

Experimental Aspects

of the BEH-Mechanism

and Discovery of the Higgs Boson

Günter Quast

www.kit.edu

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

The "Anderson-Higgs" Mechanism

Semiconductor

Anderson Theory Phys. Rev. 112, 1900 (1958)

virtual mass of photons → shielding of magnetic field in superconductor

Nature, Jan. 2015

The Higgs mode in disordered superconductors close to a quantum phase transition

Daniel Sherman^{1,2†}, Uwe S. Pracht², Boris Gorshunov^{2,3,4}, Shachaf Poran¹, John Jesudasan⁵, Madhavi Chand⁵, Pratap Raychaudhuri⁵, Mason Swanson⁶, Nandini Trivedi⁶, Assa Auerbach⁷, Marc Scheffler², Aviad Frydman^{1*} and Martin Dressel²

→ first experimental evidence for

"Higgs" state in superconductors

Particle Physics

Brout-Englert-Higgs (BEH) Mechanism

mass of W and Z bosons

→ "shielding" - i. e. short range of weak interaction

Higgs Boson is an excitation of the field

Announcement of discovery of "A new particle" on July 4th, 2012, by LHC experiments **ATLAS** and **CMS**

more data and refined analyses later confirmed Higgs-like properties.

Is it the only one of its kind, is it **the** Standard Model Higgs Boson ?

Part 1

Introduction

The (minimal) Standard Model of Particle Physics

3 fundamental forces

(electromagnetic and weak force unified)

12 fundamental particles (fermions)

3 families with 2 leptons and quarks each

- masses of W and Z boson are non-zero and precisely measured responsible for the short interaction range of the weak force
- fermion masses cover a wide range:
 <~0.5 eV (e-neutrino) 173.3 GeV (top quark) explanation in SM needs
 BEH-Mechanism & postulated
 Higgs-Fermion Yukawa-Couplings
- within the SM, everything is fixed if the Higgs boson mass is known
- precision measurements are sensitive to Higgs Boson mass via loops:

Precision Tests of the Theory

Experimental Tasks

Establishing the **Higgs particle** and the BEH-Mechanism is a crucial corner stone for the Standard Model of the ew interaction

If a new particle is found,

check consistency with expectations from theory and other measurements :

- mass (a-priory unknown, but constrained by precision measurements)
- couplings to W and Z bosons defined by gauge symmetry
- couplings to Fermions (prop. to mass)
- spin and CP state (0+, like vacuum)
- does it couple to yet unknown particles ? ("invisible" contribution to total width).
- are there more than one of its kind ?
- Higgs self-coupling ?
- Higgs contribution to WW scattering ?

Part 2

Experimental Methods

Simulation and Analysis Chain

Cross section

cross section:

transition rate initial \rightarrow final state

Cross section measurement

the experimentalists' master formula:

The determination of *N*_{cand} and optinal **separation from backgrounds** is a classification problem and typically requires multivariate analysis techniques

initial state at the LHC: the Proton

in fact, the proton is complicated:

composed of

- valence quarks
- sea quarks
- gluons (carry 50% of momentum)

Precision study of proton composition in electron-proton scattering HERA at DESY in Hamburg

Calculation of Cross sections

Complicated process – use MC techniques to calculate cross sections, phenomenological modes to describe hadronization process (quarks \rightarrow jets)

Stefan Gieseke · DESY MC school 2012

Stefan Gieseke - DESY MC school 2012

matrix element of hard process

Stefan Gieseke · DESY MC school 2012

parton shower

Stefan Gieseke · DESY MC school 2012

parton shower

Stefan Gieseke - DESY MC school 2012

hadronization

phenomenological: Lund string model (Pythia) or cluster hadronisation (Herwid(++))

Stefan Gieseke · DESY MC school 2012

hadron decays

tedious relies on measurements

relies on models & measurements → needs "tunig"

Stefan Gieseke · DESY MC school 2012

Multi-parton interactions and underlying event

Summary: pp collision

International Summer School, Dresden 2016

Last step: Detector Simulation and Event reconstruction

- follow each (sufficiently stable) particle through the detector and simulate energy deposits
- convert energy deposits into electronic signals, add noise

⇒ simulated event

- convert electronic signals to "hits", reconstruct energy deposits
- apply pattern recognition to find particle tracks
- combine reconstructed objects to particle candidates

reconstructed event

reconstructed objects only approximately correspond to "true" properties

CMS: simulated Higgs \rightarrow 2e4 μ decay with hits and reconstructed objects

An observed $H \rightarrow 2e 2 \mu$ event in the ATLAS Detector

Example: Expected Distributions of Signal and Background

Hint: in the real experiment, only very small numbers are expected to be observed (see y-axis), and therefore statistical fluctuations will be large

– the question will be:

are they best described by the S+B or the B-only shape?

