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e International Tables for Crystallography, Vol. A, Kluwer Acedemic Publishers (= ITA)

e International Tables for Crystallography, Vol. A1, Kluwer Acedemic Publishers (= ITA1)
e H. Barnighausen, Group-Subgroup Relations Between Space Groups: A Useful Tool in

Crystal Chemistry, MATCH 1980, 9, 139-175

e U. Muller, Symmetry Relationships between Crystal Structures, Oxford University
Press [in German: Symmetriebeziehungen zwischen verwandten Kristallstrukturen,

Teubner Verlag]

e bilbao crystallographic server, http://cryst.ehu.es/



Topological and Symmetry-Broken Phases in Physics and Chemistry — International
Theoretical Basics and Phenomena Ranging from Crystals and Molecules Summer School
to Majorana Fermions, Neutrinos and Cosmic Phase Transitions 2017

Group Theory 1 — Basic principles
1.1 Basic notions, group axioms and examples of groups

1.2 Classification of the group elements and subgroups

Group Theory 2 & 3 — Group theory in crystallography
2 From point groups to space groups — a brief introduction to crystallography
3.1 Crystallographic group-subgroup relationships

3.2 Examples of phase transitions in chemistry
TUTORIAL: Apply crystallographic group theory to a phase transition

Group Theory 4 — Applications in crystallography and solid state chemistry
4.1 The relation between crystal structures and family trees

4.2 Complex cases of phase transitions and topotactic reactions



Group Theory 1

1.1 Basic notions, group axioms and examples of groups . .
group P group Basic Principles

Group (Oxford dictionary):

A number of people or things that are located, gathered, or classed together.

Group in Mathematics: An algebraic object which
- consists of a set of elements where any two elements combine to form a third element,
- satisfies four conditions called the group axioms (next slide).

Examples:
e integers: Z2={...,,-3,-2,-1,0, 1, 2, 3, ...} with addition operation
e symmetry groups with symmetry operations
- points groups in molecular chemistry, e. g. mm2 also called C,, H/
- line groups
- planar groups for patterns and tilinigs, e. g. p4mm
- space groups in crystals, e. g. Fm 3m
- Lie groups in particle physics
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Group Theory 1

1.1 Basic notions, group axioms and examples of groups .
group P group Basic Principles

Symbols

G, H, .. group (note: in many ressources fancy fonts are used, e. g. ITA)
e, 9,9, 9, h, h' h)' group element

G=1{g9, 9, - 9.} group G consists of a set of elements g,, g,, ..., g,

X,V 2 point coordinates

a,b,c basis vectors

a,b,c lattice parameters (lengths of basis vectors)

e Overline ~ denotes an item after mapping (e. g. symmetry transformation)
e prime ‘ denotes an item after a change of the coordinate system



Group Theory 1

1.1 Basic notions, group axioms and examples of groups . .
group P group Basic Principles

Group Axioms

1)

2)

3)

4)

Closure:

The composition of any two elements g, and g, of the group G results in a uniquely
determined element g, of group G.

(This is called product of g, and g,, and hence g, g, = g5).

Associativity:

If g,, g, and g5 are all elements of the group G, then (g, 9,) g5 = 9, (g, g5), which can
thus be denoted g, g, g5.

ldentity:

Amongst the group elements there exists a unit element (identity operation, neutral
element) such that g e = e g = g holds for all g € G. (In crystallography e is called 1.)
Invertibility:

For each g, € G there exists an element g, € G such that g, g, =g, g, = e. This is
called the inverse of g,: g, = g, .

Exercise 1: Check the four group axioms for the group of integers.
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Group Theory 1

1.1 Basic notions, group axioms and examples of groups .
group P group Basic Principles

Further definitions
e group order |G| / element order:
the number of different elements g € G / the power which gives e (e. g. m?> = mm = e)
e Abelian or commutative group:
a group where g; g; = g; g; holds for all pairs g, g; € G.
e set of generators of G:
asetg,, g, gs, ... € G from which the complete group G can be otained by composition
e multiplication table:
a square array, where the product g, g, is listed at the intersection of row g, and
column g, (=@ symmetric with respect to the main diagonal for Abelian groups)
e isomorphic groups:
groups with the same multiplication table (apart from names of element symbols)



Group Theory 1

1.1 Basic notions, group axioms and examples of groups . .
group P group Basic Principles

Example: pAmm, a planar group (symmetry operations in two dimensions)
Which symmetry operations do you see in this pattern?
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Group Theory 1

1.1 Basic notions, group axioms and examples of groups . .
group P group Basic Principles

Example: pAmm, a planar group (symmetry operations in two dimensions)
Which symmetry operations do you see in this pattern?

What is symmetry?

Geometric mappings leaving all distances invariant are called isometries or rigid motions.
The set of isometries is called symmetry (, i. e. the symmetry of an object is the set of all

isometries mapping it onto itself). This set is the symmetry group G of the object.
©Holger Kohlmann, Leipzig University 10



Group Theory 1

1.1 Basic notions, group axioms and examples of groups . .
group P group Basic Principles

Example: pAmm, a planar group (symmetry operations in two dimensions)
Which symmetry operations do you see in this pattern?
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Group Theory 1

1.1 Basic notions, group axioms and examples of groups . .
group P group Basic Principles

Example: pAmm, a planar group (symmetry operations in two dimensions)
Which symmetry operations do you see in this pattern?

©Holger Kohlmann, Leipzig University 12



Group Theory 1

1.1 Basic notions, group axioms and examples of groups . .
group P group Basic Principles

Example: pAmm, a planar group (symmetry operations in two dimensions)
Which symmetry operations do you see in this pattern?

©Holger Kohlmann, Leipzig University 13



Group Theory 1

1.1 Basic notions, group axioms and examples of groups . .
group P group Basic Principles

Example: pAmm, a planar group (symmetry operations in two dimensions)
Which symmetry operations do you see in this pattern?

- mirror planes m: m,, m, m

m-XX

xx?

- 4-fold rotation point, rotating by 90° (n-fold axis rotates by 360°/n),
4* (counterclockwise), 4 (clockwise)
- 2-fold rotation point, rotating by 180° (n-fold axis rotates by 360°/n), 2

- unity element 1 - translation p
©Holger Kohlmann, Leipzig University 14



Group Theory 1

1.1 Basic notions, group axioms and examples of groups . .
group P group Basic Principles

Example: pAmm, a planar group (symmetry operations in two dimensions)
Which symmetry operations do you see in this pattern?

