International Summer School: Symmetries and Phase Transitions from Crystals and Superconductors to the Higgs particle and the Cosmos

Steve King, 29th August to 2nd September 2016, Dresden, Germany
Group Theory Exercises: Properties of S_{3} or D_{3}

1. By completing the table below, show that the rotations $\left(a_{i}\right)$ and reflections $\left(b_{i}\right)$ of S_{3} (also known as D_{3} or $D i h_{3}$) form separate conjugacy classes:

g	$g e g^{-1}$	$g a_{1} g^{-1}$	$g a_{2} g^{-1}$	$g b_{1} g^{-1}$	$g b_{2} g^{-1}$	$g b_{3} g^{-1}$
e	e	a_{1}				
a_{1}	e					
a_{2}						
b_{1}						
b_{2}						
b_{3}						

2. Show that

$$
U=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & \omega & \omega^{2} \\
1 & 1 & 1 \\
1 & \omega^{2} & \omega
\end{array}\right), \quad \omega=e^{i 2 \pi / 3}
$$

is a unitary matrix, $U U^{\dagger}=I$, but is not special, $\operatorname{det} U \neq 1$.
Hence show that the $\mathbf{3}$ representation of S_{3} can be reduced to $\mathbf{1} \oplus \mathbf{2}$ by this matrix:

$$
U^{-1} a U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right), \quad U^{-1} b U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & \omega \\
0 & \omega^{2} & 0
\end{array}\right)
$$

where the generators of S_{3} in the $\mathbf{3}$ representation are:

$$
a=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad b=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

