

Symmetries and Phase Transitions – from Crystals and Superconductors to the Higgs particle and the Cosmos

International Summer School

Application and Examples of Phase Transitions in Chemistry

Prof. Dr. Holger Kohlmann

Inorganic Chemistry – Functional Materials University Leipzig, Germany holger.kohlmann@uni-leipzig.de

- 1 From point groups to space groups a brief introduction to crystallography
- 2 Crystallographic group-subgroup relationships
- 3 Examples of phase transitions in chemistry
- 4 Do it yourself apply crystallographic group theory to a phase transition Appendix

Literature

- H. Bärnighausen, Group-Subgroup Relations Between Space Groups: A Useful Tool in Crystal Chemistry, *MATCH* **1980**, *9*, 139-175
- U. Müller, Symmetriebeziehungen zwischen verwandten Kristallstrukturen, Teubner Verlag
- U. Müller, Symmetry Relationships between Crystal Structures, Oxford University Press
- International Tables for Crystallography, Vol. A, Kluwer Acedemic Publishers
- International Tables for Crystallography, Vol. A1, Kluwer Acedemic Publishers

Classical definition of a crystal:

A crystal is a solid with a three-dimensionally periodic arrangement of atoms.

→ description of periodicity with three basis vectors defining a unit cell (right-handed)

1 From point groups to space groups

Application and Examples of Phase Transitions in Chemistry

The seven crystal systems

1 From point groups to space groups

Application and Examples of Phase Transitions in Chemistry

The fourteen Bravais lattices (translational lattices)

Symmetry = Invariance to possible tranformations

Symmetry operations	Symmetry elements
Translation	Translational lattices (14)
Unity: 1	
Inversion: 1	Inversion center or inversion point
Rotation: 2, 3, 4, 5, 6, 7,	Rotational axes
reflection: <i>m</i>	mirror plane
rotoinversion	rotoinversion axes
glide reflection	glide plane

Remark: $\overline{1}$ reads "one bar", $\overline{3}$ "three bar" ...

Combination of symmetry operations: symmetry rules

Symmetry rule 1:

A even-folded rotational axis (such as 2, 4, 6) perpendicular to a mirror plane (e. g. 2/m, 4/m, 6/m) creates a center of symmetry in the intercept.

Symmetry rule 2:

Two perpendicular mirror planes create a twofold axis in the intersetion line.

32 crystal classes: 11 with + **21 without center of symmetry**

triclinic:	1	1					
monoclinic:	2	m	2/m				
orthorhombic:	222	mm2	mmm				
			(2/m 2/m	n 2/m)			
tetragonal	4	4	4/m	422	4 <i>mm</i>	42 <i>m</i>	4/mmm
							(4/m 2/m 2/m)
trigonal	3	3	32	3 <i>m</i>	<u>3</u> m		
					(3 2/ <i>m</i>)		
hexagonal	6	6	6/ <i>m</i>	622	6 <i>mm</i>	<u>6</u> m2	6 <i>/mmm</i>
							(6/ <i>m</i> 2/ <i>m</i> 2/ <i>m</i>)
cubic	23	$m\overline{3}$	432	43 <i>m</i>	$m\overline{3}m$		
		(2/m ³)			(4/m 3 2/	/m)	

Coupling symmetry operations with translation – glide planes

Example: Coupling of *m* perpendicular to **c** and translations $+(\frac{1}{2}, 0, 0)$ yields glide plane *a*

Glide plane *d*:

- like *n* but translation halved, i. e. ¼ of the face diagonal
- only in combination with centering (why?)

Glide plane *e*:

• combination of two glide planes, e.g. a and b

1 From point groups to space groups

Application and Examples of Phase Transitions in Chemistry

Coupling symmetry operations with translation – screw axes

Example: coupling of 6 und translation $+(0, 0, \frac{1}{2})$ yileds screw axis 6_3

Space group types (space groups)

The combination of the known symmetry operations with the known translational lattices yields **230 space group types**. They enable a compact representation and complete description of the symmetry of crystals (classical definition).

