Majorana Fermions (Neutrinos) in Particle Physics

S. T. Petcov
SISSA/INFN, Trieste, Italy, and
Kavli IPMU, University of Tokyo, Japan

Plan of the Lectures

1. Preliminary Remarks.
2. Massive Neutrinos, Neutrino Mixing and Oscillations: Brief Overview.
3. The Three Neutrino Mixing: what we have learned.
4. Open Questions in the Physics of Massive Neutrinos and Future Progress.
5. The Nature of Massive Neutrinos I:

Massive Majorana versus Massive Dirac Neutrinos.
6. The Nature of Massive Neutrinos II:

Origins of Dirac and Majorana Massive Neutrinos (Deneral Discussion).
7. Determining the Nature of Massive Neutrinos:

Neutrinoless Double Beta Decay.
8. The Nature of Massive Neutrinos III:

The Seesaw Mechanisms of Neutrino Mass Generation.
9. Leptogenesis Scenario of Generation of the Baryon Asymmetry of the Universe.
10. Future LBL Neutrino Oscillation Experiments on $\operatorname{sgn}\left(\Delta m_{31}^{2}\right)$ and $C P$ Violation (brief overview).
11. Conclusions.

3 Families of Fundamental Particles: Quarks+Leptons

$\left(\begin{array}{ll}\nu_{e} & u \\ e & d\end{array}\right) \quad\left(\begin{array}{cc}\nu_{\mu} & c \\ \mu & s\end{array}\right) \quad\left(\begin{array}{cc}\nu_{\tau} & t \\ \tau & b\end{array}\right) \quad+$ their antiparticles

- $|p>=|$ uud $>, \quad|n>=| d d u>, \ldots$
- Electromagnetic interaction: the photon γ (q's,e, μ, τ)
- Strong interaction: 8 Gluons G (only q's)
- Weak interaction: $W^{ \pm}, Z^{0}$ (all: q's, $l^{ \pm}, \nu_{l}$)
- Gravitational interaction: the graviton g (all)

EM, Strong and Gravitational Interactions have symmetries: particle \leftrightarrow antiparticle (C), Left-Right or Mirror (P), and Combined CP (Strong CP Problem?) not respected by Weak Interactions.
All Fundamental Interactions obey CPT-symmetry: particle \leftrightarrow antiparticle, Left-Right, $t \rightarrow-t$.
Universe: there are no antiparticles.

3 Families of Fundamental Particles

$\left(\begin{array}{ll}\nu_{e} & u \\ e & d\end{array}\right) \quad\left(\begin{array}{cc}\nu_{\mu} & c \\ \mu & s\end{array}\right) \quad\left(\begin{array}{cc}\nu_{\tau} & t \\ \tau & b\end{array}\right) \quad+$ their antiparticles

- 3 types (flavours) of active $\nu^{\prime} s$ and $\tilde{\nu}^{\prime} s$
- The notion of "type" ("flavour") - dynamical; $\nu_{e}: \nu_{e}+n \rightarrow e^{-}+p ; \quad \nu_{\mu}: \pi^{+} \rightarrow \mu^{+}+\nu_{\mu} ;$ etc.
- The flavour of a given neutrino is Lorentz invariant.
- $\nu_{l} \neq \nu_{l^{\prime}}, \tilde{\nu}_{l} \neq \tilde{\nu}_{l^{\prime}}, l \neq l^{\prime}=e, \mu, \tau ; \nu_{l} \neq \tilde{\nu}_{l^{\prime}}, l, l^{\prime}=e, \mu, \tau$.

The states must be orthogonal (within the precision of the corresponding data): $\left\langle\nu_{l}^{\prime} \mid \nu_{l}\right\rangle=\delta_{l^{\prime} l},\left\langle\tilde{\nu}_{l}^{\prime} \mid \tilde{\nu}_{l}\right\rangle=\delta_{l^{\prime} l}$, $\left\langle\tilde{\nu}_{l}^{\prime} \mid \nu_{l}\right\rangle=0$.

The Charged Current Weak Interaction Lagrangian:
$\mathcal{L}_{\text {lep }}^{C C}(x)=-\frac{g}{2 \sqrt{2}} \sum_{l=e, \mu, \tau} \bar{l}(x) \gamma_{\alpha}\left(1-\gamma_{5}\right) \nu_{l \mathrm{~L}}(x) W^{\alpha}(x)+$ h.c.,
$W^{ \pm}: \quad M_{\mathrm{W}}=80 \mathrm{GeV}, g(\cong 0.6)-S U(2)_{L}$.
The Neutral Current Weak Interaction Lagrangian:
$\mathcal{L}_{\nu}^{N C}(x)=-\frac{\sqrt{g^{2}+\left(g^{\prime}\right)^{2}}}{2} \sum_{l=e, \mu, \tau} \bar{\nu}_{l \mathrm{~L}}(x) \gamma_{\alpha} \nu_{l \mathrm{~L}}(x) Z^{\alpha}(x)$,
Z^{0}-boson: $\quad M_{Z}=92 \mathrm{GeV}, g^{\prime}(\cong 0.4)-U(1)_{Y_{W}}$
For example, $\mu^{-}-$decay, $\mu^{-} \rightarrow \nu_{\mu}+e^{-}+\bar{\nu}_{e}$:
$\mu^{-} \rightarrow \nu_{\mu}+$ virtual $W^{-} \rightarrow \nu_{\mu}+e^{-}+\bar{\nu}_{e}$
S.T. Petcov, Summer School, TU Dresden, 17/08/2017

We live in a sea of neutrinos.

[^0]
Atmospheric neutrinos

Zenith angle dist. of Atmospheric v flux

Ev>a few GeV
Up/Down Symmetry

S.T. Petcov, Summer School, TU Dresden, 17/08/2017

History of the Universe

Solar Neutrinos: $\Phi_{\text {Earth }} \cong 6.5 \times 10^{10} \frac{\nu_{\odot}}{\mathrm{cm}^{2} \mathrm{~s}}, \bar{E} \sim 1 \mathrm{MeV}$.
SN Neutrinos: $\bar{E} \sim 10$ MeV
$\Phi_{S N}$ carries 99% of the released $E\left(\sim 10^{53}\right.$ ergs).
Relic Neutrinos (Cosmic Background $\nu \mathbf{s}$):
$t_{U} \sim 1 \mathrm{sec}, E \sim 10^{-4} \mathbf{e V}, n_{C B} \sim 330 \frac{\nu}{\mathrm{~cm}^{2}}$.
Atmospheric Neutrinos, $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}, E \sim 0.2-10 \mathrm{GeV}$.
Reactor $\bar{\nu}_{e}, E \sim 3 \mathrm{MeV}$:
NPS 1 GWT thermal $: \sim 10^{20} \frac{\bar{\nu}_{e}}{s e c}$.
Accelerator $\nu_{\mu}, \bar{\nu}_{\mu}, E \sim 1-100 \mathrm{GeV}$.

