
Tutorial on Critical Phenomena, Scaling and the Renormalization Group 

Problem 1:  An exact solution of the one-dimensional Ising model 

The exact calculations of free energy and correlation functions of the one-dimensional Ising model 

demonstrate, that there is a critical point at zero temperature at which the correlation length and 

susceptibility diverge.  

In the one-dimensional Ising model, there is a spin variable 𝑠𝑖 = ±1 at each site 𝑖 = 1,2, … , 𝑁 on a 

one-dimensional lattice. Assuming only nearest neighbor interactions the Hamiltonian is  

ℋ = −𝐽 ∑ 𝑠𝑖𝑠𝑗

〈𝑖,𝑗〉

− ℎ ∑ 𝑠𝑖

𝑖

  , 

where 〈𝑖, 𝑗〉 denotes the sum over neighboring lattice sites. 𝐽 and ℎ are the exchange integral (𝐽 > 0 

for ferromagnetic interaction) and the external magnetic field, respectively.  

(1) The partition function of this model 

𝒵𝑁(𝑇, ℎ) = ∑ ∑ … ∑ 𝑒
−

ℋ
𝑘B𝑇

𝑠𝑁=±1𝑠2=±1𝑠1=±1

≡ ∑ 𝑒
−

ℋ
𝑘B𝑇

𝑠1,𝑠2,…,𝑠𝑁

 

can be calculated exactly for arbitrary ℎ using the formalism of transfer matrices. By using 

periodic boundary conditions (in which 𝑠𝑁+1 is identical to 𝑠1), show first that the partition 

function can be expressed as a trace of a product of transfer matrices 𝑇  

𝒵𝑁 = Tr 𝑇𝑁  , 

where  𝑇𝑠𝑖𝑠𝑖+1
= (𝑒𝛽𝐽+𝛽ℎ 𝑒−𝛽𝐽

𝑒−𝛽𝐽 𝑒𝛽𝐽−𝛽ℎ
) ≡ 𝑇 is a two-by-two matrix (with 𝛽 ≡ 1/𝑘B𝑇). 

 

(2) Calculate the eigenvalues 𝜆± of the matrix 𝑇 and show that in the thermodynamic limit the 

Gibbs free energy per spin becomes (for 𝑇 ≠ 0) 

𝑔(𝑇, ℎ) ≔ lim
𝑁→∞

1

𝑁
 (−𝑘B𝑇 ln 𝒵𝑁(𝑇, ℎ)) = lim

𝑁→∞

1

𝑁
 (−𝑘B𝑇 ln(𝜆+

𝑁 + 𝜆−
𝑁)) = − 𝑘B𝑇 ln 𝜆+ 

with 𝜆+ = 𝑒𝛽𝐽 {cosh(𝛽ℎ) + √sinh2(𝛽ℎ) + 𝑒−4𝛽𝐽} . 

What follows in the low 𝑇 low ℎ̃ limit (with ℎ̃ = 𝛽ℎ)? 

 

(3) Calculate the (dimensionless) equilibrium magnetization per spin 𝑚(𝑇, ℎ) ≔ − (
𝜕𝑔

𝜕ℎ
)

𝑇
 in the 

thermodynamic limit and show that for the one-dimensional Ising model the spontaneous 
magnetization 𝑚(𝑇, 0)  vanishes for all temperatures 𝑇 ≠ 0. 
The susceptibility measuring the change in 𝑚(𝑇, ℎ) in response to an external field is 

 𝜒 ≔ (
𝜕𝑚

𝜕ℎ
)

𝑇
.  Determine  𝜒 in the limit ℎ → 0.  