Crystal system	point group	viewing direction		ction	space group type	
triclinic	1				<i>P</i> 1	
	1				PĪ	
monoclinic	2				P2, P2 ₁ , C2	
	т	[010]			Pm, Pc, Cm, Cc	
	2/m				P2/m, P2 ₁ /m, C2/m, P2/c, P2 ₁ /c, C2/c	
orthorhombic	222		[010]	[001]	<i>P</i> 222, <i>P</i> 222 ₁ , <i>P</i> 2 ₁ 2 ₁ 2, <i>P</i> 2 ₁ 2 ₁ 2 ₁	
	mm2	[100]			C222 ₁ , C222, F222, I222, I2 ₁ 2 ₁ 2 ₁ , Pmm2, Pmc2 ₁ , Pcc2, Pma2 ₁ , Pca2 ₁ , Pnc2 ₁ ; Pmn2 ₁ , Pba2, Pna2 ₁ , Pnn2, Cmm2, Cmc2 ₁ ; Ccc2, Amm2, Abma, Ama2, Aba2, Fmm2, Fdd2, Imm2, Iba2, Ima2	
	mmm				Pmmm, Pnnm, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma, Cmcm, Cmca, Cmmm, Cccm, Cmma, Ccca, Fmmm, Fddd, Immm, Ibam, Ibca, Imma	

Crystal system	point group	viewi	ing dire	ction	space group type
tetragonal	4	[001]	[010]	[110]	P4, P4 ₁ , P4 ₂ , P4 ₃ , I4, I4 ₁
	4				P4, 14
	4/ <i>m</i>				P4/m, P4 ₂ /m, P4/n, P4 ₂ /n, I4/m, I4 ₁ /a
	422				P422, P42 ₁ 2, P4 ₁ 22, P4 ₁ 2 ₁ 2, P4 ₂ 22, P4 ₂ 2 ₁ 2, P4 ₃ 22, P4 ₃ 212, I422, I4 ₁ 22
	4 <i>mm</i>				P4mm, P4bm, P4 $_2$ cm, P4 $_2$ nm, P4cc, P4nc, P4 $_2$ mc, P4 $_2$ bc, I4mm, I4cm, I4 $_1$ md, I4 $_1$ cd
	4m				P42m, P42c, P42 ₁ m, P42 ₁ c, P4m2, P4c2, P4b2, P4n2, I4m2, I4c2, I42m, I42d
	4/mmm				P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc, P4/nmm, P4/ncc, P4 $_2$ /mmc, P4 $_2$ /mcm, P4 $_2$ /nbc, P4 $_2$ /nnm, P4 $_2$ /mbc, P4 $_2$ /mnm, P4 $_2$ /nmc, P4 $_2$ /ncm, I4/mmm, I4/mcm, I4 $_1$ /amd, I4 $_1$ /acd

Crystal system	point group	viewi	ing dire	ction	space group type
trigonal	3				P3, P3 ₁ , P3 ₂ , R3
	3				P3, R3
	32	[001]	[100]	[210]	<i>P</i> 312, <i>P</i> 321, <i>P</i> 3 ₁ 12, <i>P</i> 3 ₁ 21, <i>P</i> 3 ₂ 12, <i>P</i> 3 ₂ 21, <i>R</i> 32
	3 <i>m</i>				P3m1, P31m, P3c1, P31c, R3m, R3c
	3m				P31m, P31c, P3m1, P3c1, R3m, R3c
hexagonal	nal 6			P6, P6 ₁ , P6 ₅ , P6 ₃ , P6 ₂ , P6 ₄	
	6				Pē
	6/ <i>m</i>				P6/m, P6 ₃ /m
	622	[001]	[100]	[210]	P622, P6 ₁ 22, P6 ₅ 22, P6 ₂ 22, P6 ₄ 22, P6 ₃ 22
	6 <i>mm</i>				P6mm, P6cc, P6 ₃ cm, P6 ₃ mc
	6 <i>m</i>				Pēm2, Pēc2, Pē2m, Pē2c
	6/ <i>mmm</i>				<i>P6/mmm</i> , <i>P6/mcc</i> , <i>P6₃/mcm</i> , <i>P6₃/mmc</i>

