Phase Transitions in Condensed Matter

Spontaneous Symmetry Breaking and Universality

Hans-Henning Klauss

Institut für Festkörperphysik TU Dresden

References

- [1] Stephen Blundell, Magnetism in Condensed Matter, Oxford University Press
- [2] Igot Herbut, A Modern Approach to Critical Phenomena, Cambridge University Press
- [3] Eugene Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford Science Pub.
- [4] Roser Valenti, Lecture Notes on Thermodynamics, U Frankfurt
- [5] Matthias Vojta, Lecture Notes on Thermal and Quantum Phase Transitions, Les Houches 2015
- [6] Thomas Palstra, Lecture Notes on Multiferroics: Materials and Mechanisms, Zuoz 2013

Outline

Phase transitions in fluids

- Phase diagram, order parameter and symmetry breaking
- Microscopic van-der-Waals theory \rightarrow universality
- Magnetic phase transitions in condensed matter
 - Ferromagnetic phase transition
 - Interacting magnetic dipole moments "spins"
 - Weiss model for ferromagnetism, phase diagram
 - Landau theory

Consequences of symmetry breaking

- Critical phenomena and universality
- Excitations, Nambu-Goldstone-, Higgs-modes
- More complex ordering phenomena
 - Multiferroics, competing order
 - [Quantum phase transitions]

Introduction

- What is a thermodynamic phase?
 - Equilibrium state of matter of a many body system
 - Well defined symmetry
 - Thermodynamic potential changes analytically for small parameter changes (temperature, pressure, magnetic field)
- What is a phase transition?
 - Point in parameter space where the equilibrium properties of a system change *qualitatively*.
 - The system is **unstable w.r.t. small changes** of external parameters

- What is a thermodynamic phase?
 - Equilibrium state of matter (many body system)
 - Well defined symmetry
 - Thermodynamic potentials change analytically for small parameter changes (temperature, pressure, magnetic field)
- What is a phase transition?
 - Point in parameter space where the equilibrium properties of a system change *qualitatively*.
 - The system is **unstable w.r.t. small changes** of external parameters

Phase diagram of water

• Many, many phase diagrams in nature....

structural phases

electronic phases

electronic

combined electronic and structural

Fernandes et al., Nature Phys. 2014

hiloe

What is an order parameter? ٠

- observable ϕ which distiguishes between phases
 - $\langle \phi \rangle = 0$ in the disordered phase (high temperature phase)
 - in the ordered phase ≠ 0

			iiquiu	00110
System	Phase transition	Order parameter	000 00 000 0000 00 00 0000 000	
H_2O , ⁴ He, Fe	liquid-solid fourier	component of charge density ρ_G		
Xe, Ne, N ₂ , H ₂ O	liquid–gas	density difference		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fe, Ni	ferromagnet-paramagnet	magnetization	8	
$RbMnF_2$, La_2CuO_4	antiferromagnet-paramagnet	staggered magnetization		
⁴ He, ³ He	superfluid-normal liquid	superfluid density		
Al, Pb, YBa ₂ Cu ₃ O _{6.97}	superconductor-metal	superfluid density	• • • •	
Li, Rb, H	Bose–Einstein condensation	condensate		

Bose-Einstein condensation

paramagnet -- ferromagnet

liquid

liquid

gas

Phase Transitions in Fluids

• What is an order parameter?

- observable $\phi\,$ which distiguishes between phases
 - $\langle \phi \rangle = 0$ in the disordered phase
 - \neq 0 in the ordered phase

System	Phase transition	Order parameter	
H ₂ O, ⁴ He, Fe	liquid-solid fourier	component of charge density p	
Xe, Ne, N ₂ , H ₂ O	liquid-gas	density difference	
Fe, Ni	ferromagnet-paramagnet	magnetization	
RbMnF ₂ , La ₂ CuO ₄	antiferromagnet-paramagnet	staggered magnetization	
⁴ He, ³ He	superfluid-normal liquid	superfluid density	
Al, Pb, YBa ₂ Cu ₃ O _{6.97}	superconductor-metal	superfluid density	
Li, Rb, H	Bose-Einstein condensation	condensate	

Phase Transitions in Fluids

 First order transition order parameter changes discontinuously

(Ehrenfest definition: first derivative of Gibbs free enthalpy G is discontinuous)

- Continuous transition
 order parameter varies continuously
- Critical point
 transition point of a continuous transition

for water @ 647 K and 22.064 MPa

→ liquid to gas phase transition can be of first order or continuous!