 
(4) The spin-spin correlation function 𝐺(𝑛𝑎) with two spins 𝑠𝑖, 𝑠𝑖+𝑛 separated by a distance 𝑛𝑎  

(𝑎 denotes the lattice constant) is defined by 

𝐺(𝑛𝑎) ≔ 〈[𝑠𝑖 − 〈 𝑠𝑖〉][𝑠𝑖+𝑛 − 〈 𝑠𝑖+𝑛〉]〉 ≡ 〈𝛿𝑠𝑖 𝛿𝑠𝑖+𝑛〉 , 

where 〈𝒜〉 ≔
1

𝒵𝑁
∑ 𝒜𝑒−𝛽ℋ

𝑠1,𝑠2,…𝑠𝑁
. 

Show that for ℎ = 0 we have for the correlation function in the limit 𝑁 → ∞: 

𝐺(𝑛𝑎) = tanh𝑛(𝛽𝐽)  . 
Hint:  

If ℎ = 0, the matrix element 𝑇𝑠𝑖𝑠𝑖+1
 takes on the simple form 𝑇𝑠𝑖𝑠𝑖+1

= cosh(𝛽𝐽) [1 + 𝑠𝑖𝑠𝑖+1 tanh(𝛽𝐽)]  

and we easily obtain (𝑇2)
𝑠𝑖𝑠𝑖+2

= ∑ 𝑇𝑠𝑖𝑠𝑖+1𝑠𝑖+1
𝑇𝑠𝑖+1𝑠𝑖+2

= 2 cosh2(𝛽𝐽) [1 + 𝑠𝑖𝑠𝑖+2 tanh2(𝛽𝐽)] . From  

 this we can deduce (𝑇𝑙)
𝑠𝑖𝑠𝑖+𝑙

. 

 

(5) Use the result of (4) and the relation 𝐺(𝑟)~𝑒−𝑟/𝜉  (valid for large 𝑟) to determine the correlation 

length 𝜉.  What follows in the high- and low-temperature limits?  



Problem 2:  Renormalization group for the one-dimensional Ising model 

Using the Migdal-Kadanoff procedure we apply the Renormalization Group (RG) technique to a one-

dimensional Ising model (where the RG is exact). The Migdal-Kadanoff procedure is one of the easiest 

concepts of RG applicable to lattice spin Hamiltonians. It is based on the elimination of a certain 

fraction of spins from the partition sum, reducing in this way the number of degrees of freedom. The 

removed spins induce an effective interaction of the remaining spins which causes renormalized 

coefficients in the Hamiltonian of the new reduced spin system. This decimation process is continued 

indefinitely. From the resulting RG flows the fixed points of the RG transformations are deduced. The 

exponents obtained by linearizing the recursion relations in the vicinity of unstable critical fixed points 

(unstable at least in one direction) are the exponents determining the scaling of the free energy and 

of related functions. From the scaling behavior in turn we can deduce the critical exponents.  

Consider the one-dimensional Ising model with nearest neighbor interactions. The reduced 

Hamiltonian is ℋ̃ = −
ℋ

𝑘B𝑇
= ∑ {𝐽𝑠𝑖𝑠𝑖+1 +

1

2
ℎ̃(𝑠𝑖 + 𝑠𝑖+1)}𝑖=1  , where 𝐽 =

𝐽

𝑘B𝑇
  and ℎ̃ =

ℎ

𝑘B𝑇
 . 

(1) Decimate the number of degrees of freedom by summing in the partition sum over all even 

numbered spins (without loss of generality we assume that the total number of spins is even). 

Show that the partition function  𝒵𝑁(𝐽, ℎ̃) ≡ 𝒵𝑁[ℋ̃] can be expressed by the new 

(renormalized) Hamiltonian ℋ̃′ involving spins only at odd numbered sites 

𝒵𝑁[ℋ̃] = ∑ 𝑒ℋ̃

𝜎1,𝜎2,𝜎3,…

= ∑ 𝑒ℋ̃′

𝜎1,𝜎3,…

= 𝒵𝑁′=𝑁/2[ℋ̃′]  , 

where ℋ̃′ has a similar form as the original Hamiltonian ℋ̃ but with renormalized coupling 

parameters 𝐽′, ℎ̃′  determined by  

(𝑒𝐽(𝑠1+𝑠3)+ℎ̃ + 𝑒−𝐽(𝑠1+𝑠3)−ℎ̃)𝑒
1
2

ℎ̃(𝑠1+𝑠3)
= 𝜙(𝐽, ℎ̃)𝑒𝐽′𝑠1𝑠3+

1
2

ℎ̃′(𝑠1+𝑠3)
 . 