- mirror planes m: m,, m, m

m-XX

xx?

- 4-fold rotation point, rotating by 90° (n-fold axis rotates by 360°/n),
4* (counterclockwise), 4 (clockwise)
- 2-fold rotation point, rotating by 180° (n-fold axis rotates by 360°/n), 2

- unity element 1 - translation p
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Group Theory 1

1.1 Basic notions, group axioms and examples of groups . .
group P group Basic Principles

Example: pAmm, a planar group (symmetry operations in two dimensions)
Multiplication table for the group 4mm

I
H
H

+

y

i
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Group Theory 1

1.1 Basic notions, group axioms and examples of groups . .
group P group Basic Principles

Example: pAmm, a planar group (symmetry operations in two dimensions)
Multiplication table for the group 4mm

I

H

H
+

y

L

1 m, m, m, mg 2 4 4

n m, 1 2 4 4* m, my, My
m, 2 1 4* 4 m, m, m.
m m., 4 4 1 2 m,, m, m,
m m,_, 4 4* 2 1 my, — m, m,
n 2 m, m, m,, —m, 1 4- 4+

4* my My, m, m, 4 2 1

n 4 m,, m, m, m, 4* 1 2
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Group Theory 1

1.1 Basic notions, group axioms and examples of groups . .
group P group Basic Principles

Example: pAmm, a planar group (symmetry operations in two dimensions)
Multiplication table for the group 4mm

L lm  m  mim, | 2 & | 4

i‘ 1 m, m, m, - m,, 2 4* 4

| .g"" m m, 1 2 4 4+ m, m, m,

::l m, 2 1 4+ & m._ m, m,

X m m., 4* 4 1 2 m,, —m, m,

m m,_, 4 4* 2 1 my, — m, m,

n 2 m, m, m. — m, 1 4- 4+
- non-Abelian 4r m, m., m, m, 4 2 1
- order of 4mm: 8 n 4 m_ m, m, m, 4+ 1 p)

- generators of dmm: 1, m,, 2, 4*
- order of elements: 1 (1), m,, m,, m,,, m,,, 2 (2), 4%, 4 (4)

- combination of translational symmetry p with point group 4mm = plane group p4mm
©Holger Kohlmann, Leipzig University 18
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Group Theory 1

1.2 Classification of the group elements and subgroups Teic Brilndses

Classification of group elements

= distribution of elements of a set into subsets such that each element belongs to exactly
one subset

e coset decomposition

e conjugacy classes

complex C of G
e any set of elements of a group
e gCorCgdenotesall products gc;, ¢, € C

Subgroup H of group G
e a subset H of a group G which obey the group axioms; G and / = {e} are called trivial
subgroups, all other subgroups are called proper subgroups (H < G)



Group Theory 1

1.2 Classification of the group elements and subgroups Teic Brilndses

Coset decomposition
Group G is decomposed into cosets relative to its subgroup H (< G) in the following way:
e subgroup H as first coset
e g,Hassecond (left) coset, ifg, EGand g, ¢ H
e g,;H assecond (left) coset, ifg; € Gand g, ¢ H
e continued until no elements of G left = group G decomposed into left cosets
—> Each g, € G belongs to exactly one coset.
- Number of cosets = |H]|.
- Number of left cosets = number of right coset = index [i] of Hin G
- His the only group amomgst cosets.
- Theorem of Lagrange:
If G is a finite group and H < G, then |H|*[i] = |G]|.
For infinite groups G either |H| or [i] or both are infinite.
Exercise 2: Decompose group 4mm into left and right cosets relative to the subgroups H, =
{1, m}, H, =11, my}, Hy={1, m}, H,={1, 2}, H. = {1, 2, 4*, 47}, ... and evaluate the results.
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Group Theory 1

1.2 Classification of the group elements and subgroups Teic Brilndses

Conjugacy relations in groups
e group-theoretical analogue to symmetry equivalent
=» importance for twinning and domain formation
* g, € Gconjugate to g, € G if an element r € G exists for which rig.r= g;
* set of all elements of of G which are conjugate to g; is called conjugacy class of g;
—> Each g, € G belongs to exactly one conjugacy class.
- Elements of the same conjugacy class have the same order.
— e always forms a conjugacy class for itself.
= Number of elements g; € G in a conjugacy class of G is called its length L.

Example: group of equilateral triangle =» conjugacy classes {1}, {37, 3*}, {m, m,, m,}
of length 1, 2, 3 with order of elements 1, 3, 2

Exercise 3: Determine the 5 conjugacy classes of 4mm, their lengths and order of elements.
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Group Theory 1

1.2 Classification of the group elements and subgroups Teic Brilndses

Subgroup H of group G

e a subset H of a group G which obey the group axioms; G and / = {e} are called trivial
subgroups, all other subgroups are called proper subgroups (H < G)

e order of H is a divisor of the order of G

e normal subgroup N satisfies gNg' =N forallg € G

e elements of N form complete conjugacy class + e
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Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

Classical definition of a crystal:
A crystal is a solid with a three-dimensionally periodic arrangement of atoms.

=» description of periodicity with three basis vectors defining a unit cell (right-handed)

ch
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Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

The seven crystal systems
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Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

The fourteen Bravais lattices (translational lattices)

©Holger Kohlmann, Leipzig University 27



Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

Symmetry = Invariance to possible tranformations

Symmetry operations Symmetry elements

Translation Translational lattices (14)

Unity: 1

Inversion: 1 Inversion center or inversion point
Rotation: 2, 3, 4,5, 6, 7, ... Rotational axes

reflection: m mirror plane

rotoinversion rotoinversion axes

glide reflection glide plane

Remark: 1 reads,one bar”, 3 ,three bar”...
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Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

Combination of symmetry operations: symmetry rules

Symmetry rule 1:
A even-folded rotational axis (such as 2, 4, 6) perpendicular to a mirror plane (e. g. 2/m,

4/m, 6/m) creates a center of symmetry in the intercept.

Symmetry rule 2:

Two perpendicular mirror planes create a twofold axis in the intersetion line.