Crystal system	point group	viewing direction		ction	space group type
cubic	23	[100] [111] [110]		[110]	P23, F23, I23, P2 ₁ 3, I2 ₁ 3
	m3				$Pm\overline{3}, Pn\overline{3}, Fm\overline{3}, Fd\overline{3}, Im\overline{3}, Pa\overline{3}, Ia\overline{3}$
	432				P432, P4 ₂ 32, F432, F4 ₁ 32, I432, P4 ₃ 32, P4 ₁ 32, I4 ₁ 32
	43 <i>m</i>				P43m, F43m, 143m, P43n, F43c, 143d
	m3m				Pm͡3m, Pn͡3n, Pm͡3n, Pn͡3m, Fm͡3m, Fm͡3c, Fd͡3m, Fd͡3c, Im͡3m, Ia͡3d

The International Tables for Crystallography (IT): A short history

- 1935 Internationale Tabellen zur Bestimmung von Kristallstrukturen
- 1952 International Tables for X-ray Crystallogaphy
- 1983 International Tables for Crystallography
- 2010 International Tables for Crystallography, Vols. A, A1, B, C, D, E, F, G

Conventions for transformations in crystallography

Basis vectors before transformation	a, b, c
Coordinates before transformation	x, y, z
Basis vectors after transformation	a', b', c'
Coordinates after transformation	x', y', z'

(a', b', c') =

Exercises: Work out matrices for the following crystallographic transformations. 1) Transformation of a cubic lattice with lattice parameter a to a cubic lattice with lattice parameter a' = 2a (doubling of the lattice parameter)

2) Transformation of a cubic F-centered lattice to a tetragonal I-centered lattice

3) Transformation of a crystal structure with a = 323 pm, b = 513 pm, c = 1099 pm, $\alpha = 90^{\circ}$, $\beta = 97^{\circ}$, $\gamma = 90^{\circ}$ and one atom in 0.22 0.08 0.00 to a' = 323 pm, b' = 1026 pm, c' = 1099 pm, $\alpha' = 90^{\circ}$, $\beta' = 97^{\circ}$, $\gamma' = 90^{\circ}$ and one atom in 0.22 0.04 0.50.

Representation of symmetry relationships between crystal structures (*Bärnighausen* tree)

- crystallographic proof of structural relationships
- important for the classification of phase transitions (reconstructive or displacive)
- from a high symmetry **aristotype** to the low symmetry **hettotype**
- symmetry reduction in the smalles possible steps \rightarrow maximal subgroups
- often non-standard representations of space groups (in order to minimize transformations and zero-point shifts)
- full space group symbols useful (e. g. $P 6_3/m 2/c 2/m$ instead of $P6_3/mcm$)

