \sqrt{3}}(\omega-1)+\frac{\omega^{2}}{3 \sqrt{3}}\left(\omega^{2}-1\right)$
$\operatorname{det} U=\frac{1}{\sqrt{3}}\left(\omega-\omega^{2}\right)$
Hence $\operatorname{det} U \neq 1$

Solution:

$U=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & \omega & \omega^{2} \\ 1 & 1 & 1 \\ 1 & \omega^{2} & \omega\end{array}\right) \quad U^{-1}=U^{\dagger}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 1 & 1 \\ \omega^{2} & 1 & \omega \\ \omega & 1 & \omega^{2}\end{array}\right)$
$U^{-1} a U=\frac{1}{3}\left(\begin{array}{ccc}1 & 1 & 1 \\ \omega^{2} & 1 & \omega \\ \omega & 1 & \omega^{2}\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}1 & \omega & \omega^{2} \\ 1 & 1 & 1 \\ 1 & \omega^{2} & \omega\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2}\end{array}\right)$
$U^{-1} b U=\frac{1}{3}\left(\begin{array}{ccc}1 & 1 & 1 \\ \omega^{2} & 1 & \omega \\ \omega & 1 & \omega^{2}\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}1 & \omega & \omega^{2} \\ 1 & 1 & 1 \\ 1 & \omega^{2} & \omega\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & \omega \\ 0 & \omega^{2} & 0\end{array}\right)$