- Data (relativistic $\nu^{\prime} s$): $\nu_{l}\left(\tilde{\nu}_{l}\right)$ - predominantly LH (RH). Standard $S U(2)_{\mathrm{L}} \times U(1)_{Y_{W}}$ Theory: $\nu_{l}, \widetilde{\nu}_{l}-\nu_{l L}(x)$; $\nu_{l L}(x)$ form $S U(2)_{\mathrm{L}}$ doublets with $l_{L}(x), l=e, \mu, \tau$:

$$
\binom{\nu_{l L}(x)}{l_{L}(x)} ; \quad l_{R}(x)-S U(2)_{\llcorner } \text {singlets, } \quad l=e, \mu, \tau .
$$

- No (compelling) evidence for existence of (relativistic) ν^{\prime} s ($\tilde{\nu}^{\prime}$ s) which are predominantly RH (LH): $\nu_{R}\left(\tilde{\nu}_{L}.\right)$
If $\nu_{R}, \widetilde{\nu}_{L}$ exist, must have much weaker interaction than $\nu_{l}, \widetilde{\nu}_{l}: \nu_{R}, \widetilde{\nu}_{L}$ - "sterile", "inert".
In the formalism of the ST, ν_{R} and $\tilde{\nu}_{L}-\mathrm{R}$ R Pontecorvo, ${ }^{19667}$ fields $\nu_{R}(x)$; can be introduced in the ST as $S U(2)_{L}$ singlets.
No experimental indications exist at present whether the SM should be minimally extended to include $\nu_{R}(x)$, and if it should, how many $\nu_{R}(x)$ should be introduced.
$\nu_{R}(x)$ appear in many extensions of the $S T$, notably in $S O(10)$ GUT's.

The RH ν 's can play crucial role
i) in the generation of $m(\nu) \neq 0$,
ii) in understanding why $m(\nu) \ll m_{l}, m_{q}$,
iii) in the generation of the observed matter-antimatter asymmetry of the Universe (via Ieptogenesis).

The simplest hypothesis is that to each $\nu_{l L}(x)$ there corresponds a $\nu_{l R}(x), l=e, \mu, \tau$.
$\mathrm{ST}+m(\nu)=0: L_{l}=$ const. $, l=e, \mu, \tau ;$
$L \equiv L_{e}+L_{\mu}+L_{\tau}=$ const.

There have been remarkable discoveries in neutrino physics in the last ~ 19 years.

Compellings Evidence for ν-Oscillations

- $\nu_{\text {atm }}$: SK UP-DOWN ASYMMETRY $\theta_{Z-}, L / E-$ dependences of μ-like events

Dominant $\nu_{\mu} \rightarrow \nu_{\tau} \quad \mathrm{K} 2 \mathrm{~K}, \mathrm{MINOS}, \mathrm{T} 2 \mathrm{~K} ; \mathrm{CNGS}$ (OPERA)
$-\nu_{\odot}:$ Homestake, Kamiokande, SAGE, GALLEX/GNO Super-Kamiokande, SNO, BOREXINO; KamLAND

Dominant $\quad \nu_{e} \rightarrow \nu_{\mu, \tau} \quad$ BOREXINO
$-\bar{\nu}_{e}$ (from reactors): Daya Bay, RENO, Double Chooz
Dominant $\quad \bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu, \tau}$
T2K, MINOS, NO $\nu \mathbf{A}\left(\right.$ accelerators $\left.\nu_{\mu}, \bar{\nu}_{\mu}\right): \nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

Compelling Evidences for ν-Oscillations: ν mixing
$\left|\nu_{l}\right\rangle=\sum_{j=1}^{n} U_{l j}^{*}\left|\nu_{j}\right\rangle, \quad \nu_{j}: m_{j} \neq 0 ; \quad l=e, \mu, \tau ; \quad n \geq 3 ;$
$\nu_{l \mathrm{~L}}(x)=\sum_{j=1}^{n} U_{l j} \nu_{j \mathrm{~L}}(x), \quad \nu_{j \mathrm{~L}}(x): m_{j} \neq 0 ; \quad l=e, \mu, \tau$.

> B. Pontecorvo, 1957; 1958; 1967;
> Z. Maki, M. Nakagawa, S. Sakata, 1962;
U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix.
$\nu_{j}, m_{j} \neq 0$: Dirac or Majorana particles.
Data: at least 3ν s are light: $\nu_{1,2,3}, m_{1,2,3} \lesssim 1 \mathrm{eV}$.

The Charged Current Weak Interaction Lagrangian:
$\mathcal{L}^{C C}(x)=-\frac{g}{2 \sqrt{2}} \sum_{l=e, \mu, \tau} \bar{l}(x) \gamma_{\alpha}\left(1-\gamma_{5}\right) \nu_{l \mathrm{~L}}(x) W^{\alpha}(x)+$ h.c.,
$\nu_{l \mathrm{~L}}(x)=\sum_{j=1}^{n} U_{l j} \nu_{j \mathrm{~L}}(x), \quad \nu_{j \mathrm{~L}}(x): m_{j} \neq 0 ; \quad l=e, \mu, \tau$.

KamLAND: L / E-Dependence (reactor $\bar{\nu}_{e}, \bar{L}=180 \mathrm{~km}, \mathrm{E}=(1.8-10) \mathrm{MeV}$)

Dr. T. Kajita, Prof. A. McDonald, Nobel Prize for Physics winners, 2015

FUNDAMENTAL PHYSICS BREAKTHROUGH PRIZE

BOARD TROPHY EVENTS NOMINATIONS NEWS CONTACTS COMMITTEE PRIZES LAUREATES RULES

Search

LAUREATES

Breakthrough Prize Special Breakthrough Prize New Horizons Prize Physics Frontiers Prize
$2016 \underline{2015} \underline{2014} \underline{2013} \underline{2012}$

Atsuto Suzuki and the
KamLAND Collaboration
S.T. Petcov, Summer School, TU Dresden, 17/08/2017

S.T. Petcov, Summer School, TU Dresden, 17/08/2017

The Pontecorvo Prize for 2016 (24/02/2017): Prof. Yifang Wang (Daya Bay), Prof. Soo-Bong Kim (RENO), Prof. K. Nishikawa (T2K)
"For their outstanding contributions to the study of the neutrino oscillation phenomenon and to the measurement of the Theta13 mixing angle in the Daya Bay, RENO and T2K experiments.'

The relatively large value of the "reactor" angle $\theta_{13} \cong 0.15$ measured in the Daya Bay, RENO and Double Chooz experiments, indications for which were obtained first in the T2K experiment, opened up the possibility to search for CP violation effects in neutrino oscillations.

These data imply that

$$
m_{\nu_{j}} \lll m_{e, \mu, \tau}, m_{q}, q=u, c, t, d, s, b
$$

For $m_{\nu_{j}} \lesssim 1 \mathrm{eV}: m_{\nu_{j}} / m_{l, q} \lesssim 10^{-6}$

For a given family: $10^{-2} \lesssim m_{l, q} / m_{q^{\prime}} \lesssim 10^{2}$

These discoveries suggest the existence of New Physics beyond that of the ST.

The New Physics can manifest itself (can have a variety of different "flavours"):

- In the existence of more than 3 massive neutrinos: $n>3$ ($n=4$, or $n=5$, or $n=6, \ldots$).
- In the Majorana nature of massive neutrinos.
- In the observed pattern of neutrino mixing and in the values of the CPV phases in the PMNS matrix.
- In the existence of new particles, e.g., at the TeV scale: heavy Majorana Neutrinos N_{j}, doubly charged scalars,...
- In the existence of LFV processes: $\mu \rightarrow e+\gamma, \mu \rightarrow 3 e$, $\mu-e$ conversion, etc., which proceed with rates close to the existing upper limits.
- In the existence of new (FChNC, FCFNSNC) neutrino interactions.
- In the existence of "unknown unknowns"...

