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Topology In condensed matter

Aysisn J010»

physics?

s Topology — what is it? ) L

Tepologogy is a field of i
mathematics that
describes properties that
are stable and only
change in integer steps;
152 3.

The number of holes is a
lopological Invariant that is
aiways an integer, bul never
anything in between,

.




2016 Nobel prize for physics

PRESS RELEASE

4 October 2016

The Nobel Prize in Physics 2016

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 20146 with one half to

David J. Thouless

University of Washington, Seattle, WA, USA

and the other half to

F. Duncan M. Haldane and J. Michael Kosterlitz

Princeton University, NJ, USA Brown University, Providence, R, USA

“for theoretical discoveries of topological phase transitions and topological phases of matter”

They revealed the secrets of exotic matter

This year's Laureates opened the door on an to understand the properties of chains of small magnets
unknown world where matter can assume strange found in some marerials,

states. They have used advanced mathematical We now know of many topological phases, not only
methods to study unusual phases, or states, of in thin layers and threads, bur also in ordinary three-

matter, such as superconductors, superfluids or dimensional marerials. Over the last decade, this area has

thin magnetic f'_lms' Thanks to their pioneering boosted frontline research in condensed matter physics,
work, the hunt is now on for new and exotic phases |, J.)t because of the hope that topological materials

of r.natte:r. Many peopl.e are I.'mpeful of future aPPh' could be used in new generations of electronics and super-
cations in both materials science and electronics. conductors, or in future quantum computers. Current




Tour of topological physics

* The 2016 Nobel prize

* The Quantum Hall effect

- Haldane model

* Topological Insulators

» Unconventional superconductivity In

D
( Sr,RuO,
\ * Kerr effect in Sr,RuQO,

- Superfluid angular momentum and
orbital magnetization of Sr,RuQO,
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Thouless, Haldane and Kosterlitz

» Kosterlitz Thouless 1973 paper
Birmingham 2d superfluids and 2d melting

» Haldane topological aspects of quantum
flelds (eg 1+1d S=1 antiferromagnet)

* Thouless classification of topological
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Quantum Hall effect, 1980

 von Klitzing Nobel prize 1985

doped Al,Ga,_, As—10-100nm
""""""""""""" 2DEG
undoped GaAs 1-4 pm
semi-insulating
GaAs

FIG. 3. Typical shape and cross section of a GaAs-
Al Ga,_,As heterostructure used for Hall-effect measure-
ments.
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Quantum Hall effect

Hall resistance RH A
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FIG. 10. Hall resistance Ry for two different samples with dif-
ferent aspect ratios L/W as a function of the gate voltage
(B =13.9T.

4 &
MAGHETIC FIELD (T)

=

FIG. 14. Experimental curves for the Hall resistance Ry =p,,
and the resistivity p., ~ R, of a heterostructure as a function of
the magnetic field at a fixed carrier density corresponding to a




Conductance In solids

The conductance relates
current density to electric field

We can distinguish _
longitiudinal and Hall J=OE
conductance

Both form elements of the ,
conductivity tensor [ i

There Is a natural unit of j
|Jy

conductance, e24/h

(3 )z
Ow OpflE,

The QHE is so precise that it e
can be used for precision O, =N —
measurements of this ratio of h
the fundamental constants
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Topology In QHE

Why Is the Hall conductance so accurate in a
disordered material?

Disorder makes almost all states non-conducting
The exception are.topological edge states.»

|— T, ————

extended

DIE}] —»

RB Lauglin, Nobel prize 1998
(for the fractional QHE)

FIG. 6. Model for the broadened density of states of a 2DEG
in a strong magnetic field. Mobility edges close to the center of
the Landau levels separate extended states from localized states.




Its all at the edge

Consider a crude analogy
walking in a landscape

Follow a fixed height (energy)
countour and we always end
up back where we started
from just walking around the
same contour.

Eg in an island there is
always one countour which
goes around the edge at
fixed height

Electrons in the QHE do the
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Topological insulators

* Any insulator may
have surface states

* But a topological }/
Insulator must have

Surface states
edge states Fermi level )<

* These conduct
without dissipation (no v e

Scattering) Momentum
« Chiral, Weyl fermions

Conduction band

Energy
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The Haldane model 1988

* A'toy’ model of graphene with
artifical second neighhbour
hopping

It can be an insulator

* with Quantized Hall
conductance (without external
magnetic fields)

* All current carried In

edge states FIG. 1. The honeycomb-net model (2D graphite™) she
nearest-neighbor bonds (solid lines) and second-neighbor t

(dashed lines). Open and solid points, respectively, mark |

0,,=N e?/h, N=Chern number
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Topological Superconductivity?