1200

1000

Density, kg m²

400

200

Ó

Microscopic Model

• Van- der-Waals-model:

Attractive particle – particle interaction fully rotational invariant V = V(r) + Finite particle volume

 \rightarrow van-der-Waals equation

$$(V - bn)\left(P + a\left(\frac{n}{V}\right)^2\right) = nRT$$

 Maxwell construction → isotherms and phase coexistence

Spontaneous Symmetry Breaking and Phase Transitions

Spontaneous symmetry breaking always leads to a phase transition

→no critical end point since symmetry cannot change continuously! Example: solid – liquid phase transition (path A)

Phase transitions can occur without spontaneous symmetry breaking

Outline

Phase transitions in fluids

- Phase diagram, order parameter and symmetry breaking
- Microscopic van-der-Waals theory \rightarrow universality
- Magnetic phase transitions in condensed matter
 - Paramagnet
 - Interacting magnetic dipole moments, "spins"
 - Weiss model for ferromagnetism \rightarrow universality
 - Landau theory

Consequences of symmetry breaking

- Critical phenomena and universality
- Excitations, Nambu-Goldstone-, Higgs-modes

More complex ordering phenomena

- Multiferroics, competing order
- [Quantum phase transitions]

[1]

• Periodic lattice of localized non-interacting magnetic moments

$$\vec{\mu} = \mathsf{g}_L \, \mathsf{\mu}_{\mathsf{B}} \, \vec{J}$$

in external field $\widehat{H} = \mathbf{g}_L \, \mathbf{\mu}_{\mathbf{B}} \quad \sum_i \overrightarrow{B} \overrightarrow{J_i}$ Brillouin function ٠ E $M/M_{\rm s}$ $m_j = \frac{1}{2}$ $g\mu_{
m B}B$ -2 -1 -3 $\mathbf{2}$ $m_i = -\frac{1}{2}$ BMagnetic susceptibility : ٠ (a) (b) . (c) Curie-law for small B $(g_J \mu_B JB / k_B T \ll 1)$ $\chi = \frac{M}{H} \approx \frac{\mu_0 M}{B} = \frac{n \mu_0 \mu_{\rm eff}^2}{3k_{\rm B}T}$ $1/\chi$ χ_T TTT $\mu_{\rm eff} = g_J \mu_{\rm B} \sqrt{J(J+1)}$

[1]

• Interacting magnetic moments:

$$\hat{\mathcal{H}} = -\sum_{ij} \mathsf{J}_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + g \mu_{\mathrm{B}} \sum_j \mathbf{S}_j \cdot \mathbf{B},$$

- Origin of exchange: spin-dependent Coulomb interaction
 - e.g. superexchange

$$\hat{\mathcal{H}} = -\sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + g\mu_{\mathrm{B}} \sum_j \mathbf{S}_j \cdot \mathbf{B},$$
Weiss (1907):

Define an effective magnetic field at site i caused by neighbors j

$$\mathbf{B}_{\mathrm{mf}} = -\frac{2}{g\mu_{\mathrm{B}}} \sum_{j} \mathbf{J}_{ij} \mathbf{S}_{j}$$

"molecular field"

 \rightarrow single particle problem

$$\hat{\mathcal{H}} = g\mu_{\rm B}\sum_{i} \mathbf{S}_{i} \cdot (\mathbf{B} + \mathbf{B}_{\rm mf})$$

Ansatz: $B_{mf} \sim Magnetization M$ $B_{mf} = \lambda M$ with $\lambda = \frac{2zJ}{ng^2\mu_B^2}$

 \rightarrow Two linear independent equations

$$\frac{M}{M_s} = B_J(y)$$

$$y = \frac{g_J \mu_B J (B + \lambda M)}{k_B T}$$

 $B_J = Brillouin function$

Magnetization of a paramagnet

in total magnetic field B + λ M

Weiss-Model

- *M*=0 always possible *M* ≠ 0 only if *T* < *T*_C $T_{C} = \frac{2zJJ(J+1)}{3k_{B}}$
- $T_{\rm C}$ ~ exchange energy J, number of neighbors size of moments

Typical: $J = \frac{1}{2}$ and $T_{\rm C} \sim 10^3$ K $B_{\rm mf} = k_{\rm B}T_{\rm C}/\mu_{\rm B} \sim 1500$ T. Huge!