→ need for mulivariate methods in the selection process and sophisticated statistical treatment

International Summer School, Dresden 2016

Some words on **Statistics**

The problem: an excess over expectation of observed events can have two causes:

- 1. true signal on top of background
- 2. **upward fluctuation of background** due to statistics or insufficient understanding of background (systematic error)

To claim a signal, must exclude a background fluctuation with high probability !

Statistics (2): LHC teststatistic

for (Higgs) searches: use negative logarithm of **Likelihood Ratio** as teststatistic **Profile-Likelihood** w.r.t. signal strength μ (μ=0: no signal, μ=1: nominal signal) normalised to global maximum of likelihood

Determine <u>distribution of q_{μ} </u>, $f(q_{\mu} \mid \mu)$, for **background hypothesis** (μ =0) and for **signal hypothesis** (μ ≠0), via pseudo experiments or asymptotic formulae for large data sets.

Statistics (3): CLS Method

10

Number of toys

Observed value

10

then:

• determination of p-values:

$$p_{\mu} = \operatorname{Prob}(q_{\mu} > q_{\mu}^{\operatorname{obs}} | \mu \cdot s + b)$$

$$p_0 = \operatorname{Prob}(q_\mu > q_\mu^{\text{obs}} | b)$$

• calculation of a confidence level using "CL_s method"

 $CL_{s} = \frac{p_{\mu}}{p_{0}}$ CL_s quantifies agreement robust against downward fluctuations of background with signal hypothesis

• For $\mu = 1$, $CL_s = \alpha$ a Higgs boson is excluded with confidence level (1- α) convention: α =0.05, exclusion at 95% CL

• usually: specify value of µ which is excluded at 95% CL

Then: run pseudo experiments to determine expected limit,

i. e. the median of the limit distribution (dashed line), and the regions for 68% (**"1** σ ", green band) and 95% (**"2\sigma**", yellow band)

(see figure below)

 $f(q_{\mu=1}|\mu=0)$

____ f(q__lμ=1

15 Test Statistic q

Statistics (4): Exclusion plot

Repeat all of the above for different values of Higgs mass

⇒ graph of signal strength µ_{ax} excluded @ 95% CL

for

- data (black line)
- median and 68% / 95%
 regions of the expectation
 from pseudo experiments
 (dashed line and
 green resp. yellow band)

Higgs boson excluded for μ_{ex}< 1

(below red line, vertical grey bands)

Statistics (5): "significance" of a discovery

If a signal cannot be excluded, what then is the "significance" of the new discovery ?

concept of "local significance": assuming an observation of N events on top of expected background N_b \rightarrow number of signal events N_s = N - N_b compare N_s with statistical fluctuations of background, N_b:

significance is expressed in terms of the p-value w.r.t. the background-only hypothesis/

Usual in HEP: significance of a signal excess in "number of sigmas" ("z-value"), corresponding to the p-value of a Gaussian distribution

in the Gaussian limit (N_b > ~50)
$$S=rac{N_s}{\sqrt{N_b}}$$

"The observed signal is S times larger than the standard deviation of the expected background fluctuations" Part 3

Higgs Hunt @ LHC

The Large Hadron Collider (LHC) and the Experiments

LHC: two rings with 26.7 km circumference max. 2808 proton bunches, 1232 superconducting dipoles 40 MHZ collision rate, ~10¹¹ Protons / bunch 858 quadrupoles

~500 million pp collisions / s at 7, 8 & 13 TeV centre of mass energy

International Summer School, Dresden 2016

Günter Quast, Karlsruhe

Hight:

Hight:

Length: 22 m

Weight: 12500 t

Length: 40 m

Weight: 7000 t

25 m

15 m

2010: first year of LHC operation @ 7 TeV

International Summer School, Dresden 2016

Higgs Production @ LHC

(SM) Higgs Boson Phenomenology @ LHC fixed if $m_{\rm H}$ is known

(main) production channels @ LHC:

Higgs-Boson Decays

cross section × branching ratio

there is huge Background

Production rate of other processes is larger by many orders of magnitude

Higgs signal must be separable from background → **background changes importance of individual decay channels**

statistical significance also plays a role:

higher experimental resolution of a Higgs signal lead to higher significance \rightarrow disfavours signatures with jets and / or missing energy

Higgs candidate events 2010/11

expected: 117 – 543 GeV/c² observed: 127 – 600 GeV/c²

Günter Quast, Karlsruhe

200

300

400

Higgs boson mass (GeV/c²)

500 600

10100

LHC Data taking 2012

New records:

- centre-of-mass energy 8 TeV
- peak luminosity 0.77 · 10³⁴ / cm² /sec
- best week ∫L=1.35 fb⁻¹
- (75% design luminosity
 - @ half energy
 - & half # of bunches)

more events

 $H \rightarrow ZZ \rightarrow 4e, 4\mu, 2e2\mu$

- Background tt, Zbb, irreducible: ZZ
- favourable ratio (~1) of signal to background
- signal very small a low H mass

Higgs search in $\gamma\gamma$ channel – small H masses

QCD background

Seminar @ CERN on July 4th

Global Effort → Global Success

Results today only possible due to extraordinary performance of accelerators – experiments – Grid computing

Observation of a new particle consistent with a Higgs Boson (but which one...?)

broadcast via web to ICEHP 2012 and instiututes

 $H \rightarrow ZZ \rightarrow 4e, 4\mu, 2e2\mu$

Günter Quast, Karlsruhe

consistent signal excess in Atlas and CMS, compatible with background at a probability of only ~0.1%

Higgs Search in yy channel

γγ and ZZ channel combined – Background Compatibility

Both ATLAS and CMS observe consistent excess in $\gamma\gamma$ and ZZ ~5.0 σ larger than background fluctuations !