« Spin-triplet superconductivity and orbital
magnetism in Sr,RuO,

« Superconducting Kerr effect and Berry
phases in multiband superconductors

University of

BRISTOL



Collaborators

* Thanks to my collaborators!

Karol Wysokinski
(Lublin)

Jorge Quintanilla Adrian Hillier (ISIS) i
(|S|S/ Kent) e 15 y

! : /

Gregorz Litak
(Lublin)




The Fermi surface in Sr,RuQO,

‘ “a
. 1

These agree well with LDA band calculations,

and are derived from the Ru 4d T, multiplet

of d states |x2», |[yz> (giving aB) and [x?-y? >
(giving y)

There are three cylindrical
Fermi surface sheets,
measured with great
accuracy by Bergman and
Mackenzie
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A solid state analogue of 3He-A?

TABLE I: Irreducible representations of even and odd parity | I |
in a tetragonal ervstal. The svmbols X, Y Z represent any na tetragona CrySta

functions transforming as x, y and z under erystal point group grOUp theory a”OWS a
operations, while I represents any function which is invariant

under all point group symmetries. set of d-wave pairing
Rep. symmetry Rep. SYImmetry Sstates or p-wave states
A I Adu XYZ(X*-Y") H. _
Ao XY(X2—1?) o 5 similar to 3-He (Annett
Bi, X?_y? Bru XYZ Adv. Phys 1990)
Bs, XY Ba, Z(X*-Y"
E, (XZ,YZ) E. (X,Y)

P-wave triplet states based on the E irreducible representation
Include an analogue of the ABM phase
d=(sin(k,)+ I sin(k,))e,

This corresponds to the crystal analogue of L,=1, S,=0 (|1/+|1>) triplet pairing
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A model chiral palrlng state

Sr,RuQ, is a body-centred
Ru tetragonal crystal.

Symmetry analysis (JFA Adv.
I Phys. 1990) of possible
sy superconducting states shows
A only 2 possible time reversal
pairing states: d-wave singlet
or p-wave triplet.

Al

FIG. 1. The layered perovskite structure common to ruthenate
and cuprate superconductors.

In order to match experimental specific heat data showing a line
node we include interlayer interactions in our model, leading to
horizontal line nodes on af3 sheets

TABLE I: Irreducible representations of even and odd parity TABLE IIE Basis functions ~! (k) for the odd parity irre-

in a tetragonal crystal. The symbols X', Y Z represent any  ducible representations of body=-centred tetragonal crystals.
functions transforming as x, ¢ and z under crystal point group

operations, while I represents any fiunction which is invariant Rep. in-plane inter-plane
under all point group symmetries. Aty - - .
Agy - cos & cos "L sin £
Rep. symmetry | Rep. symmetry B, ain %2 sin ;:y_ qin ke L -
g I __ 2 T - _
Ag I Ay XYZ(X*-Y*) Bay . .

k

e 2 __ 32
Azg XYY —-Y7) Az Z E. sin ka, sin & cos & cos &<

X2 -y? B, ~ XVYZ _ 3 C0S 008 5
XY Bou Z(X?—Y?) cos 5 sin <& cos &5

(XZ,YZ} E. {41}




Time reversal symmetry breaking
by superconductivity
In Sr,RuUQO,
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Spontaneous time reversal
symmetry breaking in Sr,RuQ,

0.10 i§_ iﬁ e — 80 - - - - - 8
LN I
i o0 . 1°
005 | ii\__E_ ————— — E , - | )
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Y o i{ o
© Te L ' e
§ om | | | > 20 P oot
& Ple < 71
¢ 0.10 — — ot AT :}-D
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@ERE\ i
& -20 : : : : : -2
0s L * Lz 2 c o5 1 15 2 25 3
‘ R T T T " Temperature (K)
B —— — — — — — — — — — — —0O
LF=50 G FIG. 2. Zero-field (earth field) measurement of Kerr effect (O)
0.00 § L 1 L and ab-plane electrical resistance (dotted line). Dashed curve is
Temperature (K) a fit to a BCS gap temperature dependence.