We can have $n \geq 3$ ($n=4$, or $n=5$, or $n=6, \ldots$) if, e.g., sterile $\nu_{R}, \tilde{\nu}_{L}$ exist and they mix with the active flavour neutrinos $\nu_{l}\left(\widetilde{\nu}_{l}\right), l=e, \mu, \tau$.
Two (extreme) possibilities:
i) $m_{4,5, \ldots} \sim 1 \mathrm{eV}$;
in this case $\nu_{e(\mu)} \rightarrow \nu_{S}$ oscillations are possible (hints from LSND and MiniBooNE experiments, re-analises of short baseline (SBL) reactor neutrino oscillation data ("reactor neutrino anomaly"), data of radioactive source callibration of the solar neutrino SAGE and GALLEX experiments ("Gallium anomaly"); tests (STEREO, SOX, CeLAND, DANS, ICARUS (at Fermilab), ... under way).
ii) $M_{4,5, \ldots} \sim\left(10^{2}-10^{3}\right) \mathrm{GeV}$, TeV scale seesaw models; $M_{4,5, \ldots} \sim\left(10^{9}-10^{13}\right) \mathrm{GeV}$, "classical" seesaw models.

All compelling data compatible with 3- ν mixing:

$$
\nu_{l \mathrm{~L}}=\sum_{j=1}^{3} U_{l j} \nu_{j \mathrm{~L}} \quad l=e, \mu, \tau
$$

The PMNS matrix $U-3 \times 3$ unitary to a good approximation (al least: $\left.\left|U_{l, n}\right| \lesssim(\ll) 0.1, l=e, \mu, n=4,5, \ldots\right)$.
$\nu_{j}, m_{j} \neq 0$: Dirac or Majorana particles.
3- $\boldsymbol{3}$ mixing: 3-flavour neutrino oscillations possible.
ν_{μ}, E; at distance $L: P\left(\nu_{\mu} \rightarrow \nu_{\tau(e)}\right) \neq 0, P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)<1$
$P\left(\nu_{l} \rightarrow \nu_{l^{\prime}}\right)=P\left(\nu_{l} \rightarrow \nu_{l^{\prime}} ; E, L ; U ; m_{2}^{2}-m_{1}^{2}, m_{3}^{2}-m_{1}^{2}\right)$

Three Neutrino Mixing

$$
\nu_{l \mathrm{~L}}=\sum_{j=1}^{3} U_{l j} \nu_{j \mathrm{~L}} .
$$

U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix,

$$
U=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)
$$

- $U-n \times n$ unitary:

	n	2	3	4
mixing angles:	$\frac{1}{2} n(n-1)$	1	3	6

CP-violating phases:

- ν_{j} - Dirac: $\quad \frac{1}{2}(n-1)(n-2) \quad 0 \quad 1 \quad 3$
- $\nu_{j}-$ Majorana: $\frac{1}{2} n(n-1) \quad 1 \quad 3 \quad 6$
$n=3: 1$ Dirac and
2 additional CP-violating phases, Majorana phases
S.M. Bilenky, J. Hosek, S.T.P., 1980

centerlineMajorana Neutrinos (Particles)

Can be defined in QFT using fields or states.
Fields: $\chi_{k}(x)-4$ component (spin $1 / 2$), complex, m_{k}
Majorana condition:

$$
C\left(\bar{\chi}_{k}(x)\right)^{\top}=\xi_{k} \chi_{k}(x), \quad\left|\xi_{k}\right|^{2}=1
$$

- Invariant under proper Lorentz transformations.
- Reduces by 2 the number of components in $\chi_{k}(x)$.

Implications:

$$
U(1): \chi_{k}(x) \rightarrow e^{i \alpha} \chi_{k}(x)-\text { impossible }
$$

- $\chi_{k}(x)$ cannot absorb phases.
$-Q_{U(1)}=0: Q_{\mathrm{el}}=0, L_{l}=0, L=0, \ldots$
- $\chi_{k}(x): 2$ spin states of a spin 1/2 absolutely neutral particle
- $\chi_{k} \equiv \bar{\chi}_{k}$

Propagators: $\Psi(x)$-Dirac, $\chi(x)$-Majorana

$$
\begin{gathered}
<0\left|T\left(\Psi_{\alpha}(x) \bar{\Psi}_{\beta}(y)\right)\right| 0>=S_{\alpha \beta}^{F}(x-y) \\
<0\left|T\left(\Psi_{\alpha}(x) \Psi_{\beta}(y)\right)\right| 0>=0, \quad<0\left|T\left(\bar{\Psi}_{\alpha}(x) \bar{\Psi}_{\beta}(y)\right)\right| 0>=0 \\
<0\left|T\left(\chi_{\alpha}(x) \bar{\chi}_{\beta}(y)\right)\right| 0>=S_{\alpha \beta}^{F}(x-y) \\
<0\left|T\left(\chi_{\alpha}(x) \chi_{\beta}(y)\right)\right| 0>=-\xi^{*} S_{\alpha \kappa}^{F}(x-y) C_{\kappa \beta} \\
<0\left|T\left(\bar{\chi}_{\alpha}(x) \bar{\chi}_{\beta}(y)\right)\right| 0>=\xi C_{\alpha \kappa}^{-1} S_{\kappa \beta}^{F}(x-y) \\
U_{C P} \chi(x) U_{C P}^{-1}=\eta_{C P} \gamma_{0} \chi\left(x^{\prime}\right), \quad \eta_{C P}= \pm i
\end{gathered}
$$

Majorana propagators:

$$
|\Delta L|=2: \quad(\mathrm{A}, \mathbf{Z}) \rightarrow(\mathrm{A}, \mathbf{Z}+2)+e^{-}+e^{-}, \quad(\beta \beta)_{0 \nu}-\text { decay }
$$

Leptogenesis scenario of generation of BAU.

PMNS Matrix: Standard Parametrization

$$
\begin{gathered}
U=V P, \quad P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \frac{v_{2}}{2}} & 0 \\
0 & 0 & e^{i \frac{i_{31}}{2}}
\end{array}\right), \\
V=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
\end{gathered}
$$

- $s_{i j} \equiv \sin \theta_{i j}, c_{i j} \equiv \cos \theta_{i j}, \theta_{i j}=\left[0, \frac{\pi}{2}\right]$,
- δ - Dirac CPV phase, $\delta=[0,2 \pi] ; \mathrm{CP}$ inv.: $\delta=0, \pi, 2 \pi$;
- α_{21}, α_{31} - Majorana CPV phases; CP inv.: $\alpha_{21(31)}=k\left(k^{\prime}\right) \pi, k\left(k^{\prime}\right)=0,1,2 \ldots$

$$
\text { S.M. Bilenky, J. Hosek, S.T.P., } 1980
$$

- $\Delta m_{\odot}^{2} \equiv \Delta m_{21}^{2} \cong 7.37 \times 10^{-5} \mathrm{eV}^{2}>0, \sin ^{2} \theta_{12} \cong 0.297, \cos 2 \theta_{12} \gtrsim 0.29$ (3 σ),
- $\left|\Delta m_{31(32)}^{2}\right| \cong 2.53$ (2.43) $\left[2.56\right.$ (2.54)] $\times 10^{-3} \mathrm{eV}^{2}, \quad \sin ^{2} \theta_{23} \cong$ 0.437 (0.569) [0.425 (0.589)], NO (IO),
- θ_{13} - the CHOOZ angle: $\sin ^{2} \theta_{13}=0.0214$ (0.0218) [0.0215 (0.0216)], Capozzi et al. NO (IO).