©Holger Kohlmann, Leipzig University 29



Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

The development of point groups

It has been shown that mm =

Combine 1, m.,m, in a multiplication table and complete:

The set of symmetry operations {1, , , }form agroup which is called

©Holger Kohlmann, Leipzig University 30



Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

32 crystal classes: 11 with + 21 without center of symmetry

triclinic: 1 1
monoclinic: 2 m 2/m
orthorhombic: 222 mm2 mmm
(2/m 2/m 2/m)
tetragonal 4 4 4/m 422 4mm 42m 4/mmm
(4/m 2/m 2/m)
trigonal 3 3 32 3m 3m
(3 2/m)
hexagonal 6 6 6/m 622 6mm 6m?2 6/mmm
(6/m 2/m 2/m)
cubic 23 m3 432 43m m3m

(2/m3) (4/m 32/m)



Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

Coupling symmetry operations with translation — glide planes

Example: Coupling of m perpendicular to ¢ and translations +(%, 0, 0) yields glide plane a

- s | |
——— 2¢ ©Z ¢V <,
______ z EVZ'Z Zi

20 20 : E°
a 122
a (Le) N (Le) C (Lp) n (Lb)
Glide plane d: e like n but translation halved, i. e. % of the face diagonal

e only in combination with centering (why?)

Glide plane e: e combination of two glide planes, e.g.aand b
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Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

Coupling symmetry operations with translation — screw axes

Example: coupling of 6 und translation +(0, 0, %) yields screw axis 6,

-
>
A
¥

Yy
Q
O
s

SEHEY
0
b!

e
!/jl‘.' 2/15 [ 7

(2
L
- ARV
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Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

Space group types (space groups)

The combination of the known symmetry operations with the known translational
lattices yields 230 space group types. They enable a compact representation and
complete description of the symmetry of crystals (classical definition).

©Holger Kohlmann, Leipzig University 34



Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

The 230 space group types: An overview

Crystal system | point group viewing direction space group type
triclinic 1 P1

1 P1
monoclinic 2 P2, P2,, C2

m [010] Pm, Pc, Cm, Cc

2/m P2/m, P2,/m, C2/m, P2/c, P2,/c, C2/c
orthorhombic 222 P222, P222,,P2,2,2,P2,2,2,

mm?2 [100] | [010] | [001] | C222,, C222, F222,1222,12,2,2,, Pmm2,

Pmc2,, Pcc2, Pma2,, Pca2,;, Pnc2;; Pmn2;,
Pba2, Pna2,, Pnn2, Cmm2, Cmc2,; Ccc2,
Amm2, Abma, Ama2, Aba2, Fmm2, Fdd2,
Imm2, Iba2, Ima2

mmm Pmmm, Pnnm, Pccm, Pban, Pmma, Pnna,
Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm,
Pmmn, Pbcn, Pbca, Pnma, Cmcm, Cmca,
Cmmm, Cccm, Cmma, Ccca, Fmmm, Fddd,
Immm, Ibam, Ibca, Imma
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Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

The 230 space group types: An overview

Crystal system | point group viewing direction space group type
tetragonal 4 [001] | [010] | [110] | P4, P4, P4,, P4,, 14,14,
4 P4,14
4/m P4/m, P4,/m, P4/n, P4,/n, 14/m, 14,/a
422 P422, P42,2, P4,22, P4,2,2, P4,22, P4,2,2,
P4,22, P4,212, 1422, 14,22
4mm P4mm, P4bm, P4,cm, P4,nm, P4cc, P4nc,
P4,mc, P4,bc, 14mm, l4cm, 14,md, 14,cd
4m P 42m, P42c, P42,m, P42.c, P4m2, P 4c2,

P 4b2, P4n2, | 4m2, | 4c2, 142m, 1 42d

4/mmm P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm,
P4/mnc, P4/nmm, P4/ncc, P4,/mmc, P4,/mcm,
P4,/nbc, P4,/nnm, P4,/mbc, P4,/mnm,
P4,/nmc, P4,/ncm, [4/mmm, I4/mcm, 14,/amd,
14,/acd
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Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

The 230 space group types: An overview

Crystal system | point group viewing direction space group type
trigonal 3 P3, P3;, P3,, R3
3 P3,R3
32 [001] | [100] | [210] | P312,P321,P3,12, P3,21, P3,12, P3,21, R32
3m P3ml, P31m, P3cl, P31c, R3m, R3c
3m P31m, P31c, P3m1, P3cl, R3m, R3c
hexagonal 6 P6, P6,, P6¢, P6, P6,, P6,
6 P6
6/m P6/m, P6;/m
622 [001] | [100] | [210] | P622, P6,22, P6522, P6,22, P6,22, P6,22
6mm P6mm, P6cc, P6;cm, P6;mc
6m P6m2, P6c2, P62m, P 62¢c
6/mmm P6/mmm, P6/mcc, P6;/mcm, P6,/mmc
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Group Theory 2 & 3

2 From point groups to space groups — Group theory in
crystallography

The 230 space group types: An overview

Crystal system | point group viewing direction space group type
cubic 23 [100] | [111] | [110] | P23, F23,123,P2,3,12,3
m3 Pm3, Pn3, Fm3, Fd3, Im3, Pa3, la3
432 P432, P4,32, F432, F4,32, 1432, P4,32, P4,32,
14,32
43m P 43m, F43m, 1 43m, P 43n, F43c, 1 43d
m3m Pm3m, Pn3n, Pm3n, Pn3m, Fm3m, Fm 3c,
Fd3m, Fd 3c, Im3m, la3d
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Group Theory 2 & 3
2 From point groups to space groups — Group theory in
crystallography

The International Tables for Crystallography (IT): A short history

1935

1952

1983

2010

Internationale Tabellen zur Bestimmung von Kristallstrukturen
International Tables for X-ray Crystallogaphy
International Tables for Crystallography

International Tables for Crystallography, Vols. A, A1,B,C, D, E, F, G
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3.1 Crystallographic group-subgroup relationships

Conventions for transformations in crystallography

Basis vectors before transformation
Coordinates before transformation
Basis vectors after transformation

Coordinates after transformation

(a‘, b, ¢’) =

a,b,c
X, ¥z
al’ bl’ cl

{ { {
X, Y,Z

©Holger Kohlmann, Leipzig University
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Group Theory 2 & 3

3.1 Crystallographic group-subgroup relationships — Group theory in
crystallography

Exercises: Work out matrices for the following crystallographic transformations.