Figure 2 Jero-field (ZF) relaxation rate A mr_ th_e ir.1itia_| muon spin prJIariz_atirJn Il.c .
oot fgure goe e a1 B < 0 LLr. v ere e 1018 eye Optical Kerr effect,
_ _ Xia et al, PRL 2006
Muon spin rotation, Luke et al Nature 1988
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The polar Kerr effect

Dichroism: different refractive indices for left and right circular polarized light,
leads to rotation of the plane of polarization of reflected light in magnetic materials

Magneto-Optical-like Measurements!

Classical Picture . Quantum Picture
Tlf |5 L=1
. ‘s D Ly=+1.0.-1
Sy, o N, =N
/_- ”’ -
= - R y 4
Fe-toxs e L=0
2 = P Without Exchange
J # JIr => 0L #OR amd ML FNR magnetization splitting
Faraday Effect: (Polar) Kerr Effect:

——

= \\\‘ Te
> g, SRR

A\
>
&)

W




The Kerr angle and Hall
conductance

A I'merg, (w)

P = :

€} > (Dﬂb V/F-m.ﬂ-:z — i—r*-r'gf; [{F-m- _ 1J“-:2 o "““ﬁb]
oo Arw®? Reopy(w)

O <O, O V@l — coow® [(foe — Dw? — Wy

M, ,= plasma frequency
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Kerr effect in superconductors

In one band models of chiral superconductors there have
been many attempts to obtain the Kerr effect, eg

Yip and Sauls (1992)
Li and Joynt (1991)
Yakovenko 2007
Minnev 2007

However the analysis of one band models is now
believed to give zero signal, except as a result of
Impurity scattering (Goryo 2008, Lutchyn 2009)

But Sr,RuQ, is very clean, and so this seems unlikely as
an explanation of the experiments.
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Dichroism from multiband chiral
superconductivity

In 2012 two papers proposed that a non-zero Kerr signal arises
from multiband/inter-orbital effects, even in the clean limit

Edward Taylor, Catherine Kallin Phys. Rev. Lett. 108, 157001
(2012): two — band, two dimensional model fitted to DFT band
structure.

Kl Wysokinski, J. F. Annett, B. L. Gyorffy PRL 108, 077004
(2012): three — band, three dimensional model fitted to experimental
Fermi surface close to EF. Dichroic signal from interband
(interorbital) processes.

These two papers had a similar approach and gave similar
magnitude effect at the experimental frequencies, but the results
differed considerably in detail.

V.P.Mineev (J.Phys. Soc. Jpn. 81,093703 (2012)) argued against
multi-orbital scenario altogether using symmetry analysis
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Kerr Effect in Sr,RuO,

Method of: K. Capelle,
E.K.U. Gross and B.L.
Gyorffy, Phys. Rev.
Lett. 78 3753 (1997).

The dichroism is calculated in
terms of optical abrorpton
spectra, evaluated relative to
the chiral superconducting state

Here we have INTERBAND
transitions (non-diagonal in
orbital space) which are not
present in single band
approach

University of
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the electromagnetic power absorbtion P(w. €)
for light of left and right cireular polarizations, e and
€R. respectively,

In[eg,(w)] = ﬁ [Plw,er) — Plw,er)] . (1)

Here V' 1s the sample volume, Fg is the electric field
strength of the light, and 7,5 = (1,47, 0)/4/2. Within
the BdG formalism the absorption spectrum can be cal-
culated directly in terms of the dipole matrix elements

2 212
P =20 5™ f(Ex ()1 - f(Exo ()
Y NNk
% | (N'k | Hr[f) | Nk} |? 6(En+(k) — En(k) — hw) (2)
where
| NK) = (f:%‘) (3)

is the Nth eigenvector of the BdG equation at wave vec-

( )-r ()

(I:}glikjl ;fx{k“,l )('“N(k:'
A(k)T —Hp(k)*
(4)

Up I\(kjl

un (k)
'-'.L‘ﬂ\rlikjl




Optical transitions in the 3 band
model below T,

The quasiparticle states
come in positive and
negative energy bands,
with a small gap at zero.