[^1]- $1 \sigma\left(\Delta m_{21}^{2}\right)=(2.6)[2.3] \%, 1 \sigma\left(\sin ^{2} \theta_{12}\right)=(5.4)[5.4] \%$;
- $1 \sigma\left(\left|\Delta m_{31(23)}^{2}\right|\right)=(2.6)[1.6] \%, 1 \sigma\left(\sin ^{2} \theta_{23}\right)=(9.6)[9.6] \%$;
- $1 \sigma\left(\sin ^{2} \theta_{13}\right)=(8.5)[4.0] \%$;
- $3 \sigma\left(\Delta m_{21}^{2}\right)$: $(6.99-8.18) \times 10^{-5} \mathrm{eV}^{2} ; 3 \sigma\left(\sin ^{2} \theta_{12}\right):(0.259-0.359)$; $\left(3 \sigma\left(\Delta m_{21}^{2}\right):(6.93-7.97) \times 10^{-5} \mathrm{eV}^{2} ; 3 \sigma\left(\sin ^{2} \theta_{12}\right):(0.250-0.354) ;\right)$ $\left[3 \sigma\left(\Delta m_{21}^{2}\right):(6.93-7.96) \times 10^{-5} \mathrm{eV}^{2} ; 3 \sigma\left(\sin ^{2} \theta_{12}\right):(0.250-0.354)\right]$.
- $3 \sigma\left(\left|\Delta m_{31(23)}^{2}\right|\right): 2.27(2.23)-2.65(2.60) \times 10^{-3} \mathrm{eV}^{2}$;
(2.40 (2.30) - 2.66(2.57) $\left.\times 10^{-3} \mathrm{eV}^{2}\right)$;
[2.45(2.42) - 2.69(2.62) $\times 10^{-3} \mathrm{eV}^{2}$];
$3 \sigma\left(\sin ^{2} \theta_{23}\right): 0.374(0.380)-0.628(0.641)$;
$\left(3 \sigma\left(\sin ^{2} \theta_{23}\right): 0.379(0.383)-0.616(0.637)\right)$
[3 $\left.3\left(\sin ^{2} \theta_{23}\right): 0.381(0.384)-0.615(0.636)\right]$
- $3 \sigma\left(\sin ^{2} \theta_{13}\right): 0.0176(0.0178)-0.0296(0.0298)$
$\left(3 \sigma\left(\sin ^{2} \theta_{13}\right): 0.0185(0.0186)-0.0246(0.0248)\right)$
[3 $\left.3\left(\sin ^{2} \theta_{13}\right): 0.0190(0.0190)-0.0240(0.0242)\right]$
F. Capozzi et al. (Bari Group), arXiv:1312.2878v2 (May 5, 2014)
(F. Capozzi et al. (Bari Group), arXiv:1601.07777) [F. Capozzi et al. (Bari Group), arXiv : 1703.04471]

Neutrino Oscillations in Vacuum

Suppose at $t=0$ in vacuum
$\left|\nu_{e}>=\left|\nu_{1}>\cos \theta+\right| \nu_{2}>\sin \theta\right.$,
$\left|\nu_{\mu(\tau)}>=-\left|\nu_{1}>\sin \theta+\right| \nu_{2}>\cos \theta ; \quad \nu_{1,2}: \quad m_{1,2} \neq 0\right.$
After time t in vacuum

$$
\begin{aligned}
& \left|\nu_{e}>_{t}=e^{-i E_{1} t}\right| \nu_{1}>\cos \theta+e^{-i E_{2} t} \mid \nu_{2}>\sin \theta, E_{1,2}=\sqrt{p^{2}+m_{1}^{2},} \\
& A\left(\nu_{e} \rightarrow \nu_{\mu} ; t\right)=<\nu_{\mu} \left\lvert\, \nu_{e}>_{t}=\frac{1}{2} \sin 2 \theta\left(e^{-i E_{2} t}-e^{-i E_{1} t}\right)\right. \\
& P\left(\nu_{e} \rightarrow \nu_{\mu} ; t\right)=\frac{1}{2} \sin ^{2} 2 \theta\left(1-\cos \left(E_{2}-E_{1}\right) t\right) \\
& P\left(\nu_{e} \rightarrow \nu_{e} ; t\right) \equiv P_{e e}=1-P\left(\nu_{e} \rightarrow \nu_{\mu} ; t\right)
\end{aligned}
$$

V. Gribov, B. Pontecorvo, 1969

Neutrinos are relativistic: $t \cong L, E_{2}-E_{1} \cong\left(m_{2}^{2}-m_{1}^{2}\right) /(2 p)$
$\left(E_{2}-E_{1}\right) t \cong\left(m_{2}^{2}-m_{1}^{2}\right) L /(2 p)=2 \pi \frac{L}{L_{o s c}^{v a c}}, L_{o s c}^{v a c} \equiv \frac{4 \pi E}{\Delta m^{2}}$
$P\left(\nu_{e} \rightarrow \nu_{\mu} ; t\right)=\frac{1}{2} \sin ^{2} 2 \theta\left(1-\cos 2 \pi \frac{L}{L_{\text {osc }}^{\text {vac }}}\right), \quad L_{\text {osc }}^{v a c} \equiv \frac{4 \pi E}{\Delta m^{2}}$

$$
L_{o s c}^{v a c} \cong 2.48 m \frac{E[\mathrm{MeV}]}{\Delta m^{2}\left[e V^{2}\right]}
$$

Effects of oscillations observable if
$\sin ^{2} 2 \theta$ - sufficiently large, $L \gtrsim L_{\text {osc }}^{v a c}$
$E \cong 1 \mathrm{GeV}, \Delta m^{2}\left[e V^{2}\right] \cong 2.5 \times 10^{-3}: L_{\text {osc }}^{v a c} \cong 1000 \mathrm{~km}$
$E \cong 3 \mathrm{MeV}, \Delta m^{2}\left[e V^{2}\right] \cong 7.5 \times 10^{-5}: \quad L_{\text {osc }}^{v a c} \cong 100 \mathrm{~km}$
$E \cong 3 \mathrm{MeV}, \Delta m^{2}\left[e V^{2}\right] \cong 2.5 \times 10^{-3}: L_{\text {osc }}^{v a c} \cong 3 \mathrm{~km}$
Two basic parameters: $\sin ^{2} 2 \theta, \Delta m^{2}$

T2K, T2HK

S.T. Petcov, Summer School, TU Dresden, 17/08/2017

- $\operatorname{sgn}\left(\Delta m_{\text {atm }}^{2}\right)=\operatorname{sgn}\left(\Delta m_{31(32)}^{2}\right)$ not determined

$$
\begin{aligned}
& \Delta m_{\mathrm{atm}}^{2} \equiv \Delta m_{31}^{2}>0, \quad \text { normal mass ordering }(\mathrm{NO}) \\
& \Delta m_{\mathrm{atm}}^{2} \equiv \Delta m_{32}^{2}<0, \quad \text { inverted mass ordering }(\mathrm{IO})
\end{aligned}
$$

Convention: $m_{1}<m_{2}<m_{3}-\mathrm{NO}, m_{3}<m_{1}<m_{2}-\mathrm{IO}$

$$
\Delta m_{31}^{2}(N O)=-\Delta m_{32}^{2}(I O), \quad \Delta m_{32}^{2}(N O)=-\Delta m_{31}^{2}(I O)
$$

$$
\begin{array}{cl}
m_{1} \ll m_{2}<m_{3}, & \mathrm{NH} \\
m_{3} \ll m_{1}<m_{2}, & \mathrm{IH} \\
m_{1} \cong m_{2} \cong m_{3}, & m_{1,2,3}^{2} \gg\left|\Delta m_{31(32)}^{2}\right|, \\
\mathrm{QD} ; m_{j} \gtrsim 0.10 \mathrm{eV}
\end{array}
$$