This means that the remaining spins of the thinned-out lattice interact with their nearest neighbors 

through a renormalized coupling parameter 𝐽′ and are subject to a renormalized external field ℎ̃′. 

(2) By substituting the different values for 𝑠1, 𝑠3 obtain the relationship between the renormalized 

parameters 𝐽′, ℎ̃′ and the original parameters 𝐽, ℎ̃. 

 

(3) The procedure described in (2) may be repeated again and again. To understand the resulting 

“flow” of the parameters 𝐽, ℎ̃ we first consider the case without external field. 

Show that for ℎ̃ = 0 it follows 

𝐽′ =
1

2
ln cosh(2𝐽) ≤ 𝐽   . 

Demonstrate that this implies a stable fixed point at 𝐽 = 0 (infinite temperature 𝑇) and an 

unstable fixed point at 𝐽 = ∞ (zero 𝑇) of the RG transformation.  

Starting from any finite interaction 𝐽 the successive thinning out of degrees of freedom leads to a 

Hamiltonian where the remaining spins are more weakly coupled. This indicates that the one-dimensional 

Ising chain is at any temperature 𝑇 ≠ 0 always disordered at sufficiently long length scales. 

 

(4) The relationship between 𝐽′ and 𝐽 of (3) can also be written as 

tanh(𝐽′) = tanh2(𝐽) . 
Use this equation to find a recursion relation for the correlation length 𝜉 measured in terms of 

the lattice constant of the respective lattice.  

Show that the (dimensionless) correlation length decreases under the renormalization 

procedure unless the system is critical (𝜉 = ∞) or noninteracting (𝜉 = 0).  

Hint:  

Remember that in Problem 1 we have shown that for the spin-spin correlation function of the one-

dimensional Ising model it holds 𝑔(𝑛𝑎) = tanh𝑛(𝐽)]. 



(5) Now we return to the more general case of nonzero external field and are interested in the flow 

of coupling parameters for ℎ̃ ≠ 0 . Show that 
𝜕ℎ̃′

𝜕ℎ̃
> 1 for all finite 𝐽.  

 

(6) The recursion relations for 𝐽 and ℎ̃ (see (2)) can be linearized around the unstable fixed point  

(the 𝑇 = 0 critical point). Show that in the vicinity of this critical point 

𝑒−𝐽′
= √2𝑒−𝐽   ,    ℎ̃′ = 2 ℎ̃   . 

 

(7) Now regard 𝑒−𝐽 and ℎ̃ as scaling fields. Show that then for the singular part of the free energy 

per spin 𝑔sing it follows  

�̃�sing(𝑒−𝐽, ℎ̃) = 𝜆−1�̃�sing (𝜆1/2𝑒−𝐽�̃� , 𝜆ℎ̃)       (with �̃�sing ≡
𝑔sing

𝑘B𝑇
 )      

for rescaling parameter  𝜆 = 2.   

Demonstrate that this implies the following scaling law for 𝑓sing 

�̃�sing(𝑒−𝐽, ℎ̃) = 𝑒−2𝐽�̃�sing(ℎ̃𝑒2𝐽)  . 

 

(8) Express the above scaling law in terms of the correlation length 𝜉 rather than 𝐽. Show that the 

critical indices (exponents)  𝛾, 𝜈, 𝛼 (describing the strength of leading singularities in 

susceptibility, correlation length and specific heat, respectively, near the critical point) satisfy 

the following relation  
𝛾

𝜈
=

2 − 𝛼

𝜈
= 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For more details see, for example, P.M Chaikin and T.C: Lubensky, Principles of condensed 

matter physics (Cambridge University Press)    