A variety of optical
transitions interband can
be possible

The d xy bands are
decoupled, butd xz to d
yZ transitions occur in
some parts of the zone

Energy (V)
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Calculted Hall spectrum
(Gradhand et al, PRB 2013)

Imaginary part is zero at
low frequencies,
threshold at interband

energy (not gap energy)
Differences from Taylorwi
and Kallin appear mainlyz -210
from different band-
structures used (dHVA fit
vs DFT, bandwidths differ -410
by m*/m =2-3)

0.00 0.05 0.10 0.15 0.20
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Estimated Hall angle at 0.6eV

« At the single experimental frequency of 0.6eV our spectrum is dependent on
models of bulk plasma frequency and damping
« Estimates are consistent with experimental magnitude of 80-90nRad

100.0
50.0 —
N\
— Y
-S . ..l"....
E 00 b—— 0
-50.0 |
-100.0 A S
06 0.8 1.0
o [eV]
* Figure shows threeestumarea vaiues basea o wo moaels of plasma

response

University of

BRISTOL



Berry phase approach to orbital
magnetism and Kerr effect in
multiband superconductors
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Berry curvature of Bloch electrons

Bloch function: Vo (r) = eik'runk(r)

Parameter-dependent gy — Kk
Hamiltonian: KUnk(r) = En(k)upi(r)

Berry curvature: Qn(k) = Vi x An(k)

Berry connection: A, (k) = ifuLk(r)Vkunk(r)dr

W
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Berry curvature of Bloch electrons

E : Berry curvature

/ n=2 Qn(k) = i(Viupg(r), x Viu,(r))

=1 Hyup (r) = En(k)u, ()
. K

(Ui (r), Vi Hit1 (1)) X (Ui (1), VicHiu,i (1))
(En — Em)?

Quk)=1¢ )
m=£En
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Hall conductance sum rules and
Berry phase

* For the normal state the following sum rule is obeyed by
the Hall conductance

Kramers—Kromg transformation. It was shown by Souza and
Vanderbilt that in this case the relation [15]

-] ,
f do (o0 (@) _ Q5 (k) f(En(K))
0

e

We are now consider the extension of this work to the
superconducting case.

University of

BRISTOL



10P Fublishing Journal of Physics: Condensed Matter
J. Phys.: Condens. Matier 26 (2014) 274205 (Tpo) doi:10. 10880953 B0B4/ 265/ 27/ 2T4205

The Berry curvature of the Bogoliubov
quasiparticle Bloch states in the
unconventional superconductor Sr,RuO,

Martin Gradhand and James F Annett

H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, BS8 1TL, UK
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Berry phases in the Bogoliubov
de Gennes Hamiltonian

The Bogoliubov de Gennes Hamiltonian obeys Bloch's

theorem

The quasiparticle wave functions are written in terms of a

plane wave, k, and a part (u,(r ),v.(r)) with electron/hole
terms which is periodic in space

In this basis we have a k dependent Hamiltonian,

Universi

BRIST

crysial we can separale the Bloch phase ractor irom the lathice
periodic part of the wavefunction as in the normal state [13]
(r| ek —lkr (Mg (T). vnt{r]]T and retrieve an equation for
the periodic wave function within one unit cell (UC) [13]

E’t{r] Eﬁ.{rj lgk(T) _E lgk(T) -
Ay —A%(m) (unkl:r:n) = ok (unkl:rruj- @
Here, the k-dependent lattice periodic normal state Hamilto-
nian Hg =e ™ H (r)e'® appears on the diagonals and the k
independent local gap function A(r) is connecting electron
and hole like states on the off-diagonal part of the operator.




Berry phases in the BdeG
Hamiltonian

* The Berry phases can be defines as usual,
leading to the Berry curvature

the following. The formal definition of the Berry curvature of
Bloch states 15 [1-3, 14]

Q.(k) =iV :-:;f dr B () VgD k()
C
=1Vk % (Ppk(r), VekPrk(r)). (3)

where (-, -) 15 a shorthand notation for the inper product of
the periodic part of the Bloch function defined as the real

University of

BRISTOL



Hall conductance sum rule

« We can then prove the following relation for the Hall
conductance in the superconducting state

-

Zﬂnmrmn— s Y f(Em) [1— f(Emk)]

2Vh*
n.m.k
Iml {rralt.l‘q?"p’ﬂklmk} 0 I:ml-.l?kMt |J'?|-|.:I] R A
' 13 || sy = (B A0 )
(Emik) — Ep(k))* Afin) —H* (1)

This yields immediately the desired Hall sum rule melating
the integral over the optical conductivity to the sum over all
occupied bands of the Berry curvature

®  Im {crn-[w]n} TH.'-"
fudm ol - f{l 00/ (Eno).