4) Transformation of a cubic lattice with lattice parameter a to a cubic lattice with
lattice parameter a‘ = 2a (doubling of the lattice parameter)

5) Transformation of a cubic F-centered lattice to a tetragonal I-centered lattice

6) Transformation of a crystal structure with a =323 pm, b =513 pm, ¢ = 1099 pm,
a=90°% B =97° vy=90° and one atom in 0.22 0.08 0.00 to a* =323 pm, b* =1026
pm, c‘=1099 pm, a‘ =90°, B =97°, y' =90° and one atom in 0.22 0.04 0.50.
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Group Theory 2 & 3
3.1 Crystallographic group-subgroup relationships — Group theory in
crystallography

Representation of symmetry relationships between crystal structures (Bédrnighausen tree)

e crystallographic proof of structural relationships

e important for the classification of phase transitions (reconstructive or displacive)

e from a high symmetry aristotype to the low symmetry hettotype

e symmetry reduction in the smalles possible steps = maximal subgroups

e often non-standard representations of space groups (in order to minimize
transformations and zero-point shifts)

e full space group symbols useful (e. g. P 6;/m 2/c 2/m instead of P6,/mcm)
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Group Theory 2 & 3

3.1 Crystallographic group-subgroup relationships — Group theory in
crystallography

Scheme of the general formulation of the smallest step of symmetry reduction
connecting two related crystal structures

Q ‘ UQU'L Hermann-Manguin symbol of tha Al:la [B:2d
ool taolla0 * " higher symmetric space group O — P&/m2/m2/m |6fmmm | 6m2
S s e T B -
uﬁb.‘df:) Q9 Svmbol designating the higher — AlB, 0| 3 I SEE moLe o
¥ ¢¥ © symmetric crystal structure, eg. the 0 E J
IO chemical formula or mineral name ‘ 0 3
Tvpe and index of the subgroup H — K2
SrGaz (AIBZ type) Basis transformation® —  a b 2c x|1' 1,,1 coordinate
. e . 1 O e e
D ati = W Dl 2 l l transformations
‘ ‘ c Hermann—Mauguin svmbol of the Ca:2b|In:4f
,j—»h maximal subgroup H — P6ym2m2jc | 6m2 | 3im
Symbol designating the lower — | Calm 0 | 31' see note 5
‘s “ svmmetric crystal structure 0 B ]
l -
¥ mentioned only if there is a change 2 1 0.433
YbGa2 (Caln2 type) L _
1. Possible tyvpes of maximal subgroups 'H of a given space group ¢
IT: symbol term meaning
= | t travsiationen- (G and 'H have the same translational lattice; the crystal class

t glaiche of H is of lower symmetry than that of §

k = ||a/b k  Kassengleiche § and 'H belong the same crystal class; H has lost transla-
tional svmmetry, its primitive cell is larger than that of G

Crystal Structures, i=llc i isomorphic G and H belong to the same or the enantiomorphic space

group type; H has lost translational symmetry, its unit cell

is larger than that of G

U. Miller, Symmetry

Relationships between

Oxford University Press
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Group Theory 2 & 3

3.1 Crystallographic group-subgroup relationships — Group theory in
crystallography

Q .
¥
©
@
€9
(]

. The index 7 of a subgrowp is the number of cosets of K in (. The number of sym-
G metry operations of H is 1/7 of those of §.

SrGa, (AIB, t pe 3. Basis transformation: The three basis vectors of H are expressed as linear combina-
2 2 Y
tions of the basis vectors a. b, cof §.

4. Origin shift The coordinate triplet of the origin of H is given in the coordinate

L

++$*+‘ ; system of (
o< L Ee=sb _ Additional information: Space permitting, the atomic positions are given in a box next

‘sﬁ‘!ﬁ to the space group svmbol i the following way:

The coordinates are given for one atom in the

element symbol: Wyckoff label asymmetric unit. If a numeric value is fixed by

YbGa, (C aln, type) site symmetry symmetry, it is stated as 0 or as a fraction, eg
X 0. i % Free parameters are stated as decimal

¥ numbers, eg. 0.0, 025, 053, If possible, align

U. Miiller, Symmetry z the site-symmetry syvmbol in one line with the

space-group svinbol
Relationships between pace-group S

Crystal Structures,

Oxford University Press
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Group Theory 2 & 3
3.1 Crystallographic group-subgroup relationships — Group theory in
crystallography

Types of maximal subgroups

translationengleich

e group G and subgroup H have got the same translational lattice
e the crystal class of H has got lower symmetry than that of G

e iniT: I

e possibility of twins(t2), triplets (t3), ...

klassengleich

e group G and subgroup H belong to the same crystal class

e formed by loss of transl. symmetry (loss of centering or enlargement of primitive cell)
e in IT: lla (loss of centering) or llb (enlargement of primitive cell)

e possibility of anti-phase domains

isomorphic

e special case klassengleich, where G and H have got the same or an enantiomorphic
space group type

einiT: llc



Topological and Symmetry-Broken Phases in Physics and Chemistry — International
Theoretical Basics and Phenomena Ranging from Crystals and Molecules Summer School
to Majorana Fermions, Neutrinos and Cosmic Phase Transitions 2017

Group Theory 1 — Basic principles
1.1 Basic notions, group axioms and examples of groups

1.2 Classification of the group elements and subgroups

Group Theory 2 & 3 — Group theory in crystallography
2 From point groups to space groups — a brief introduction to crystallography
3.1 Crystallographic group-subgroup relationships

3.2 Examples of phase transitions in chemistry
TUTORIAL: Apply crystallographic group theory to a phase transition

Group Theory 4 — Applications in crystallography and solid state chemistry
4.1 The relation between crystal structures and family trees

4.2 Complex cases of phase transitions and topotactic reactions



Group Theory 2 & 3

3.2Examples of phase transitions in chemistry — Group theory in
crystallography

From rutile type to CaCl, type

P4,/mnm Pnnm
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Group Theory 2 & 3

3.2Examples of phase transitions in chemistry — Group theory in
crystallography

From rutile type to CaCl, type

P4,/mnm Pnnm
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Group Theory 2 & 3
3.2 Examples of phase transitions in chemistry — Group theory in
crystallography