- $m_{2}=\sqrt{m_{1}^{2}+\Delta m_{21}^{2}}, \quad m_{3}=\sqrt{m_{1}^{2}+\Delta m_{31}^{2}}-\mathrm{NO}$;
- $m_{1}=\sqrt{m_{3}^{2}+\Delta m_{23}^{2}-\Delta m_{21}^{2}}, \quad m_{2}=\sqrt{m_{3}^{2}+\Delta m_{23}^{2}}-\mathrm{IO}$;

The (Mass) ${ }^{2}$ Spectrum

$$
\begin{aligned}
& \quad \Delta \mathrm{m}_{\text {sol }}^{2} \cong 7.6 \times 10^{-5} \mathrm{eV}^{2}, \quad \Delta \mathrm{~m}_{\mathrm{atm}}^{2} \cong 2.4 \times 10^{-3} \mathrm{eV}^{2} \\
& \text { Are there more mass eigenstates, as LSND suggests, } \\
& \text { and MiniBooNE recently hints? }
\end{aligned}
$$

Due to B. Kayser

S.T. Petcov, Summer School, TU Dresden, 17/08/2017

- Dirac phase $\delta: \nu_{l} \leftrightarrow \nu_{l^{\prime}}, \bar{\nu}_{l} \leftrightarrow \bar{\nu}_{l^{\prime}}, l \neq l^{\prime} ; \quad A_{C P}^{(l, l)} \propto J_{\mathrm{CP}} \propto \sin \theta_{13} \sin \delta:$
P.I. Krastev, S.T.P., 1988

$$
J_{C P}=\operatorname{Im}\left\{U_{e 1} U_{\mu 2} U_{e 2}^{*} U_{\mu 1}^{*}\right\}=\frac{1}{8} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin 2 \theta_{13} \cos \theta_{13} \sin \delta
$$

Current data:
$0.026|\sin \delta| \lesssim\left|J_{C P}\right| \lesssim 0.036|\sin \delta|$ (3 σ; can be relatively large!);
$\theta_{i j}$ b.f.v. $+\delta \cong 3 \pi / 2: J_{C P} \cong-0.032$.

- Majorana phases α_{21}, α_{31} :
$-\nu_{l} \leftrightarrow \nu_{l^{\prime}}, \bar{\nu}_{l} \leftrightarrow \bar{\nu}_{l^{\prime}}$ not sensitive;
S.M. Bilenky, J. Hosek, S.T.P.,1980;
P. Langacker, S.T.P., G. Steigman, S. Toshev, 1987
$-|<m>|$ in $(\beta \beta)_{0 \nu}-$ decay depends on α_{21}, α_{31};
$-\Gamma(\mu \rightarrow e+\gamma)$ etc. in SUSY theories depend on $\alpha_{21,31}$;
- BAU, leptogenesis scenario: $\delta, \alpha_{21,31!}$

$$
\delta \cong 3 \pi / 2 ?
$$

$$
\begin{aligned}
J_{C P} & =\operatorname{Im}\left\{U_{e 1} U_{\mu 2} U_{e 2}^{*} U_{\mu 1}^{*}\right\} \\
& =\frac{1}{8} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin 2 \theta_{13} \cos \theta_{13} \sin \delta
\end{aligned}
$$

Oscillation parameters

F. Capozzi, E. Lisi et al., arXiv:1703.04471

- Best fit value: $\delta=1.38$ (1.31) π;
- $\delta=0$ or 2π are disfavored at 2.4σ (3.2 σ);
- $\delta=\pi$ is disfavored at 2.0σ (2.5 σ);
- $\delta=\pi / 2$ is strongly disfavored at 3.4σ (3.9 σ).
- At 3σ : δ / π is found to lie in $(0.00-0.17(0.16)) \oplus$ (0.76(0.69) - 2.00)).
F. Capozzi, E. Lisi et al., arXiv:1703.04471

Large $\sin \theta_{13} \cong 0.15+\delta=3 \pi / 2$ - far-reaching implications:

- For the searches for CP violation in ν-oscillations; for the b.f.v. one has $J_{C P} \cong-0.032$;
- Important implications also for the "flavoured" leptogenesis scenario of generation of the baryon asymmetry of the Universe (BAU).

If all CPV, necessary for the generation of BAU is due to δ, a necessary condition for reproducing the observed BAU (in FLG with hierarchical N_{j}) is
$\left|\sin \theta_{13} \sin \delta\right| \gtrsim 0.09$
S. Pascoli, S.T.P., A. Riotto, 2006.

Absolute Neutrino Mass Scale

The Absolute Scale of Neutrino Mass

How far above zero is the whole pattern?

Oscillation Data $\Rightarrow \sqrt{\Delta \mathrm{m}_{\text {atm }}^{2}}<$ Mass[Heaviest v_{i}]

Absolute Neutrino Mass Measurements
Troitzk, Mainz experiments on ${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}^{-}+\bar{\nu}_{\mathrm{e}}$:

$$
m_{\nu_{e}}<2.2 \mathrm{eV} \quad(95 \% \text { C.L. })
$$

We have $m_{\nu_{e}} \cong m_{1,2,3}$ in the case of QD spectrum. The upcoming KATRIN experiment is planned to reach sensitivity

$$
\text { KATRIN: } \quad m_{\nu_{e}} \sim 0.2 \mathrm{eV}
$$

i.e., it will probe the region of the QD spectrum.

Improved β energy resolution requires a $\boldsymbol{B I G} \beta$ spectrometer.

Mass and Hierarchy from Cosmology

Cosmological and astrophysical data on $\sum_{j} m_{j}$: using their latest (2016) data on CMB T power spectrum anisotropies, polarisation, grav. lensing effects, the low l CMB polarisation spectrum data ("low P " data) and adding data on the baryon acoustic oscillations (BAO) and using \wedge CDM (6 parameter) model + assuming 3 light massive neutrinos, the Planck collaboration published in 2016 the following limit:

$$
\sum_{j} m_{j} \equiv \Sigma<0.170 \mathrm{eV} \quad(95 \% \text { C.L. })
$$

Data on weak lensing of galaxies by large scale structure, combined with data from the WMAP and Planck experiments might allow to determine

$$
\sum_{j} m_{j}: \quad \delta \cong(0.01-0.04) \mathrm{eV}
$$

$\mathrm{NH}: \sum_{j} m_{j} \leq 0.061 \mathrm{eV} \quad(3 \sigma)$;

IH: $\Sigma_{j} m_{j} \geq 0.098 \mathrm{eV} \quad(3 \sigma)$.
S.T. Petcov, Summer School, TU Dresden, 17/08/2017

Mass and Hierarchy from Cosmology

Future Progress

- Determination of the nature - Dirac or Majorana, of ν_{j}.
- Determination of $\operatorname{sgn}\left(\Delta m_{\mathrm{atm}}^{2}\right)$, type of ν - mass spectrum

$$
\begin{aligned}
& m_{1} \ll m_{2} \ll m_{3}, \quad \mathrm{NH}, \\
& m_{3} \ll m_{1}<m_{2}, \quad \mathrm{IH}, \\
& m_{1} \cong m_{2} \cong m_{3}, m_{1,2,3}^{2} \gg \Delta m_{\text {atm }}^{2}, ~ Q D ; m_{j} \gtrsim 0.10 \mathrm{eV} \text {. }
\end{aligned}
$$