	Herma highe	ann-Mauguin syn r symmetric spac	abol of the ce group $\mathcal{G} \rightarrow P6/m 2/m 2/m$	$\begin{array}{c c} A1:1a & B:2d \\ \hline 6/mmm & \overline{6}m2 \end{array}$					
	Symbol designating the higher \rightarrow symmetric crystal structure, e.g. the chemical formula or mineral nameAlB20 $\frac{1}{3}$ 0 $\frac{2}{3}$ 0 $\frac{1}{2}$ See note 5								
	Type and index of the subgroup $\mathcal{H} \rightarrow k^2$ Basis transformation* $\rightarrow a, b, 2c$ Origin shift* $\rightarrow 0, 0, -\frac{1}{2}$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow								
	Hermann-Mauguin symbol of the maximal subgroup $\mathcal{H} \rightarrow P6_3/m 2/m 2/c$ $\begin{bmatrix} Ca:2b & In:4f \\ \overline{6}m2 & 3m \end{bmatrix}$								
	Symbol designating the lower \rightarrow CaIn ₂ 0 $\frac{1}{3}$ see note 5 symmetric crystal structure 0 $\frac{2}{3}$								
	* mentioned only if there is a change								
	Explanat	ory notes							
	1. Possibl	le types of maxin	hal subgroups ${\mathcal H}$ of a given s	space group G :					
	symbol	term	meaning						
	t	translationen- gleiche	<i>G</i> and \mathcal{H} have the same translational lattice; the crystal class of \mathcal{H} is of lower symmetry than that of \mathcal{G}						
a/	b k	klassengleiche	G and H belong the same crystal class; H has lost transla- tional symmetry, its primitive cell is larger than that of G						
2	i	isomorphic	\mathcal{G} and \mathcal{H} belong to the sa group type; \mathcal{H} has lost tra- is larger than that of \mathcal{G}	me or the enantiomorphic space nslational symmetry, its unit cell					

Scheme of the general formulation of the smallest step of symmetry reduction connecting two related crystal structures

2 Crystallographic group-subgroup relationships

Application and Examples of Phase Transitions in Chemistry

SrGa₂ (AIB₂ type)

YbGa₂ (Caln₂ type)

U. Müller, Symmetry Relationships between Crystal Structures, Oxford University Press

- The index i of a subgroup is the number of cosets of H in G. The number of symmetry operations of H is 1/i of those of G.
- 3. Basis transformation: The three basis vectors of \mathcal{H} are expressed as linear combinations of the basis vectors **a**, **b**, **c** of \mathcal{G} .
- Origin shift: The coordinate triplet of the origin of H is given in the coordinate system of G.
- Additional information: Space permitting, the atomic positions are given in a box next to the space group symbol in the following way:

element symbol: Wyckoff label						
site symmetry						
x						
У						
Z						

The coordinates are given for one atom in the asymmetric unit. If a numeric value is fixed by symmetry, it is stated as 0 or as a fraction, *e.g.* 0, $\frac{1}{4}$, $\frac{1}{2}$. Free parameters are stated as decimal numbers, *e.g.* 0.0, 0.25, 0.53. If possible, align the site-symmetry symbol in one line with the space-group symbol.

CaCl₂ type From rutile type to P4₂/mnm Pnnm c∫a Са c а b

The relationship between rutile and CaCl₂ type: polymorphism in SnO₂

- SnO₂: rutile type (ambient) $P4_2/mnm$, a = 473.67 pm, c = 318.55 pm Sn in 2a m.mm 0 0 0 O in 4f m2.m 0.307 x 0
- SnO₂: CaCl₂ type (high pressure modification at 12.6 GPa) *Pnnm, a* = 465.33 pm, *b* = 463.13 pm, *c* = 315.50 pm Sn in 2*a* ..2/*m* 0 0 0 O in 4*g* ..*m* 0.330 0.282 0

Exercise 4: Work out a *Bärnighausen* tree for the polymorphism of SnO₂.

Application and Examples of Phase Transitions in Chemistry

Bärnighausen tree for the polymorphism of SnO₂

Application and **Examples of Phase** Transitions in Chemistry

Polymorphism in VO₂

d(V-V) = 285.1 pm

tetragonal rutile type structure at 360 K

phase transition accompanied by \rightarrow metal – insulator transition

monoclinic structure at ambient (distorted rutile structure)