(14)
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Zero-frequency real part of Hall
conductance

« Using Kramers-Kronig this integral also gives the real
Hall conductance at zero frequency

out that due to Kramers—Kronig transformation the integral of

equation (14} 1s related to the zero frequency real part of the
optical conductivity and we can connect this quantity via

: 'k .
Rffﬂ;_ﬁ'1:iﬂ=['}}=_E_E'I\Wﬂﬁ{k]_r[-£ﬂk]-. (13}
. .
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K-dependence of Berry
curvatures for Sr,RuQO,

- We can compare the direct calculation of contributions to
the Hall conductance sum rule in k-space (left) with the
corresponding Berry curvatures (right) in our model

0.6001

Se-05

-5e-05

1 | i
o P =i = i L= L=
i
i |

a
@ M = @ = o
L

-0.0001 -0.0001
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Orbital Magentism In Sr2Ru04?

* |f the superconducting state breaks ‘time
reversal’ symmetry it is effecively magnetic

* Is there a magnetic moment in the
superconducting state?

* If so, how does It relate to the Kerr effect?

University of

BRISTOL



“Angular mometum?” of 3He A

- Tony Leggett discusses this in appendix 6A,FEE
of his book “Quantum Liquids: Bose i ¥
Condensation and Cooper Pairing In
Condensed Matter Systems”

 He notes that the trial state

N/2
¥y = (Zl c, a;a+kj | vac)

k
(dropping spin indices for clarity)

IS an exact eigenstate of L, with eigenvalue Nh/2
(ignoring subtleties about boundary conditions)

Cezmmbum Liguisa

;| A University of
A BRISTOL



“Angular mometum?” of 3He-A

But this result is independent of the superconductivity. It is true even
if d,=0!

The wave function corresponds to a BEC of N molecules, each in a
|,=h/2 internal state

For a Fermi liquid we should write a different wave function, such as

N, /2 N_/2
‘I’N=(Z|Ck|ei¢ka§a+k] (Zlckp%akak) | FS)

k >kf k <kf

This is also an eigenvector of L,, but now with eigenvalue L,=0
assuming particle hole symmetry!

A finite value is only obtained as (N.,-N.)h/2 if particle-hole-h
symmetry is not exact, ie beyond weak coupling A<<E;

University of
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The angular momentum paradox

* These results led to a 40 year long controversy
of the correct definition of the orbital angular
momentum in the chiral state of 3He

* Probably the modern consensus is that there IS
an orbital moment of Nh/2, and this is essentially
entirely, due to a chiral edge state (M Stone)

* The existence of a bulk term arising from
particle hole asymmetry is still not clearly
established

-% University of
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Orbital magnetism of Sr,RuQ,

The analog in a superconductor of orbital angular
momentum is orbital MAGNETISM

The intrinsic angular momentum of the condensate
leads to orbital motion of charges, and hence
magnetism

Note that this is NOT magnetism due to electron
spins, but due to their orbital motion.
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Simple calculation of the bulk
orbital moment in Sr,RuO,

The expectation of L, within a single the d-
shell for a single Ru ion is is related to the
single particle density matrix, and canbe <Lge>=<@;| I X p | ¢;>n;
evaluated in the superconducting state by ,

. . . (o102 +
using the Bogoliubov transformation to the n, = <CaGCbG.>
guasiparticle states SC

1 Z Z a0y, e I
.n'j;i‘.r?f - ﬁ,,rr ['LI', N (k. ) T'I':"".-'_ {kj f { E*'""fr {kj ) _I_
Vs Kk N

+ R (Ryog ™ (F) (1 — F(Ex(R)))

The off diagonal contributions (m#m’) are zero in the normal state
and in non-chiral pairing states,
but are non-zero in the chiral superconducting state