- Determining, or obtaining significant constraints on, the absolute scale of $\nu_{j^{-}}$ masses, or $\min \left(m_{j}\right)$.
- Status of the CP-symmetry in the lepton sector: violated due to δ (Dirac), and/or due to α_{21}, α_{31} (Majorana)?
- High precision determination of $\Delta m_{\odot}^{2}, \theta_{12}, \Delta m_{\text {atm }}^{2}, \theta_{23}, \theta_{13}$
- Searching for possible manifestations, other than ν_{l}-oscillations, of the nonconservation of $L_{l}, l=e, \mu, \tau$, such as $\mu \rightarrow e+\gamma, \tau \rightarrow \mu+\gamma$, etc. decays.
- Understanding at fundamental level the mechanism giving rise to the ν - masses and mixing and to the L_{l}-non-conservation. Includes understanding
- the origin of the observed patterns of ν-mixing and ν-masses ;
- the physical origin of $C P V$ phases in $U_{\text {PMNS }}$;
- Are the observed patterns of ν-mixing and of $\Delta m_{21,31}^{2}$ related to the existence of a new symmetry?
- Is there any relations between q-mixing and ν - mixing? Is $\theta_{12}+\theta_{c}=\pi / 4$?
- Is $\theta_{23}=\pi / 4$, or $\theta_{23}>\pi / 4$ or else $\theta_{23}<\pi / 4$?
- Is there any correlation between the values of $C P V$ phases and of mixing angles in UPMNS?
- Progress in the theory of ν-mixing might lead to a better understanding of the origin of the BAU.
- Can the Majorana and/or Dirac CPVP in UPMNS be the leptogenesis CPV parameters at the origin of BAU?

The next most important steps are:

- determination of the nature - Dirac or Majorana, of massive neutrinos $\left((\beta \beta)_{0 \nu}\right.$-decay exps: GERDA, CUORE, EXO, KamLAND-Zen, SNO+, SuperNEMO, MAJORANA, AMORE,...).
- determination of the status of the CP symmetry in the Iepton sector (T2K, NO A; DUNE, T2HK)
- determination of the neutrino mass ordering (JUNO, RENO50; ORCA, PINGU (IceCube), HK, INO; T2K + NO 1 A; DUNE (future); + T2HKK (future)) ;
- determination of the absolute neutrino mass scale, or $\min \left(m_{j}\right)$ (KATRIN, new ideas; cosmology);

The program of research extends beyond 2030.

The Nature of Massive Neutrinos I:
 Majorana versus Dirac Massive Neutrinos

Majorana Fermions?

Electrically neutral particles can be Majorana fermions

- Light neutrinos $\nu_{j}, m_{j} \neq 0, j=1,2,3$
- Heavy (RH seesaw) neutrinos $N_{k}, M_{k} \gtrsim 100 \mathrm{GeV}$, $k=1,2, \ldots$
- Neutron + anti-neutron cam be linear combinations of two Majorana fermions $n_{1,2}$ ($n \bar{n}$ oscillations):

$$
\begin{aligned}
& \left|n>=\left|n_{1}>\cos \theta^{n}+\right| n_{2}>\sin \theta^{n}\right. \\
& \quad\left|\bar{n}>=-\left|n_{1}>\sin \theta^{n}+\right| n_{2}>\cos \theta^{n} ; \quad n_{1,2}: \tilde{M}_{1,2} \neq 0\right.
\end{aligned}
$$

- Minimal SUSY extension of the ST: the superpartners of γ, Z-boson, neutral Higgses $H_{1,2}^{0}$, i.e.,
the 4 "neutralinos" $\chi_{1,2,3,4}$, + the super-partners of the 8 gluon fields, i.e., the 8 "gluinos" $\lambda_{j}, j=$ $1,2, \ldots, 8$.

Majorana Neutrinos (Fermions)

Can be defined in QFT using fields or states.
Fields: $\chi_{k}(x)-4$ component (spin 1/2), complex, m_{k}
Majorana condition:

$$
C\left(\bar{\chi}_{k}(x)\right)^{\top}=\xi_{k} \chi_{k}(x), \quad\left|\xi_{k}\right|^{2}=1
$$

- Invariant under proper Lorentz transformations.
- Reduces by 2 the number of components in $\chi_{k}(x)$.

Implications:

$$
U(1): \chi_{k}(x) \rightarrow e^{i \alpha} \chi_{k}(x)-\text { impossible }
$$

- $\chi_{k}(x)$ cannot absorb phases.
$-Q_{U(1)}=0: Q_{\mathrm{el}}=0, L_{l}=0, L=0, \ldots$
$-\chi_{k}(x): 2$ spin states of a spin $\mathbf{1 / 2}$ absolutely neutral particle
- $\chi_{k} \equiv \bar{\chi}_{k}$

Propagators: $\Psi(x)$-Dirac, $\chi(x)$-Majorana

$$
\begin{gathered}
<0\left|T\left(\Psi_{\alpha}(x) \bar{\Psi}_{\beta}(y)\right)\right| 0>=S_{\alpha \beta}^{F}(x-y) \\
<0\left|T\left(\Psi_{\alpha}(x) \Psi_{\beta}(y)\right)\right| 0>=0, \quad<0\left|T\left(\bar{\Psi}_{\alpha}(x) \bar{\Psi}_{\beta}(y)\right)\right| 0>=0 \\
<0\left|T\left(\chi_{\alpha}(x) \bar{\chi}_{\beta}(y)\right)\right| 0>=S_{\alpha \beta}^{F}(x-y) \\
<0\left|T\left(\chi_{\alpha}(x) \chi_{\beta}(y)\right)\right| 0>=-\xi^{*} S_{\alpha \kappa}^{F}(x-y) C_{\kappa \beta} \\
<0\left|T\left(\bar{\chi}_{\alpha}(x) \bar{\chi}_{\beta}(y)\right)\right| 0>=\xi C_{\alpha \kappa}^{-1} S_{\kappa \beta}^{F}(x-y) \\
U_{C P} \chi(x) U_{C P}^{-1}=\eta_{C P} \gamma_{0} \chi\left(x^{\prime}\right), \quad \eta_{C P}= \pm i
\end{gathered}
$$

Special Properties of the Currents of $\chi(x)$-Majorana:

$$
\bar{\chi}(x) \gamma_{\alpha} \chi(x)=0: \quad Q_{U(1)}=0 \quad\left(Q_{U(1)}(\Psi) \neq 0\right) ;
$$

Has imortant implications, e.g. for SUSY DM (neutralino) abundance determination (calculation).

$$
\begin{aligned}
\bar{\chi}(x) \sigma_{\alpha \beta} \chi(x) & =0: \quad \mu_{\chi}=0 \quad\left(\mu_{\psi} \neq 0\right) \\
\bar{\chi}(x) \sigma_{\alpha \beta} \gamma_{5} \chi(x)=0: d_{\chi} & =0\left(d_{\Psi} \neq 0, \text { if } C P \text { is not conserved }\right)
\end{aligned}
$$

$\chi(x)$ cannot couple to a real photon (field).
$\chi(x)$ couples to a virtual photon through an anapole moment:

$$
\left(g_{\alpha \beta} q^{2}-q_{\alpha} q_{\beta}\right) \gamma_{\beta} \gamma_{5} F_{a}\left(q^{2}\right)
$$

Properties of Currents Formed by $\chi_{1}(x), \chi_{2}(x): \chi_{2} \rightarrow \chi_{1}+\gamma, \chi_{2} \rightarrow \chi_{1} \chi_{1} \chi_{1}$, etc.

$$
\overline{\chi_{1}}(x) \gamma_{\alpha}\left(v-a \gamma_{5}\right) \chi_{2}(x) \quad\left(\overline{\chi_{1}}(x) \gamma^{\alpha}\left(1-\gamma_{5}\right) \chi_{1}(x), \ldots\right):
$$