d(V-V) = 261.9 pm, 316.9 pm

→ Peierls distortion

С

Polymorphism in VO₂

VO ₂ :	rutile type (high temperature modification at 373 K)						
	P4 ₂ /nmr	n, a = 455	.46 pm <i>, c</i>	= 285.28 p	om		
	V in 2 <i>a</i>	m.mm	0	0	0		
	O in 4 <i>f</i>	<i>m</i> 2. <i>m</i>	0.3001	X	0		
VO ₂ :	VO ₂ type	e (<i>M</i> 1 type	e)				
	P2 ₁ /a, a	= 538.3 p	m <i>, b</i> = 453	8.8 pm <i>, c</i> =	² 575.2 pm, β = 122.7°		
	V in 4 <i>e</i>	1	0.026	0.021	0.239		
	01 in 4 <i>e</i>	1	0.299	0.297	0.401		
	O2 in 4 <i>e</i>	1	0.291	0.288	0.894		
$V_{0.8}Cr_{0.2}O_{2}$:	$V_{0.8}Cr_{0.2}$	D_2 type (N	/2 type)				
0.0 0.2 2	A112/m	a = 452.6	5 pm, b = 9	906.6 pm,	<i>c</i> = 579.7 pm, γ = 91.9°		
	V in 4 <i>e</i>	1	0.026	0.021	0.239		
	01 in 4 <i>e</i>	1	0.299	0.297	0.401		
	02 in 4 <i>e</i>	1	0.291	0.288	0.894		

Application and Examples of Phase Transitions in Chemistry

Polymorphism in VO₂

U. Müller, Symmetriebeziehungen zwischen verwandten Kristallstrukturen, Teubner Verlag

Classification of phase transitions

According to **Ehrenfest** a phase transition is of n^{th} order if the n^{th} derivative of the free enthalpy *G* goes through a sudden change at the phase transition, e. g. volume or entropy for first order or heat capacity or compressibility for second order.

First order phase transitions exhibit **hysteresis** with a coexistence of both phases and are **discontinuous**. They produce **latent heat** and proceed through migration of an interface between both phases (nucleation and growth). In second order phase transitions there is no latent heat, no coexistence of both phases and no hysteresis. Structural changes are **continuous** and a crystallographic group-subgroup relationship is mandatory.

In **displacive** phase transitions (usually second order) minute position changes of atoms mark the transition, whereas in **reconstructive** phase transitions chemical bonds are broken and reformed (always first order).

For continuos phase transitions the phenomenological theory of **Landau and Lifshitz** applies:

- free enthalpy $G = G_0 + 1/2a_2\eta^2 + 1/4a_4\eta^4 + 1/6a_6\eta^6 \dots$
- order parameter changes continuously following an exponential law $\eta = A^*[(T_c T)/T_c]^\beta$

The use of crystallographic group theory and Bärnighausen trees for phase transitions

- classification of phase transitions (*n*th order, important for physical properties)
- understanding polymorphism (temperature, pressure)
- understanding piezo-, pyro- and ferroelectric phases
- understanding magnetic order phenomena (ferro-, ferri-, antiferro-)
- understanding structural changes during metal-seminconductor transitions
- understanding of order-disorder transitions (e.g. in intermetallic phases)
- understanding the occurrence of twins and antiphase domains

4 Do it yourself – apply crystallographic group theory to a phase transition

Exercise 5

Work out the matrix for the transformation of a cubic F-centered cell (black unit cell) to a primitive cell (yellow unit cell).

Exercise 6

Work out the matrix for the transformation of a crystal structure with a = 441 pm, b = 441 pm, c = 441 pm, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$ with one atom in 0, 0, 0 and one atom in $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ a = 624 pm, b = 624 pm, c = 882 pm, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$ and give the transformed coordinates x', y', z' for both atoms.

4 Do it yourself – apply crystallographic group theory to a phase transition

Application and Examples of Phase Transitions in Chemistry

Phase transitions and symmetry reduction: BaTiO₃ as technologically relevant example

4 Do it yourself – apply crystallographic group theory

to a phase transition

Exercise 7: Work out a *Bärnighausen* tree for the polymorphism of $BaTiO_3$.

(Analyze the result with respect to the formation of twins and antiphase domains.)