University ot

BRISTOL



Spontaneous magnetism In

Sr,RuQ,

1

%;g?l"‘**u, (AT/AO)? -+

. osf ey
Unlike He-3 Sr,RuO, has N
three sheets of Fermi surface 0.6} 5,
corresponding to 3 Ru d o4l A
orbitals. ' SR
We relate the orbital moment 0.2}
to orbital mixing induced by ) Ty
the chiral symmetry 0 02 04 06 08 1 12
condensate Figure 2. Temperature dependencé of the normalised orbital moment StaRuO,

™ a3 ™ N3
<Lz> =Ny + Ny — (nba + Ny,

in chiral state of Srp,RuOy4 calculated according to equation (15). Also shown are
) A(T)/A(0) and (A(T)/A(0))".

nO'o" _ C+ C
Where |a>=|x2>, [>=|yz> and Mab = \“ac“bo' /o

In the normal state these off-diagonal density matrix elements are zero,
But in the chiral state they are non zero, of order |AjN(0)|?, and we obtain a small
non-zero orbital moment per Ru atom, consistent with Kerr/MuSR experiments.
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Orbital angular momentum in a
crystal

* In a periodic crystal how to define an
orbital magnetic moment?

1 z
N1 ZEkH wy(r — Ry)

1.5""1-11{ {I" )

Defining localized Wannier functions
the orbital angular momentum about site R, is:

{J[:*}D — {]I[N| Z ([(ri T RO) X 133]*) |LI'N}

i=1.N




Orbital magnetism In insulators
and metals

- Earlier we have used a ‘naive’ picture of the orbital
moment per atom. The theory of orbital magnetism in

Insulators was recently put on a more firm basis.

The proposal by Ceresoli, Thornhausser, Vanderbilt and Resta [9, 10]
1s that the following expression may be used for the orbital moment of a metal, insulator
or Chern insulator

_ 1 3o * ‘ __
M = 2;::{2;;)311112 /Enk{:_“ d’k (V| x (Hk + €nk — ZH) Vi) (18)

where u,k 1s the periodic part of the Bloch state . the band energy 1s €, and
Hk = eikrfeikr where H is the single particle crystal Hamiltonian.

University of
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Magetization in Sr2Ru0O4 from
Berry phases?

* Yes! Thanks to Martin Gradhand and
Joshua Robbins

* Results similar to ‘naive’ approach

« Some Differences when spin-orbit
coupling Is introduced

University of
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Topological Superconductivity

PHYSICAL REVIEW B 78, 195125 (2008)

Classification of topological insulators and superconductors in three spatial dimensions

Andreas P. Schnyder,' Shinsei Ryu,'! Akira Furusaki,” and Andreas W. W. Ludwig’
'Kavli Institute for Theoretical Physics, University of California-Santa Barbara, Santa Barbara, California 93106, USA

2Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
3Department of Physics, University of California-Santa Barbara, Santa Barbara, California 93106, USA
(Received 11 April 2008; revised manuscript received 13 September 2008; published 26 November 2008)

We systematically study topological phases of insulators and superconductors (or superfluids) in three spatial
dimensions. We find that there exist three-dimensional (3D) topologically nontrivial insulators or supercon-
ductors in five out of ten symmeltry classes introduced in seminal work by Altland and Zirnbauer within the
context of random matrix theory, more than a decade ago. One of these is the recently introduced 7 topologi-
cal insulator in the symplectic (or spin-orbit) symmetry class. We show that there exist precisely four more

University of
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Ten symmetry classes (taken
from Schnyder et al PRB 2008)

TABLE 1. Ten symmetry classes of single parficle Hanultomans classified in terms of the presence or absence of time-
reversal symmetry (TRS) and particle-hole symmetry (PHS). as well as sublattice (or “chiral”) symmetry (SLS) [17.[18.[18].
111 the table, the absence of symmetnies is denoted by “0”. The presence of these symmetnies 1s denoted etther by “+1” or