- CP is conserved: $v=0(a=0)$ if $\eta_{1 C P}=\eta_{2 C P}\left(\eta_{1 C P}=-\eta_{2 C P}\right)$
- CP is not conserved: $v \neq 0, a \neq 0$
(Has imortant implications also, e.g. for SUSY neutralino phenomenology: $e^{+}+e^{-} \rightarrow \chi_{1}+\chi_{2}, \quad \chi_{2} \rightarrow \chi_{1}+l^{+}+l^{-}$, etc.)

$$
\overline{\chi_{1}}(x) \sigma_{\alpha \beta}\left(\mu_{12}-d_{12} \gamma_{5}\right) \chi_{2}(x) \quad\left(F^{\alpha \beta}(x)\right):
$$

- CP is conserved: $\mu_{12}=0\left(d_{12}=0\right)$ if $\eta_{1 C P}=\eta_{2 C P}\left(\eta_{1 C P}=-\eta_{2 C P}\right)$
- CP is not conserved: $\mu_{12} \neq 0, d_{12} \neq 0$

Pontecorvo, 1958:

$$
\nu(x)=\frac{\chi_{1}+\chi_{2}}{\sqrt{2}}, \quad m_{1} \neq m_{2}>0, \eta_{1 C P}=-\eta_{2 C P}
$$

$\chi_{1,2}$ - Majorana, maximal mixing .
Maki, Nakagawa, Sakata, 1962:

$$
\begin{gathered}
\nu_{e L}(x)=\Psi_{1 L} \cos \theta_{C}+\Psi_{2 L} \sin \theta_{C} \\
\nu_{\mu L}(x)=-\Psi_{1 L} \sin \theta_{C}+\Psi_{2 L} \cos \theta_{C}
\end{gathered}
$$

$\Psi_{1,2}$ - Dirac (composite), $\theta_{C^{-}}$the Cabbibo angle.

The Nature of Massive Neutrinos II:
Origins of Dirac and Majorana Massive Neutrinos

- Massive Dirac Neutrinos: $U(1)$, Conserved (Additive) Charge, e.g., L.
- Massive Majorana Neutrinos: No Conserved (Additive) Charge(s).

The type of massive neutrinos in a given theory is determined by the type of (effective) mass term $\mathcal{L}_{m}^{\nu}(x)$ neutrinos have, more precisely, by the symmetries $\mathcal{L}_{m}^{\nu}(x)$ and the total Lagrangian $\mathcal{L}(x)$ of the theory have.

Mass Term: any by-linear in fermion (neutrino) fields invariant under the proper Lorentz transformations.

The type of massive neutrinos in a given theory is determined by the type of (effective) mass term $\mathcal{L}_{m}^{\nu}(x)$ neutrinos have, more precisely, by the symmetries $\mathcal{L}_{m}^{\nu}(x)$ and the total Lagrangian $\mathcal{L}(x)$ of the theory have.

- Dirac Neutrinos: Dirac Mass Term, requires $\nu_{R}(x)-S U(2)_{L}$ singlet RH ν fields

$$
\mathcal{L}_{D}^{\nu}(x)=-\overline{\nu_{l / R}}(x) M_{D l l} \nu_{l L}(x)+\text { h.c. }, M_{D}-\text { complex }
$$

- $\mathcal{L}_{D}^{\nu}(x)$ conserves $L: L=$ const.

$$
M_{D}=V M_{D}^{\text {diag }} W^{\dagger}, V, U-\text { unitary }(b i-\text { unitary transformation }), W \equiv U_{\mathrm{PMNS}}
$$

- ST $+3 \nu_{R}(x)$ - RH ν fields: $n=3$

$$
\begin{aligned}
\mathcal{L}_{Y}(x) & =Y_{l_{l}}^{\nu} \overline{\nu_{l^{\prime} R}}(x) \Phi^{T}(x)\left(i \tau_{2}\right) \psi_{l L}(x)+\text { h.c. }, \\
M_{D} & =\frac{v}{\sqrt{2}} Y^{\nu}, \quad v=246 \mathrm{GeV} .
\end{aligned}
$$

No explanation why $m\left(\nu_{j}\right) \lll m_{l}, m_{q}$.
No DM candidate.
No mechanism for generation of the observed BAU.

The LFV processes $\mu^{+} \rightarrow e^{+}+\gamma$ decay, $\mu^{-} \rightarrow e^{-}+e^{+}+e^{-}$ decay, $\tau^{-} \rightarrow e^{-}+\gamma$ decay, etc. are allowed.

However, they are predicted to proceed with unobservable rates:

$$
\begin{gathered}
B R(\mu \rightarrow e+\gamma)=\frac{3 \alpha}{32 \pi}\left|U_{e j} U_{\mu j}^{*} \frac{m_{j}^{2}}{M_{W}^{2}}\right|^{2} \cong(2.5-3.9) \times 10^{-55} \\
M_{W} \cong 80 \mathrm{GeV}, \text { the } \mathrm{W}^{ \pm}-\text {mass }
\end{gathered}
$$

Current limit: $B R(\mu \rightarrow e+\gamma)<5.7 \times 10^{-13}$
"New Physics" : $\nu_{l} \rightarrow \nu_{l^{\prime}}, \bar{\nu}_{l} \rightarrow \bar{\nu}_{l^{\prime}}, l, l^{\prime}=e, \mu, \tau$ oscillations.

- Majorana ν_{j} : Majorana Mass Term for $\nu_{l L}(x), l=e, \mu, \tau$

Introduce $\nu_{l R}^{C}(x) \equiv C\left(\overline{\nu_{l L}}(x)\right)^{\top}, C^{-1} \gamma_{\alpha} C=-\gamma_{\alpha}^{\top}$:
$\overline{\nu_{l / R}^{C}(x)} \nu_{l L}(x)=-\nu_{l_{L}}^{\top}(x) C^{-1} \nu_{l L}(x)$ - invariant under proper Lorentz transformations.

$$
\mathcal{L}_{M}^{\nu}(x)=\frac{1}{2} \nu_{l_{L}}^{\top}(x) C^{-1} M_{l^{\prime} l} \nu_{l L}(x)+\text { h.c. }
$$

- If $M_{l^{l}} \neq 0, L_{l} \neq$ const., $L \neq$ const.; $P \neq$ const., $C \neq$ const.
- $\nu_{l L}(x)$-fermions: $M=M^{\top}$, complex.

$$
\begin{gathered}
M^{\text {diag }}=U^{\top} M U, U \text { - unitary (congruent transformation) } ; U \equiv U_{\mathrm{PMNS}} \\
\nu_{j} \equiv \chi_{j}(x)=U_{j l}^{\dagger} \nu_{l L}(x)+U_{j l}^{*} \nu_{l R}^{c}=C\left(\overline{\chi_{j}}(x)\right)^{\top}, \quad m_{j} \neq 0, j=1,2,3
\end{gathered}
$$

CP-invariance: $M^{*}=M, M$ - real, symmetric.
$M^{\text {diag }}=\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right): m_{j}^{\prime}=\rho_{j} m_{j}, m_{j} \geq 0, \rho_{j}= \pm 1 ;\left|n_{+}-n_{-}\right|$-invariant of M.
$\chi_{j}: m_{j} \geq 0: \eta_{C P}\left(\chi_{j}\right)=i \rho_{j}$
$\mathcal{L}_{M}^{\nu}(x)$ not possible in the ST: requires New Physics Beyond the ST
$(\beta \beta)_{0 \nu}$-decay is allowed; typically also $B R(\mu \rightarrow e+\gamma), B R(\mu \rightarrow 3 e), C R\left(\mu^{-}+\right.$ $\mathcal{N} \rightarrow e^{-}+\mathcal{N}$) can be "large", i.e., in the range of sensitivity of ongoing (MEG) and future planned (COMET, Mu2e, etc.) experiments.