	Bibliographic data	Bibliographic data			
Publication		創 Publication			
Title	Structural Parameters and Electron Difference Density in BaTiOn	Fitle Structural Parameters and Electron Difference Density in BaTiO ₂			
Deference	Acta Crystallogr B (1992) 48, 754-759	Reference	Acta Crystallogr. B (1992) 48, 764-769		
Language	English	Language			
Authors	Name Organization/City	Authors	Name Organization/City		
	Buttner R.H. Western Australia University, Department of Physics; Nedlands, A Maslen E.N. Western Australia University, Department of Physics; Nedlands, A Crystal structure		Buttner R.H. Western Australia University, Department of Physics; Nedlands, Australia Maslen E.N. Western Australia University, Department of Physics; Nedlands, Australia		
0-0			Crystal structure		
Published crystallog Space group Cell parameters	raphic data <i>P4mm</i> (99) <i>a</i> = 0.39998(8), <i>b</i> = 0.39998(8), <i>c</i> = 0.40180(8) nm, <i>a</i> = 90, <i>b</i> = 90, <i>y</i> = 90°	🖏 Published crystallographic d	ata		
	$V = 0.06428 \text{ nm}^3$, $a/b = 1.000$, $b/c = 0.995$, $c/a = 1.005$	Space group	Pm-3m (221)		
Atom coordinates	V = 0.06428 nm ⁻ , a/b = 1.000 , b/c = 0.995 , c/a = 1.005 Site Elements Wyck. Sym. x y z SOF Ba Ba 1a 4mm 0 0.0 Ti Ti 1b 4mm 1/2 0.482(1) O1 O 1b 4mm 1/2 1/2 0.016(5) O2 O 2c 2mm. 1/2 0 0.515(3)		$a = 0.40058(8), b = 0.40058(8), c = 0.40058(8) \text{ nm}, a = 90, \beta = 90, \gamma = 90^{\circ}$ $V = 0.06428 \text{ nm}^{3}, a/b = 1.000, b/c = 1.000, c/a = 1.000$ Site Elements Wyck. Sym. x y z SOF Ba Ba 1a m-3m 0 0 0 Ti Ti 1b m-3m 1/2 1/2 1/2 O1 2 0 2 c 4/mm m 1/2 1/2 0		
	Bibliographic data		Bibliographic data		
館 Publication		館 Publication			
Title	Structures of the Ferroelectric Phases of Barium Titanate	Title	Rhomboedrisches BaTiO ₃ : Strukturuntersuchung bei 132 K und 196 K		
Reference	J. Phys. Chem. (1993) 97, 2368-2377	Reference	Z. Kristallogr. (1981) 155, 217-226		
Language	English	Language	German		
	thors Name Organization/City Kwei G.H. Los Alamos National Laboratory, ?; Los Alamos, U.S.A. New Mexico Lawson A.C. Los Alamos National Laboratory, ?; Los Alamos, U.S.A. New Mexico Billinge S.J.L. Los Alamos National Laboratory, ?; Los Alamos, U.S.A. New Mexico Cheong S.W. AT and T Bell Laboratories Inc., ?; Murray Hill, U.S.A. New Jersey		Name Organization/City Schildkamp W. Saarland University, Fachbereich Kristallographie; Saarbrücken, Germany Fischer K. Saarland University, Fachbereich Kristallographie; Saarbrücken, Germany		
	Crystal structure				
			Crystal structure		
Space group	aphic data Amm2 (38)	ee ee Published crystallographic da	ta		
Cell parameters	$a = 0.39828(3), b = 0.56745(5), c = 0.56916(3) \text{ nm}, a = 90, \beta = 90, \gamma = 90^{\circ}$	Space group	R3m r (160)		
Atom coordinates	V = 0.12863 nm ³ , a/b = 0.702, b/c = 0.997, c/a = 1.429 Site Elements Wyck. Sym. x y z SOF Ba Ba 2a mm2 0 0 0 00	Cell parameters	$a = 0.4004(3), b = 0.4004(3), c = 0.4004(3) \text{ nm}, a = 89.87, \beta = 89.87, \gamma = 89.87^{\circ}$ $V = 0.06419 \text{ nm}^3, a/b = 1.000, b/c = 1.000, c/a = 1.000$		