The relationship between rutile and CaCl, type: polymorphism in SnO,

SnO,: rutile type (ambient)
P4,/mnm, a = 473.67 pm, ¢ = 318.55 pm
Snin2a m.mm O 0 0
Oindf m2.m 0.307 X 0

SnO,: CaCl, type (high pressure modification at 12.6 GPa)
Pnnm, a = 465.33 pm, b =463.13 pm, ¢ = 315.50 pm

Snin2a .2/m 0 0 0
Oind4dg ..m 0.330 0.282 0

Exercise 7: Work out a Bédrnighausen tree for the polymorphism of SnO,.
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Group Theory 2 & 3

3.2Examples of phase transitions in chemistry — Group theory in
crystallography

Béirnighausen tree for the polymorphism of SnO,
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Group Theory 2 & 3
3.2 Examples of phase transitions in chemistry — Group theory in
crystallography

Classification of phase transitions

According to Ehrenfest a phase transition is of nt" order if the nt" derivative of the free
enthalpy G goes through a sudden change at the phase transition, e. g. volume or entropy
for first order or heat capacity or compressibility for second order.

First order phase transitions exhibit hysteresis with a coexistence of both phases and are
discontinuous. They produce latent heat and proceed through migration of an interface
between both phases (nucleation and growth). In second order phase transitions there is
no latent heat, no coexistence of both phases and no hysteresis. Structural changes are
continuous and a crystallographic group-subgroup relationship is mandatory.

In displacive phase transitions (usually second order) minute position changes of atoms
mark the transition, whereas in reconstructive phase transitions chemical bonds are
broken and reformed (always first order).

For continuos phase transitions the phenomenological theory of Landau and Lifshitz
applies:

e free enthalpy G = G, + 1/2a,n? + 1/4a,n*+ 1/6a,n® ...

e order parameter changes continuously following an exponential law n = A*[(T. - T)/T ]



Group Theory 2 & 3
3.2 Examples of phase transitions in chemistry — Group theory in
crystallography

The use of crystallographic group theory and Barnighausen trees for phase transitions

* classification of phase transitions (nt order, important for physical properties)

understanding polymorphism (temperature, pressure)

understanding piezo-, pyro- and ferroelectric phases

understanding magnetic order phenomena (ferro-, ferri-, antiferro-)

understanding structural changes during metal-seminconductor transitions

understanding of order-disorder transitions (e. g. in intermetallic phases)

understanding the occurrence of twins and antiphase domains
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Topological and Symmetry-Broken Phases in Physics and Chemistry — International
Theoretical Basics and Phenomena Ranging from Crystals and Molecules Summer School
to Majorana Fermions, Neutrinos and Cosmic Phase Transitions 2017

Group Theory 1 — Basic principles
1.1 Basic notions, group axioms and examples of groups

1.2 Classification of the group elements and subgroups

Group Theory 2 & 3 — Group theory in crystallography
2 From point groups to space groups — a brief introduction to crystallography
3.1 Crystallographic group-subgroup relationships

3.2 Examples of phase transitions in chemistry
TUTORIAL: Apply crystallographic group theory to a phase transition

Group Theory 4 — Applications in crystallography and solid state chemistry
4.1 The relation between crystal structures and family trees

4.2 Complex cases of phase transitions and topotactic reactions



Apply crystallographic group theory to a phase transition TUTORIAL

Exercise 8 /,e P
A A
Work out the matrix for the transformation of a cubic F-centered 1 ? s
;- a | ® |
cell (black unit cell) to a primitive cell (yellow unit cell). P g f
& _—
V=

Exercise 9

Work out the matrix for the transformation of a crystal structure with
a=441 pm, b=441 pm, c =441 pm, a =90°, B =90° vy =90°

with one atom in 0, 0, 0 and one atomin %, %, V> =»

a=624 pm,b=624 pm, c=882pm, a=90° B=90° y=90°

and give the transformed coordinates x/, y, z‘ for both atoms.
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Apply crystallographic group theory to a phase transition TUTORIAL

T/°C cubic, Pm 3m
120 -
tetragonal, PAmm
T orthorhombic, Bmm?2
-90 1 . o o .
rhombohedral, R3m ferroelectric modifications
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Apply crystallographic group theory to a phas

e transition TUTORIAL

Exercise 10: Work out a Bédrnighausen tree for the polymorphism of BaTiO,.

(Analyze the result with respect to the formation of twins and antiphase domains.)

Publication
Title

Reference

Language
Authors

i% published crystallographic data

Space group
Cell parameters

Atom coordinates

Bibliographic data

Publication
Structural Parameters and Electron Difference Density in BaTi03

Title
Acta Crystallogr. B (1992) 48, 764-769 Reference
English Language
Name Organization/ City Authors

Buttner R.H. Western Australia University, Department of Physics; Nedlands, A4
Maslen E.N. Western Australia University, Department of Physics; Nedlands, A(

Crystal structure

Pamm (99)
2 = 0.39998(8), b = 0.39998(8), c = 0.40180(8) nm, g = 90, 8 = 90, y = 90°
V = 0.06428 nm?, a/b = 1.000, &/c = 0.995, ¢/z = 1.005

Site Elements Wyck. Sym.

3% published crystallographic d
Space group
Cell parameters

x ¥ z SOF

Bibliographic data

Structural Parameters and Electron Difference Density in BEITiD3
Acta Crystallogr. B (1952) 48, 764-769
English

Name Organization/ City
Buttner R.H. Western Australia University, Department of Physics; Nedlands,

Australia
Maslen E.N. Western Australia University, Department of Physics; Nedlands,
Australia
Crystal structure
ata
Pm-3m (221)

& = 0.40058(8), b = 0.40053(8), ¢ = 0.40058(8) nm, g = 90, 5 = 90, v = 90°
Ba Ba ts  4mm 0 0 0.0 V¥ = 0.06428 nm?, a/b = 1.000, bfc = 1.000, ¢/a = 1.000
T T 1b 4mm 1/2 1/2 0.482(1) Atomn coordinates Site Elements Wyck. Sym. x y =z SOF
o1 0 1b 4mm 1/2 1/2 0.016(5) Ba Ba 1a m-3m o 0 0
0z o 2c 2mm. 1/2 0 0.515(3) Ti Ti 1b m-3m 1/2 1/2 1/2
01,2 O 3c 4/mm.m 1/2 1/2 0
Bibliographic data