Weiss-Model

M=0 always possible *M* ≠ 0 only if *T* < *T*_C $T_{C} = \frac{2zJJ(J+1)}{3k_{B}}$

- $T_{\rm C}$ ~ exchange energy J, number of neighbors size of moments
- Universal T dependence
 of order parameter
- depends only on total angular momentum multiplicity J

Hamiltonian has full rotational symmetry in space (scalar product is invariant)

$$\hat{\mathcal{H}} = -\sum_{ij} \mathsf{J}_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

• Ferromagnetic state has a reduced symmetry (invariant only under rotation around M)

$$\boldsymbol{M} = \frac{\sum \mu_i}{V}$$

Landau Theory of Ferromagnetism

 $F(M) = F_0 + a(T)M^2 + bM^4$ $a(T) = a_0(T - T_{\rm C})$

 $\partial F/\partial M = 0.$

$$M = 0$$
 or $M = \pm \left[\frac{a_0(T_{\rm C} - T)}{2b}\right]^{1/2}$

crf Weiss theory:

 $\propto (T_{\rm C}-T)^{1/2}$

[1]

M

In magnetic field: Magnetization parallel to field is always > 0 \rightarrow No phase transition !

Explicit symmetry breaking due to Zeeman term

$$\hat{\mathcal{H}} = -\sum_{ij} \mathsf{J}_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + g\mu_{\mathrm{B}} \sum_j \mathbf{S}_j \cdot \mathbf{B},$$

$$F(M) = F_0 + a(T)M^2 + bM^4 \quad \mathbf{MB}$$

M < 0 metastable solution exists for small B only \rightarrow First order transition below T_c as a function of external field

[Web]

Solution in magnetic field: Magnetization parallel to field always > 0 \rightarrow No phase transition !

Explicit symmetry breaking due to Zeeman term

$$\hat{\mathcal{H}} = -\sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + g \mu_B \sum_j \mathbf{S}_j \cdot \mathbf{B},$$

$$M$$

$$F(M) = F_0 + a(T)M^2 + bM^4 \quad MB$$

$$M < 0 \text{ metastable solution exists for small B only}$$

$$\rightarrow \text{ First order transition below } T_C \text{ as a function of external field} \qquad B \qquad [Web]$$

Comparison of fluid and magnet phase diagrams

 $dU = T dS + \sum_{i=1}^{m} F_i dq_i$

for fluid $\{F,q\} \rightarrow \{-PV\}$

Sometimes density ρ = N m / V used

Gibbs free energy

G = U - TS + p V

G = U - TS - MB

Outline

Phase transitions in fluids

- Phase diagram, order parameter and symmetry breaking
- Microscopic van-der-Waals theory \rightarrow universality

Magnetic phase transitions in condensed matter

- Paramagnet
- Interacting magnetic dipole moments, "spins"
- Weiss model for ferromagnetism \rightarrow universality
- Landau theory

Consequences of symmetry breaking

- Critical phenomena and universality
- Excitations, Nambu-Goldstone-, Higgs-modes

More complex ordering phenomena

- Multiferroics, competing order
- [Quantum phase transitions]

Critical phenomena and universality

Result of renormalisation group theory (Wilson) and of numerical calculations:

For continuous phase transitions the behavior close to the critical point (T_c) (i.e. the critical exponents $\alpha,\beta,\gamma,\delta$) depends only on a few parameters:

- Dimensionality of the order parameter Ordnungsparameters d
- Dimensionality of the interaction D
- Is the interaction long-range (power law decay r⁻ⁿ, i.e. no length scale) or short range (exponential decay exp (-r/r₀), i.e. length scale r₀) ?

Response functions

heat capacity $C_V \sim |T - T_c|^{-\alpha}$ magnetic susceptibility isothermal compressibility $\kappa_T \sim (T - T_c)^{-\gamma}$ $\chi \propto (T - T_c)^{-\gamma}$ Order parameter $\Delta \rho \sim (T - T_c)^{\beta}$ $M \propto (T_C - T)^{\beta}$ $\frac{p}{kT_c} \sim \text{const.} + \text{const.} (\rho - \rho_c)^{\delta}$ $M \propto H^{1/\delta}$.