4 Do it yourself – apply crystallographic group theory

to a phase transition

Application and Examples of Phase Transitions in Chemistry

YBa₂Cu₃O_{7-δ}

- a threefold superstructure of the cubic perovskite type
- *T*_c = 90 K
- nobel prize in physics for high temperature superconductivity (Bednorz and Müller, 1987)

Exercise 8

Describe the crystal structure of $YBa_2Cu_3O_{7-\delta}$ as a defect variant of the cubic perovskite type using a *Bärnighausen* tree.

Capponi, J.J.; Chaillout, C.; Hewat, A.W.; Lejay, P.; Marezio, M.; Nguyen, N.; Raveau, B.; Soubeyroux, J.L.; Tholence, J.L.; Tournier, R., Europhysics Letters (1987) 3, p1301-p1307

	Cell Pa	arameter	s	3.8206(1) 3.885	1(1) 11.675	7(4) 90. 90. 90.					
Volume 173.31			Formula Units per Cell		1		Calc. Dens.	6.38			
	Space	Group		P m m m(47)		Pearson Symbol		oP1	3	Meas. Dens.	
	Crysta	al Syster	n	orthorhombic		Crystal Class		mm	m	Laue Class	mmm
	Wyck	off		tsrq2hea		Structure Type		YBa	a2Cu3O6+x(orh)		
	Seque	ence									
	Axis F	Ratios		a/b 0.9834		b/c 0.3328	b/c 0.3328		3.0560		
	Dama	-k									
	Reina	ĸ									
	EL	Lbl	OxS	State	WyckSym	ıb	х	Y	Z	В	
	Ва	1	+2.0	00	2t		0.5	0.5	0.1841(4)	0.59(10)	
	Y	1	+3.0	00	1h		0.5	0.5	0.5	0.58(10)	
	Cu	1	+2.3	33	1a		0	0	0	0.38(11)	
	Cu	2	+2.3	33	2q		0	0	0.3549(3)	0.51(7)	
	0	1	-2.0	0	2q		0	0	0.1581(4)	0.93(12)	
	0	2	-2.0	0	2s		0.5	0	0.3779(4)	0.11(9)	
	0	3	-2.0	0	2r		0	0.5	0.3777(5)	0.31(9)	
	0	4	-2.0	0	1e		0	0.5	0		

©Holger Kohlmann, Leipzig University

Bärnighausen tree for the polymorphism of CaCl₂

U. Müller, Symmetry **Relationships between** Crystal Structures, **Oxford University Press**

Figure 9: Group-subgroup relation between two modifications of calcium chloride and the mutual rotation of the coordination octahedra.

More examples in the expanded appendix of the online version free for download! pages 37-41 ©Holger Kohlmann, Leipzig University

The structure family of the cubic perovskite type

H. Bärnighausen, Group-Subgroup Relations Between Space Groups: A Useful Tool in Crystal Chemistry, *MATCH* **1980**, *9*, 139-175

The structure family of the AlB₂ type

R.-D. Hoffmann, R. Pöttgen, *Z. Kristallogr.* **2001**, *216*, 127-145

Types of maximal subgroups

translationengleich

- group G and subgroup H have got the same translational lattice
- the crystal class of H has got lower symmetry than that of G
- in International Tables for Crystallography: I
- possibility of twins(t2), triplets (t3), ...

klassengleich

- group G and subgroup H belong to the same crystal class
- formed by loss of translational symmetry (loss of centering or enlargement of primitive cell)
- in International Tables for Crystallography: IIa (loss of centering) or IIb (enlargement of primitive cell)
- possibility of anti-phase domains

isomorphic

- special case *klassengleich*, where G and H have got the same or an enantiomorphic space group type
- in International Tables for Crystallography: IIc