Publication
Title

Reference
Language
Authors

Space group
Cell parameters

Atom coordinates

22 Published crystallographic data

Publication
Structures of the Ferroelectric Phases of Barium Titanate

Bibliographic data

Title Rhomboedrisches BaTiDB: Strukturuntersuchung bei 132 K und 196 K

1. Phys. Chem. (1993) 97, 2368-2377 )
English Reference Z. Kristallogr. (1981) 155, 217-226

MName Organization f City Language German
Kwei G.H. Los Alamos National Laboratory, ?; Los Alamos, U.S.A. New Mexico Authors Name Organization/ City
Lawson A.C. Los Alamos National Laboratory, ?; Los Alamos, U.S.A. New Mexico Schildkamp W. Saarland University, Fachbereich Kristallographie; Saarbricken,
Billinge S.1.L. Los Alamos National Laboratory, 7; Los Alamos, U.S.A. New Mexico Germany
Cheong 5.W. AT and T Bell Laboratories Inc., ?; Murray Hill, U.5.A. New Jersey Fischer K.

Crystal structure

Amm?2 (38) 22 published crystallographic data
Space group R
Cell parameters

& = 0.39828(3), b = 0.56745(5), ¢ = 0.56916(3) nm, g = 90, 8 = 90, y = 90°
V = 0.12863 nm°>, a/b = 0.702, b/c = 0.997, ¢/a = 1.429
Site Elements Wyck. Sym. x

Saarland University, Fachbereich Kristallographie; Saarbriicken,
Germany

Crystal structure

3mr (160)

3 = 0.4004(3), b = 0.4004(3), c = 0.4004(3) nm, g = 89.87, § = 89.87, y = §9.87°
e B 5 o Y on Sk V = 0.06419 nm?, a/b = 1.000, b/c = 1.000, ¢/a = 1.000
a a 3 mm . - -
T S mm2 1/2 0 0.5170(5) _Atum coordinates Site Elements Wyck. Sym. x v z SOF
o1 O 23 mm2 0 0 0.489(6) Ba Ba 15 im0 0 0.0
oz 0O 4= m.. 1/2 0.2561(3) 0.2343(4) Ti Ti 1a

o]

3m  0.4889(3) 0.4889(3) 0.4889(3)
o] 3b .m  0.5110(2) 0.5110(2) 0.0180(2)




TUTORIAL

YBa,Cu;0,

e a threefold superstructure of the cubic perovskite type

eT.=90K

e nobel prize in physics for high temperature superconductivity
(Bednorz and Miiller, 1987)

L ] ] L
Cell Parameters 3.8206(1) 3.8851(1) 11.6757(4) 30. 50. 90.
Wolume 17331 Formula Unitz per Cell 1 Calc. Dens. g 18
Exe rcise 1 1 Space Group P m m m{47) Pearson Symbol oP13 Meas. Dens.
Describe the cr stal Crystal System arthorhombic Crystal Class mmm Laue Class  mmm
y Whyckoff tzrgZhea Structure Type: YBa2Cu306=orh)
structure of YBa,Cu,0, ,  Seuence
Axiz Ratios alb 09834 bic 03328 cfa 30560
as a defect variant of the
. . Remark
cubic perovskite type
EL Lbl  OxState WyckSymb X ¥ z B
using a Barn[ghausen tree. Ba 1 +2.00 2t 05 05  0.1841(4) 0.59(10)
N 1 +3.00 1h 0.5 0.5 0.5 058010}
Capponi, J.J.; Chaillout, C,; Cu 1 +2.33 1a 0 0 0 0.33(11)
Hewat, AW.; Lejay, P.; Marezio, Cu 2 +2.33 2q 0 0 0.3548(3) 0.51(7)
M.; Nguyen, N.; Raveau, B.; o 1 -2.00 2g 0 0 0.1581(4) 0.93(12)
SOL'.Ibe roux’ | L"Tholer;ce’J L. o 2 200 2z 05 0 0.3779(4) 0.11(3)
-y 7o ) 7o o 3 -2.00 2r 0 0.5  0.3777(5) 0.31(9)
Tournier, R., Europhysics Letters o 4 200 1e 0 05 0

(1987) 3, p1301-p1307 o ) .
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Group Theory 2 & 3 — Group theory in crystallography
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4.2 Complex cases of phase transitions and topotactic reactions



Group Theory 4 —
Applications in
crystallography and solid
state chemistry

4.1 The relation between crystal structures and family trees

Ca2a|CL4f
P4y/m2im2fm | mmm | m2m

Cacl < 290K | 0 [0303 a=5=637.9pm Barnighausen tree for
~, 0 0303 =419 53pm
(rutile tvpe) - P .
0 at 520 K the polymorphism of
. b CaCl, (equivalent to
1 JT the one worked out
Ca:2a|Clig .
P2ym2im2m | .20m| . .m earher fOr SnOZ)
| CaCl type, < 490K 00273 a=625.9pm
0 |0.323 b=644.4pm )
0 | oo c=417.0pm U. Miller, Symmetry
at 290 kK

Relationships between

Crystal Structures,

Figure 9: Group—subgroup relation between two modifications of caleium chloride and the mutual Oxford University Press
rotation of the coordination octahedra.
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Group Theory 4 —
. . Applications in
4.1 The relation between crystal structures and family trees erystallography and solid
state chemistry

W. H. Baur, Rutile type derivatives,
. . Z. Kristallogr. 1994, 209, 143-150
Structure family of the rutile type g

PLxim2,inZim

t,}/tz/@l\\\
2 y G

t 2 t2
a-b,a+b,c N
i3
,b, 3¢
C2/m2/m2im P 2,in2in2/m P Lofm Pi;2,2
[CoRreO.] [CaCly] ‘ [
| & r1x
k2 2 2 t2 12 P Lylm 2,/n 2/m i2 k2
a,b,2c la+bl2, / Trirutile | 2q, 2b,c a,b, 2c
| la-bli2e  / l \\ F | !
1 A 4
I12im2fa 2/m P112im Pn2,m P12,/n1 {2 {2 Cisim PL,2,2
MgU0]  [VasCros0y] [In0OH]  [CuFy] Ly / \ |
k:j . / Ilz \ P2.3n21a’n2|frn F'ELrn k2 t2 t 2
a, 2b,2c c-a,b, 2a c-a,bZa FeNb:Os
Jowo 00w \ / l
4 ¥ 4 i3 t2
A112im P12J/n1 P12/n1 a,b3c Plyln Piy P22
[ATWO, [Manganite] [CuU0.] \ j ‘ ‘ [HgF OH
‘4 P12,/n1

l [CuSby0s ] "'bvﬂ*ti- 2¢ ﬂtl

A1
(Vi ALD, |¢-NbOz|  [R-NbO;|
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Group Theory 4 —
Applicationsin
crystallography and solid
state chemistry