Critical phenomena and universality

x=0.4

[2]

500

Ising Ising Heisenberg value vdW (mean field) experimental value exponent 0.10 α 1874 0.326 0.367 0.33ß 0.51.351.2378(6) 1.388(3)3 4.215 4.78 4.78 3 D1 1 dimensionality of the interaction dimensionality of the order parameter 2 d 3 3

Widom scaling relation $\delta = 1 + \gamma/\beta$

Excitations in the symmetry broken state of a continuous symmetry

Excitations = time dependent fluctuations of the order parameter

massless Nambu-Goldstone-Bosons

Variation of the absolute value of the order parameter "amplitude mode" "Higgs mode" Continuous rotation of the order parameter connecting different equivalent ground states with the same absolute value "phase mode"

Nambu-Goldstone excitation: k=0 magnon in the Heisenberg model

EuS: Ferromagnet (T_c = 16,5 K) with localized magnetic moments

face centered cubic Eu²⁺ (4f⁷): J=S=7/2 ions

Isotropic Heisenberg interaction of nearest neighbor spins:

$$H = -\sum_{n,m} J_{nm} S_n S_m$$

29

Magnons and spin correlations

30

Magnons and spin correlations

Ginzburg-Landau

Energy increase through spatial fluctuations of the order parameter

For a Ferromagnet one direction of M is spontaneously choosen → Spatial fluctuations are e.g. rotations of the local order parameter

→ Energy increase
$$\Delta E \sim (\nabla M)^2$$

This holds in general for order parameters and is described by the Ginzburg-Landau-Theory (crf. Superconductivity, Brout-Engert-Higgs): For charged particles (here Cooper pairs with charge 2e) this leads to the canonical momentum term (principle of minimal coupling)

$$f = \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \frac{1}{2m} |(-i\hbar\nabla + 2eA)\psi|^2 + \frac{1}{2\mu_o} (B - B_E)^2$$

Phenomenon	High T Phase	Low T Phase	Order parameter	Excitations	Rigidity phenomenon	Defects
crystal	liquid	solid	ρG	phonons	rigidity	dislocations, grain boundaries
ferromagnet	paramagnet	ferromagnet	М	magnons	permanent magnetism	domain walls
antiferromagnet	paramaghet	antiferromagnet	M (on sublattice)	magnons	(rather subtle)	domain walls
nematic (liquid crystal)	liquid	oriented liquid	$S = \langle \frac{1}{2} (3\cos^2\theta - 1) \rangle$	director fluctuations	various	disclinations, point defects
ferroelectric	non-polar crystal	polar crystal	Ρ	soft modes	ferroelectric hysteresis	domain walls
superconductor	normal metal	superconductor	$ \psi e^{i\phi}$	-	superconductivity	flux lines

Outline

Phase transitions in fluids

- Phase diagram, order parameter and symmetry breaking
- Microscopic van-der-Waals theory \rightarrow universality

Magnetic phase transitions in condensed matter

- Paramagnet
- Interacting magnetic dipole moments, "spins"
- Weiss model for ferromagnetism \rightarrow universality
- Landau theory

Consequences of symmetry breaking

- Critical phenomena and universality
- Excitations, Nambu-Goldstone-, Higgs-modes
- More complex ordering phenomena
 - Multiferroics, competing order
 - [Quantum phase transitions]

Cp (J/mole K)

-0.2

Multiferroics

Multiferroics

exchange striction magnetic frustration secondary order parameter Figure 1: The sinusoidal spin density wave might give rise to local polarizations but the average polarization is always zero (a). For the helical spin density wave the average polarization is nonzero and perpendicular to the spin rotation axis and the wave vector (b).

M Mostovoy, PRL 96. 067601 (2006), Nagaosa PRL 2006

Conventional Superconductivity

H. Kamerling-Onnes

field expulsion (1933) Meissner-Ochsenfeld effect

W. Meissner

Type I superconductor

Superconductivity is a thermodynamic phase

B = 0 inside for $B < B_c$ (Meißner phase)

Thermodynamics: specific heat

30

Vanadium

Electronic specific heat around superconducting transition

C/T25 (mJ/ mole K²) Superconduc areas jump at T_r match Normal C/T exponential in simple superconductors 5 $T_{c} = 5.4 \text{ K}$ T_c 15 30 $T^{2}(K^{2})$

- exponential low T behavior in conventional sc (BCS) power law low T behavior in unconventional sc
- matching areas → entropy conserved at T_c consistent with second order phase transition

Thermodynamics: entropy

Entropy S versus temperature

- Superconducting state is the more ordered state
- Description using the concept of an order parameter useful → Ginzburg-Landau theory