—17, depending on whether the (anti-unitary) operator implementing the symmetry squares to “+17or “—17. For the first
six entries of the table (which can be realized in non-superconducting systems) TRS = +1 when the SU{(2) spin 1s integer and
TRS = —1 when 1t 15 a half-integer. For the last four entries, the superconductor “Bogoliubov-de Gennes™ (BdG) symmetry
classes (denoted by the symbols D, C, DIII, and CI in “Cartan nomenclature™), it turns out that the Hanuiltonian preserves
SU(2) spin-1/2 rotation symmetry when PHS=—1 whilst it does not preserve SU(2) when PHS=+1. The column entitled
“Hamiltonian™ lists the spaces to which the quantum mechanical time-evolution operators of each symmetry class belong
(see section B). The column entitled “NLSM (ferm replicas)™ lists the “target spaces™ of Non-Linear Sigma Model field
theories describing Anderson localization physics in each symmetry class (see section B).

| System | Cartan nomenclature " TRS | PHS | SLS || Hamiltonian | NLSM (ferm. replicas) |
standard A (unitary) 0 0 0 U(N) U{2n)/Uinm) = L{n)
(Wigner-Dyson) Al (orthogonal) +1 0 0 U(N)/O[N) S5p(2n)/5p(n)=5p(n)
All (symyplectic) —1 1] U L{2N) /Sp[2N) O 2m) [ On) = D)
chiral ATIT (chiral unit. ) 0 0 1 U(N+M)/U(N) = U(M) Uln)
(sublattice) [ BDI (clural orthog. ) +1 +1 | SO[N+M)/SO[N) = S0[M) U(2n)/5p(n)
C1II (chiral sympl ) -1 —1 1 S5p(2N+2M) / Sp(2N) = Sp{2M) U7 2n) /O 2n)
BdG D 0 +1 0 SO(2N) O 2n)/U(n)
C 1] —1 0 Sp(2N) Sp(n)/U(m)
DI —1 +1 I SO2N) U(N) O[2n)
Cl +1 —1 1 Sp( 2N L) Spim)




Topological phase
classification

TABLE 2. Summary of the main result of this paper- listed are again the ten symmetry classes
of single particle Hanultonians (from TABLE 1) classified in terms of the presence or absence
of time-reversal symmetry F.Sﬂ)ﬂand particle-hole symmetry (PHS), as well as sublattice (or
“chiral™) symmetry (SLS) % .[19]. The last three columms list all possible topologically
non-trivial quantum ground states as a function of symmetry class and spatial dimension 4. The
symbols Z and Z, indicate that the space of quantum ground states is parfitioned into different
topological sectors labeled by an integer (Z), or a Z, quantity (two sectors only), respectively.

System Cartan nomenclature || TRS | PHS | SLS “ d=1]|d=2|d=3
standard A (unitary) 0 0 0 - Z -
(Wigner-Dyson) Al (orthogonal) +1 0 U - - -
ATl (symplectic) —1 0 0] - Y2 Y5
chiral ATIT (chiral vmit.) 0 0 1 L - L
(sublattice) [ BDI (chiral orthog.) || +1 | +1 | Z . E
CII (chural sympl ) —1 —1 1 L - Lo
BdG D 0 +1 0 f iy, z -
[ ] -1 U - L -
DIIT —1 +1 1 L L L
Cl 1 - L
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Extension to nodal
superconductors

Topological surface states in nodal superconductors

Andreas P. Schnyder
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Abstract. Topological superconductors have become a subject of intense
research due to their potential use for technical applications in device fabrication
and quantum information. Besides fully gapped superconductors, unconventional
superconductors with point or line nodes in their order parameter can also exhibit
nontrivial topological characteristics. This article reviews recent progress in the
theoretical understanding of nodal topological superconductors, with a focus
on Weyl and noncentrosymmetric superconductors and their protected surface
states. Using selected examples, we review the bulk topological properties of
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Edge states in bulk nodal
superconductors

20 surface
Brillouin zone 3D Brillouin zone

(from Schnyder
and Brydon)

non-trivial = +/-1

o 1D class Alll Hamiltonian
trivial = 0

Figure 3. The relationship of the bulk gap structure to the surface states
of a nodal topological superconductor. The left part of the fisure shows the
surface Brillouin zone with the projected Fermm surface indicated in black. Flat-
band surface states occur within the two regions bounded by the projected nodal
lines (dark blue and light gray areas). Within these two regions the winding
number takes on the values W = X1, while outside these regions 1t 15 zero;
the bulk Hamiltonians restricted to a surface momentum in these regions (red
lines in 3D Brillouin zone) belong to symmetry class ATl and are topologically
trivial and nontrivial, respectively. The right part of the fizure shows the three-
dimensional bulk Brillouin zone with a spherical Fermi surface (black ellipse) and
two nodal rings (solid and dashed blue ellipses).
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Possible nodal topological
systems