Discovery of a new "Higgs-like" particle at the LHC

Spin – CP (methods)

sufficiently high statistical precision and cleanliness of di-boson channels allows exploitation of kinematic variables for discriminating spin-parity hypotheses

Part 4

Present Status ATLAS and CMS combined results on SM Higgs measurements

summary: Higgs Hunt @ the LHC

LHC Run 1: pp-collisions at E_{CM} of 7 and 8 TeV

- Peak Luminosity: 7 x 10³³ cm⁻² s⁻¹
- Integrated Luminosity: ~5 fb ⁻¹ (2011@7 TeV) ~(5+15) fb ⁻¹ (2012@8 TeV)
- * time between bunches: 50 ns \Rightarrow 9–21 overlayed pp-interactions on average

LHC Run 2 started at E_{CM} 13 TeV

first results from Higgs analyses shown this summer

International Summer School, Dresden 2016

Günter Quast, Karlsruhe

Where are we now – 2016?

combination of results: ATLAS and CMS

Results based on integrated luminosities of ~5/fb @ 7 TeV (2011) and ~20/fb @ 8 TeV (2012) per experiment for the "big five" H \rightarrow ZZ, $\gamma\gamma$, WW, $\tau\tau$ and bb + some (rare) others

International Summer School, Dresden 2016

Couplings from Combination of ATALS & CMS data

 Combination of Measurements of Higgs-Boson Production by ATLAS and CMS in

in the decay channels $H \rightarrow ZZ \quad \gamma\gamma \quad WW \quad \tau\tau \quad and \quad bb \quad (and \mu\mu)$ *note:* $\gamma\gamma$ proceeds though W, t & b loops

- individual results corrected to common Higgs-boson mass of 125.09 GeV (and latest theory predictions, common treatment of background models etc. in some cases)
- gain factor ~√2 in precision *w.r.t.* the individual results, as measurements are dominated by independent errors

published in JHEP 08 (2016) 045

Signal parameterisations

In the narrow width approximation, which decouples production and decay, a measurement of σ -Br in the process $i \rightarrow H \rightarrow f$ is characterised by

International Summer School, Dresden 2016

Overall Signal Strength µ

only one fit parameter

assumption: $\mu_i = \mu_f := \mu$

$$\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07} \text{ (stat)} {}^{+0.04}_{-0.04} \text{ (expt)} {}^{+0.03}_{-0.03} \text{ (thbgd)} {}^{+0.07}_{-0.06} \text{ (thsig)}$$

most precise measurement, theoretical error as large as the statistical one !

International Summer School, Dresden 2016

Fremion- and Boson-mediated production modes

International Summer School, Dresden 2016

H Couplings to Fermions and Bosons

- 1. assume universal scaling factors for couplings to fermions and bosons: κ_F and κ_V
- 2. only SM physics in loops

Beyond SM ?

Total Higgs boson width sensitive to invisible (or undetected) H decays, but not known precisely enough experimentally.

Physics beyond SM in loops ?

Higgs Couplings (in SM)

Assumption: No other than SM particles couple to Higgs boson, $Br_{BSM} = 0$

remark: low value of κ_b reduces total width $\Gamma_H \Rightarrow all \kappa_i$ come out a bit low

International Summer School, Dresden 2016

LHC Run 2: first results

International Summer School, Dresden 2016

Conclusion

Discovery of a Higgs -like Boson @ LHC ...

- is the result of an incredible amount of work by theorists, engineers and experimentalists
- is a remarkable triumph of a theoretical idea
- helps coming closer to an understanding of "mass" in general
- marks the beginning of an **new era** in particle physics
- H(125) is (so far) the only one of its kind
- tests of relations between Higgs couplings to SM particles show no significant deviations
- precision measurements still needed
 LHC Run 2 offers good perspectives !
- searches for other Higgs-like particles continues

What is beyond the Standard Model ?

Literature

Topics of this lecture meanwhile well covered

in various lectures

- Master course on Higgs Physics, KIT
- CERN Summer Student lectures
- and many, many others

and (didactical) literature:

- The large Hadron Collider – Harvest of Run 1, Springer 2015

- The Higgs Boson discovery at the large Hadron Collider R. Wolf, Springer, 2015