Coexistence of Superconductivity and Magnetic Order

E. Wiesenmayer et al., Phys. Rev. Lett. 107, 237001 (20
T. Goltz et al, Phys. Rev. B 89, 144511 (2014)
Ph. Materne et al., Phys. Rev. B 92, 134511 (2015)

D.K. Pratt et al., PRL '09

Temperature (K)

Electronic Instabilities

Competition for free electrons on the Fermi surface

SDW magnetism

Resonant single electron scattering on the Fermi surface with nesting vector Q

Superconductivity

Resonant electron pair scattering on the Fermi surface with nesting vector Q

Susceptibilites depend differently on details of the Fermi surfaces (size, shape,...)

Landau-Theory for coupled order parameters

$$\begin{split} F[\psi,\vec{M}] &= \int \mathrm{d}^3 r \left\{ \frac{\alpha}{2} |\psi(\vec{r})|^2 + \frac{\beta}{4} |\psi(\vec{r})|^4 + \frac{\gamma}{2} |\vec{\nabla}\psi(\vec{r})|^2 + \frac{d}{2} |\psi(\vec{r})|^2 |\vec{M}(\vec{r})|^2 \\ &+ \frac{a}{2} |\vec{M}(\vec{r})|^2 + \frac{b}{4} |\vec{M}(\vec{r})|^4 + \frac{g}{2} |\vec{\nabla}\vec{M}(\vec{r})|^2 \right\} \end{split}$$

Magnetism and superconductivity compete for the same electrons _ at the Fermi surface \rightarrow d positive

Conditions for non-zero order parameters

$$\begin{aligned} a &= a_0 [T - T_{N0}] \quad , \ a_0 > 0 \qquad \qquad |\psi|^2 = -\frac{\alpha b - ad}{b\beta - d^2} \qquad , \ \alpha b < ad \\ \alpha &= \alpha_0 [T - T_{c0}] \quad , \ \alpha_0 > 0 \qquad \qquad \qquad \vec{M}^2 = -\frac{a\beta - \alpha d}{b\beta - d^2} \qquad , \ a\beta < \alpha d \end{aligned}$$

→Linear suppression of the magnetic order parameter as a function of the ratio of the critical temperatures T_C/T_N

$$m_{\rm red} = \frac{\vec{M}_{\rm co}^2}{\vec{M}_0^2} (T=0) = 1 - \underbrace{\frac{d}{a_0} \frac{\alpha_0 b - a_0 d}{b\beta - d^2}}_{\Delta m(d)} \frac{T_{\rm c}}{T_{\rm N}}$$

Universal suppression of magnetic order parameter

Ph. Materne et al., Phys. Rev. B (2015)

Quantum Phase transitions

- What happens, when for a continuous phase transition T_C is suppressed to zero temperature via some external parameter p ?
 Critical temperature becomes quantum critical point (QCP)
- What destroys the ordered state at T→0 as a function of p? Enhanced quantum critical fluctuations, e.g. antiferromagnetic spin fluctuations
- Often new order emerges driven by these quantum fluctuations, e.g. superconductivity

Summary

• Phase transitions in fluids

- Phase diagram, order parameter and symmetry breaking
- Microscopic van-der-Waals theory \rightarrow universality

Magnetic phase transitions in condensed matter

- Paramagnet
- Interacting magnetic dipole moments, "spins"
- Weiss model for ferromagnetism \rightarrow universality
- Landau theory

Consequences of symmetry breaking

- Critical phenomena and universality
- Excitations, Nambu-Goldstone-, Higgs-modes
- More complex ordering phenomena
 - Multiferroics, competing order
 - [Quantum phase transitions]

Cp (J/mole K)

-0.2

Ginzburg-Landau

Energy increase through spatial fluctuations of the order parameter

For a Ferromagnet one direction of M is spontaneously choosen → Spatial fluctuations are e.g. rotations of the local order parameter

→ Energy increase
$$\Delta E \sim (\nabla M)^2$$

This holds in general for order parameters and is described by the Ginzburg-Landau-Theory (crf. Superconductivity, Brout-Engert-Higgs): For charged particles (here Cooper pairs with charge 2e) this leads to the canonical momentum term (principle of minimal coupling)

$$f = \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \frac{1}{2m} |(-i\hbar\nabla + 2eA)\psi|^2 + \frac{1}{2\mu_o} (B - B_E)^2$$