Table 2. List of candidate materials for nodal topological superconductivity
with (majority) spin-triplet pairing. Note that in some materials the evidence
iz contradictory. NCS: Noncentrosymmetric superconductor. HF: Heavy fermion
superconductor. FM: Ferromagnetic superconductor. NMR: Nuclear magnetic
resonance. SH: Specific heat. UA: Ultrasound attenuation. TC: Thermal
conductivity. PL: London penetration depth. Hea: Upper eritical field

Evidence for Evidence for nodes

Probable pair-

Material Type . i, .
triplet pairing mg symmetry
A phase of *He | superfluid NMR, magnetiz. [53] SH [51] chiral
CePt3Si NCS, HF indirect PD, NMR, ete. [139] NESIRNER (s + p)-wave
CelrSi,f NCS, HF NMR [143] 144] NMR [143] 144] (5 + p)-wave
CeRhSis NCS, HF H. [135] 7
Li,PtsB NCS NMR [147] PD, NMR, SH [146] (147, [115] (5 + p)-wave
LaNiC, NCS mmdirect [149] PD [150] nommitary
LaNi1Gas Centro. indirect [153] nonunitary
URhGe FM, HF indirect [153] SH [154] p-wave
UCoGe FM, HF NMR [155] indirect [156] p-wave
UGe,1 FM, HF H_, [157) I5E] NMR [159] p-wave
UPt4 HF NMR [160] SH, UA, TC [161] chiral f-wave
UBe, HF NMR [162] SH, NMR [163, [164] nodal
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Possible topological nodal
systems

Table 3. List of candidate materials for nodal topological superconductivity
with (majority) spin-singlet pairing. HF: Heavy fermion superconductor.
SL: Superlattice. ARPES: Angle-rezolved photoemission spectroscopy.  STM:
Scanning tunneling microscopy. NMR: Nuclear magnetic resonance. PID: London
penetration depth. SH: Specific heat. TC: Thermal conductivity. MT: Magnetic
torque. PKE: Polar Kerr effect. pSH: Muon spin rotation.

Material Type Time-reversal Evidence for nodes ll'-'roba_h]e ]:-alr_-
symmetry g symmetry
YBa;Cuz Og o, high-temp. . ARPES, STM, o
La, ,Sr,.CuQ,, etc. supercond. Yes NMR, PD, etc. [31] [35] d;2_y2-Wave
CeCu,Si, HF Yes indirect [174] d-wave
. SH, TC, NMR, o
CeColns, HF Yes STM [36, 37, 38, 7] dr2_2-wave
Celrlns HF Yes SH, TC, NMR [37] [175] d-wave
CeRhln; HF Yes SH [176] d-wave
. No (MT , )
URuzSiz HF PKE Iﬁ SH, NMR, TC [40] [41] (d % id)-wave
SrPtAs pnictide No (uSR [18]) indirect [47] (d + id)-wave
CeColn; /YbColns SL indirect [178] likely d-wave
Cuz(PbSe)s(BizSes)es SL SH [179] line node

t .
superconducting under pressure
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Example of model with bulk
topological phases  As9

parameters
change nodes on

Cubic noncentroymmetric .
y ' bulk Fermi surface

superconductors, eg Li,PdxPt;_xB

appear and
« Spin-orbit == = « —  disappear

interaction g g (= S
mixes singlet . : -
and triplet ’ - /I o, Theiully gapped
pairing, leading (0 . . <) ( states can be
to an exotic e i s
ey of =N s D @ Classitied by
possible energy s topological
gaps on the e numbers
Fermi suface ()| The non-trivial
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Recap of tour around topics In
topological superconductors

* The 2016 Nobel prize
* The Quantum Hall effect

» Topological Insulators

- Unconventional superconductivity in Sr,RuO,
 Kerr effect in Sr,RuQ,

* Superfluid angular momentum and orbital
magnetization of Sr,RuO,

 Ten fold classification of topological systems
« Topology in nodal superconductors
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