Pmim

. (708K)' (99501 .
Structure family of the i l—"“\
cubic perovskite type ak 3

n-h a-m qhnh.!;n ?‘ ‘2\ RIm
F&tmrT / P .Fm r},‘ 4 lz

m
anﬂ, all '
mm m \ E‘;@ }
H% 'ﬁ 12
||
|gs_$_.d ﬂ-hu M g 5 i .t CaGeCl,
/ 'S / CMmim
F3c_ Iz- | sz
mi'"] it k2 S e
123K v a2bs b \ \
*%%;“ Pbam Pbmm cE. I Al '
(813} / \ m nzauf] *
[ k2 \ 1
k2 12 gbg 12 12 12
¥ ¥ A ¥
H. Barnighausen, Group-Subgroup %ﬂﬁ'} Pba2 qu%boﬁ Pb2m - Pral
Relations Between Space Groups: A 122251 .Iz 200K LVoy Lskf] ¥
Useful Tool in Crystal Chemistry, b 2g e
MATCH 1980, 9, 139-175 Fgu 2 Plt m
PbIr0,| #) MHaNB0,.0
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4.1 The relation between crystal structures and family trees

Structure family of the AIB, type

Group Theory 4 —
Applicationsin
crystallography and solid
state chemistry

R.-D. Hoffmann, R. Pottgen, Z

Kristallogr. 2001, 216, 127-145

PE!m2!m2fm
a, b, 2c a, b, 2c | t2
/ / kz;a. b, 2‘;, U.U ‘”2

P6/m2/m2/m P 6;/m2/m2/c P65;/m2/m2/c P6m2 i
I
2a, 2b, ..-
| / A
k2; a, b, 2¢ \tz o t2 iz | \
k3 Y 0.0.14 ab 2 g
Peym2im2/c AL aBe P6gmc PBm2 " e a.b, 3
/ 222c  [NaPiSb[LiGaGe] TN
P63/m2/c2/m T P62m P6m2
] kz P——
[TisGa, [Hf;CuSn,) ,I, a b 2¢ ThsPds YbAgPb
P6;/m2/m2ic 4 0,0, 1/2 TizRh,0In, tI2
~ 2 Fe,P-related P3m 1
\ v compounds CalLiSn
P6;mc

|YLiSn|PrgCoGas|

©Holger Kohlmann, Leipzig University

—

P3m1
|EuGe, |CeCd,|

P 6/m2/m2/im

63



Topological and Symmetry-Broken Phases in Physics and Chemistry — International
Theoretical Basics and Phenomena Ranging from Crystals and Molecules Summer School
to Majorana Fermions, Neutrinos and Cosmic Phase Transitions 2017

Group Theory 1 — Basic principles
1.1 Basic notions, group axioms and examples of groups

1.2 Classification of the group elements and subgroups

Group Theory 2 & 3 — Group theory in crystallography
2 From point groups to space groups — a brief introduction to crystallography
3.1 Crystallographic group-subgroup relationships

3.2 Examples of phase transitions in chemistry
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4.2 Complex cases of phase transitions and topotactic reactions



Group Theory 4 —
Applications in
crystallography and solid
state chemistry

a-Quarz (P3,21) B-Quarz (P6,22)
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4.2 Complex cases of phase transitions and topotactic reactions

Group Theory 4 —
Applicationsin
crystallography and solid
state chemistry

The origin of twinning in quartz: phase transition between high and low quartz at 846 K

U. Miller, Symmetriebeziehungen zwischen

Si:3d | O: 6i
/ﬂ_ f_ P6,22 222 | 2 verwandten Kristallstrukturen, Teubner Verlag
I
'l\ & C>' 'l\ 4 C> Hochquarz 7 [0416
o—¢ o—¢g | 0 0,208
1 2
t2 < 3 Translationengleiche Untergruppe;
0,0, _1; 1 ,J, Ursprungsverschiebung beachten:
3B O Be —% zu den z-Koordinaten addieren
i — P3,21 2, 1
<ﬁ A ( 1> Tiefquarz 0,470(0,414 Die x-Koordinate von Si und die z-Koordinate
o S I 0 10,268 von O werden frei, die x- und y-Koordinaten
2 % 0,286 von O werden voneinander unabhéngig
Silicon aloms at zs0 0,:=§ '@, and ::%:.. a,b,2c
0,0, —-%- /\ N Wegen der Verdoppelung von ¢ z-Koordinaten
\ Al:3a| P:35/01:6¢|02: 6¢ halbieren, dann wegen der Ursprungsver-
P3,21 2. 2. 1 1 schiebung % und % zu den z-Koordinaten
AIPO, 0,466|0,467|0,416 | 0,415 addieren
0 0 10,292|0,257
I | 2 10398]0,884
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Group Theory 4 —
Applicationsin
crystallography and solid
state chemistry

4.2 Complex cases of phase transitions and topotactic reactions

{!7% Pm3m
\%H”‘ L SITiO, (T = 298 K)
; ru u% |

e = . k2 / \
oy fs 2a, 2b, 2¢
v e ) t3
Fm3m k4 \
Ca,RhD_ M I'D K PtCl 2a, 2b, 2c
% (A=Ca, Sr, Eu) 2 J P4/mmm
~ .
. t2 t:la 2 /
Fm3 4 y(a-b), Y(a+h), ¢ Im3m a, b, 2c
Ca_Rh D
14/mmm 8 6 P4/mmm
Na PtD, | EuMg,D
6
« k2
‘ k4 M_IrD_ (T = 100 K) v
. | Pm3m
k2, (Va, Ya , Ya) CaRh D,
P4/nmm P4/mmm
y Mg,CoD_ MgRhD, .,
Pa3 |
L%
| t2, a-b, atb,c ¢
t2
+ Cmme
|
P23 k2, a, b, 2c
CaMgNiD, v

