Southampton

School of Physics and Astronomy

Group Theory

Day 1: Solutions

Steve King, Dresden, Germany 29th-30th August, 2016

Exercise:

By completing the table below, show that the rotations and reflections of S₃ form separate conjugacy classes.

$g \mid$	geg^{-1}	$ga_{1}g^{-1}$	ga_2g^{-1}	gb_1g^{-1}	gb_2g^{-1}	$gb_{3}g^{-1}$
e	e	a_1	a_2	b_1	b_2	b_3
a_1	e	a_1	a_2	b_3	b_1	b_2
a_2	e	a_1	a_2	b_2	b_3	b_1
b_1	e	a_2	a_1	b_1	b_3	b_2
b_2	e	a_2	a_1	b_3	b_2	b_1
b_3	e	a_2	a_1	b_2	b_1	b_3

Exercise:

Show that $U = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & \omega & \omega^2 \\ 1 & 1 & 1 \\ 1 & \omega^2 & \omega \end{pmatrix}$ $\begin{aligned} \omega &= e^{i2\pi/3} \\ U^{\dagger} &= (U^T)^* \end{aligned}$

is a unitary matrix $UU^{\dagger} = I$ but $\det U \neq 1$

Hence show

$$U^{-1}aU = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix} \quad U^{-1}bU = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \omega \\ 0 & \omega^2 & 0 \end{pmatrix}$$

where $a = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

Solution: $i2\pi/3$

$$U = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & \omega & \omega^2 \\ 1 & 1 & 1 \\ 1 & \omega^2 & \omega \end{pmatrix} \qquad \begin{array}{l} \omega = e^{i2\pi/3} \\ \omega^3 = 1 \\ 1 + \omega + \omega^2 = 0 \end{array}$$

$$\begin{split} U^{\dagger} &= (U^{T})^{*} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ \omega^{*} & 1 & \omega^{2*} \\ \omega^{2*} & 1 & \omega^{*} \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ \omega^{2} & 1 & \omega \\ \omega & 1 & \omega^{2} \end{pmatrix} \\ UU^{\dagger} &= \frac{1}{3} \begin{pmatrix} 1 & \omega & \omega^{2} \\ 1 & 1 & 1 \\ 1 & \omega^{2} & \omega \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ \omega^{2} & 1 & \omega \\ \omega & 1 & \omega^{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \\ \text{Hence} \quad UU^{\dagger} = I \end{split}$$

Solution:

$$\det U = \left(\frac{1}{\sqrt{3}}\right)^3 \begin{vmatrix} 1 & \omega & \omega^2 \\ 1 & 1 & 1 \\ 1 & \omega^2 & \omega \end{vmatrix}$$

$$\det U = \frac{1}{3\sqrt{3}} \begin{vmatrix} 1 & 1 \\ \omega^2 & \omega \end{vmatrix} - \frac{\omega}{3\sqrt{3}} \begin{vmatrix} 1 & 1 \\ 1 & \omega \end{vmatrix} + \frac{\omega^2}{3\sqrt{3}} \begin{vmatrix} 1 & 1 \\ 1 & \omega^2 \end{vmatrix}$$

$$\det U = \frac{1}{3\sqrt{3}}(\omega - \omega^2) - \frac{\omega}{3\sqrt{3}}(\omega - 1) + \frac{\omega^2}{3\sqrt{3}}(\omega^2 - 1)$$

$$\det U = \frac{1}{\sqrt{3}} (\omega - \omega^2) \qquad \qquad \text{Hence} \quad \det U \neq 1$$

$$U = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & \omega & \omega^2 \\ 1 & 1 & 1 \\ 1 & \omega^2 & \omega \end{pmatrix} \qquad U^{-1} = U^{\dagger} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ \omega^2 & 1 & \omega \\ \omega & 1 & \omega^2 \end{pmatrix}$$

$$U^{-1}aU = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ \omega^2 & 1 & \omega \\ \omega & 1 & \omega^2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & \omega & \omega^2 \\ 1 & 1 & 1 \\ 1 & \omega^2 & \omega \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}$$

$$U^{-1}bU = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ \omega^2 & 1 & \omega \\ \omega & 1 & \omega^2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & \omega & \omega^2 \\ 1 & 1 & 1 \\ 1 & \omega^2 & \omega \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \omega \\ 0 & \omega^2 & 0 \end{pmatrix}$$