Imaa

/K t|2 H. Kohlmann, Z. Kristallogr.
¢ 2009, 224, 454-460

v

12/a
©Holger Kohlmann, Leipzig University Mg,NiD -LT X 67
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Group Theory 2 & 3

4.2 Complex cases of phase transitions and topotactic reactions — Group theory in
crystallography

d(V-V) = 285.1 pm d(V-V) =261.9 pm, 316.9 pm
tetragonal rutile type structure monoclinic structure at ambient
at 360 K (distorted rutile structure)

phase transition accompanied by =2» metal — insulator transition
=>» Peierls distortion
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Group Theory 2 & 3

4.2 Complex cases of phase transitions and topotactic reactions — Group theory in
crystallography

Polymorphism in VO,

VO,: rutile type (high temperature modification at 373 K)
P4,/nmm, a = 455.46 pm, ¢ = 285.28 pm
Vin2a m.mm O 0 0
Oindf m2.m 0.3001 «x 0
VO,: VO, type (M1 type)
P2./a, a =538.3 pm, b =453.8 pm, c=575.2 pm, B = 122.7°
Vinde 1 0.026 0.021 0.239
Olinde 1 0.299 0.297 0.401
O2inde 1 0.291 0.288 0.894

V,sCry,0,: V, ¢Cry,0, type (M2 type)
Al112/m, a =452.6 pm, b =906.6 pm, ¢ =579.7 pm, y = 91.9°
Vinde 1 0.026 0.021 0.239
Olinde 1 0.299 0.297 0.401
O2inde 1 0.291 0.288 0.894



Group Theory 4 —
.y . . Applicationsin
4.2 Complex cases Of phase transitions and topotactlc reactions crystallography and solid

state chemistry

V:2a|0:4f
Symmetry analysis Pa,y/m2,/n2/m |mmm| m2m
0 0,300
of a Peierls distortion il R o 0300
in VO, | 0| o
)
J’ V:2a|0: 4g
P2,/n2,/n2/m |.2/m| .m
0 10,295
CaCl,-T =
CaCL-TP)| 1§ o305
N Lo o
t2 t2
/V:2a O:4e \ V:1a|V: 1h|0:2m|O:2n
P12,/m1 | T | 1 P112/m |.2/m|.2/m| .m | .m
U. Miller, | 0 [0,295 | 0 | 5 ]0,295/0,205
. 1
Symmetrie- 2 0 [0:305 0 0 | z |0:305/0.805
bezieh a—c, b, 2c 0 100 a, 2b, 2¢ 0 5 0 7
I N
eziehungen 0,0,—4 X9 rkz)+ 1 0,0,—3 l P s i l\‘
zwischen ¥ % o A
) V1:4e|O1:4e|02:4e V1:4g|V2:4i|01:8/103:4i|02:4i
verwandten Kristall- P12/al | | 1 1 AllYm | 5 | wm| 1 | um|
strukturen, VO,, M, | [0,026]0,2990,291 VO,, M, || 0 [0.531]0,294]0,201]0,209
Teubner Verl 0,021]0,297 | 0,288 0 ]0,269|0,148 [0,400(0,397
eubner veriag 0,239 0,401 | 0,894 0281 L lo248 L | 0
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Order-disorder phase transitions
in ccp-related structures
(ccp = cubic close packing)

H. Kohlmann, C. Ritter, Reaction Pathways
in the Formation of Intermetallic InPd,
Polymorphs, Z. Anorg. Allg. Chem. 2009,
635, 1573-1579

4.2 Complex cases of phase transitions and topotactic reactions

Group Theory 4 —
Applicationsin
crystallography and solid
state chemistry

Frmi3m
m3m m3m
3 MXPdH 5
0 0
0 ‘ 0
t3
Yz(a-b),
K4 Yz(a+b), ¢
14/mmm 2a
4/mmm
0
0
| 0
Pm3m K2
AuCu, *
P4/mmm 1a 1d
1a 3¢ 4/mmm 4/mmm
, 4
1] 8 0 %
0 B - ~
k2, a-b, a+b, 2¢c e2 a b, 2¢c, 2g 1c
/ (0, 0, ¥2) 4mm 4/mmm
0 Y2
2a 26 Tl 0 %
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4.2 Complex cases of phase transitions and topotactic reactions

Topotactic Reactions - Definitions

Bonev (I. Bonev, On the Terminology of the Phenomena of Mutual Crystal Orientation, Acta
Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1972, 28, 508-512):

epitaxy - for oriented growth of a phase on the crystal surface of another phase

syntaxy - for simultaneous growth of the mutually oriented crystals of two or more phases
topotaxy - for oriented transformation in an open system with a partial alteration in
chemical composition of the primary crystal

endotaxy - for oriented transformation in a closed system, without exchange of
components between the system (primary crystal) and its environment

Gunther and Oswald (J. R. Giinter, H. R. Oswald, Attempt to a Systematic Classification of
Topotactic Reactions, Bull. Inst. Chem. Res., Kyoto Univ. 1975, 53, 249-255):

A chemical reaction of a solid is called topotactic, if the product is formed in one or
several crystallographically equivalent orientations relative to the parent crystal, if there
has been an exchange of components with the surroundinzs, and if the reaction can proceed
throughout the entire volume of the parent crystal.

If the product is formed in a small number of defined, but not equivalent orientations,
the reaction is treated as a case of several different topotactic reactions occurring simul-

taneously. -y 2 ; J
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J. Yang, S. Muhammad, M. R. Jo, H. Kim, K. Song, D. A, Agyeman, Y.-l. Kim, W.-S. Yoon, Y.-M. Kang, Chem. Soc.
Rev. 2016, 45, 5717-5770
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Application of crystallographic group-subgroup relationships
* bring order to the huge number of crystal structures =» family trees

e understand substititutional, defect and stuffed variants : o

Ca:2a|CL4f
Pdofm2ym2im |mmm |mlm

(splitting of Wyck. pos.)

) . . .. . CaCl,. > 450K | | ¢ |9303
* classify phase transitions (huge implications for properties!) (rutile type) o

e understand and predict formation of twins and anti-phase domains

o

e understand orientational relations in topotactic reactions 1
Ca:2a|Cl4g
(e. g. intercalation in lithium ion batteries and i R B LA R
| CaCl, type, < 490K | 0 loss
]
ion exchange in minerals) 0o | o
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