- Majorana ν_{j} : Dirac+Majorana Mass Term; requires both $\nu_{l L}(x)$ and $\nu_{l^{\prime} R}(x)$: $\mathcal{L}_{D+M}^{\nu}(x)=$

$$
=-\overline{\nu_{l^{\prime} R}}(x) M_{D l l} \nu_{l L}(x)+\frac{1}{2} \nu_{l^{\prime} L}^{\top}(x) C^{-1} M_{l^{\prime l}}^{L L} \nu_{l L}(x)+\frac{1}{2} \nu_{l^{\prime} R}^{\top}(x) C^{-1}\left(M^{R R}\right)_{l_{l}}^{\dagger} \nu_{l R}(x)+h . c .
$$

$$
M=\left(\begin{array}{cc}
M^{L L} & M_{D} \\
M_{D}^{T} & M^{R R}
\end{array}\right)=M^{T} \quad\left(\left(M^{L L}\right)^{T}=M^{L L}, \quad\left(M^{R R}\right)^{T}=M^{R R}\right)
$$

- If $M_{D l^{l} l} \neq 0$ and $M_{l l}^{L L} \neq 0$ and/or $M_{l l}^{R R} \neq 0: L_{l} \neq$ const., $L \neq$ const.; $n=6$ (>3)
- $M=M^{\top}$, complex.

$$
M^{\text {diag }}=W^{\top} M W, W-\text { unitary, } 6 \times 6 ; \quad W^{T} \equiv\left(U^{T} \quad V^{T}\right) ; U \equiv U_{\text {PMNS }}: 3 \times 6
$$

$$
\nu_{l L}(x)=\sum_{j=1}^{6} U_{l j} \chi_{j}(x), \quad \chi_{j}(x)-\text { Majorana } \nu \mathbf{s}, \quad m_{j} \neq 0, \quad l=e, \mu, \tau
$$

$$
\nu_{l L}^{C}(x) \equiv C\left(\overline{\nu_{l R}}(x)\right)^{\top}=\sum_{j=1}^{6} V_{l j} \chi_{j}(x), \quad \nu_{l L}^{C}(x): \text { sterile antineutrino }
$$

$\mathcal{L}_{D+M}^{\nu}(x)$ possible in the $\mathbf{S T}+\nu_{l R}: M^{L L}=0$
$(\beta \beta)_{0_{\nu}}$-decay is allowed;
phenomenology depends on the relative magnitude of M_{D} and $M^{R R}$.

Dirac - Majorana Relation (if any...)

Majorana Mass Term of $\nu_{l L}(x), l=e, \mu, \tau$, can lead to Dirac neutrinos with definite mass if it conserves some lepton charge:

$$
\mathcal{L}_{M}^{\nu}(x)=-\frac{1}{2} \overline{\overline{l^{\prime} R}}(x) M_{l^{\prime} l} \nu_{l L}(x)+\text { h.c. }, \nu_{l^{\prime} R}^{c} \equiv C\left(\overline{\nu_{l^{\prime} L}}(x)\right)^{\top}
$$

$\mathcal{L}_{M}^{\nu}(x)$ conserves, e.g. $L^{\prime}=L_{e}-L_{\mu}-L_{\tau}$ if only $M_{e \mu}=M_{\mu e}, M_{e \tau}=M_{\tau e} \neq 0$
S.T.P., 1982

- Dirac ν, Ψ, is equivalent to two Majorana ν 's, $\chi_{1,2}$, having the same (positive) mass, opposite CP-parities, and which are "maximally mixed":

$$
\begin{gathered}
\Psi(x)=\frac{\chi_{1}+\chi_{2}}{\sqrt{2}}, \quad m_{1}=m_{2}=m_{D}>0, \eta_{j C P}=i \rho_{j}, \rho_{1}=-\rho_{2}\left(C\left(\overline{\chi_{j}}\right)^{\top}=\rho_{j} \chi_{j}\right) \\
\text { Example ZKM } \nu: \nu_{e L}(x)=\psi_{L}=\frac{\chi_{1 L}+\chi_{2 L}}{\sqrt{2}}, \nu_{\mu L}(x)=\Psi_{L}^{C}=\frac{\chi_{1 L}-\chi_{2 L}}{\sqrt{2}}
\end{gathered}
$$

- Pseudo-Dirac Neutrino: the symmetry of $\mathcal{L}_{M}^{\nu}(x)$ is not a symmetry of $\mathcal{L}_{\text {tot }}(x)$
Suppose: $\nu_{e L}(x)=\Psi_{L}=\left(\chi_{1 L}+\chi_{2 L}\right) / \sqrt{2}$, and to "leading order" $m_{1}=m_{2}$, but due to "higher order" corrections $m_{1} \neq m_{2},\left|m_{2}-m_{1}\right| \equiv|\Delta m| \ll m_{1,2}$
All Majorana effects $\sim \Delta m$
- Suppose: $m_{1}=m_{2}, \rho_{1}=-\rho_{2}$, but $\chi_{1,2}$ are not maximally mixed:

$$
\nu_{e L}(x)=\chi_{1 L} \cos \phi+\chi_{2 L} \sin \phi=\Psi_{L} \cos \phi^{\prime}+\Psi_{L}^{C} \sin \phi^{\prime}
$$

All Majorana effects are $\sim m_{D} \cos \phi^{\prime} \sin \phi^{\prime}$

In the case of conserved $L^{\prime}=L_{e}-L_{\mu}-L_{\tau}$:

$$
M=\left(\begin{array}{ccc}
0 & M_{e \mu} & M_{e \tau} \\
M_{e \mu} & 0 & 0 \\
M_{e \tau} & 0 & 0
\end{array}\right)
$$

$\theta_{12}=\pi / 4, \theta_{13}=0, \tan \theta_{23}=M_{e \tau} / M_{e \mu}$,
$m_{3}=0-$ spectrum with $\mathbf{I H}, m_{1}=m_{2}, \chi_{1,2}$ - equivalent to one Dirac ν, Ψ.
Adding L^{\prime}-breaking term, e.g. $\quad M_{e e},\left|M_{e e}\right| / \sqrt{M_{e \mu}^{2}+M_{e \tau}^{2}} \sim 0.01$, leads to $m_{1} \neq m_{2}$ compatible with $\Delta m_{21}^{2} \neq 0$.

Determining the Nature of Massive Neutrinos

Determining the status of lepton charge conservation and the nature - Dirac or Majorana - of massive neutrinos is one of the most challenging and pressing problems in present day elementary particle physics.
$\nu_{j}-$ Dirac or Majorana particles, fundamental problem
ν_{j}-Dirac: conserved lepton charge exists,
$L=L_{e}+L_{\mu}+L_{\tau}, \nu_{j} \neq \bar{\nu}_{j}$
$\nu_{j}-$ Majorana: no lepton charge is exactly conserved,
$\nu_{j} \equiv \bar{\nu}_{j}$
The observed patterns of ν-mixing and of $\Delta m_{\text {atm }}^{2}$ and Δm_{\odot}^{2} can be related to Majorana ν_{j} and a new fundamental (approximate) symmetry.

$$
L^{\prime}=L_{e}-L_{\mu}-L_{\tau}
$$

See-saw mechanism: $\nu_{j}-$ Majorana

Establishing that the total lepton charge $L=L_{e}+$ $L_{\mu}+L_{\tau}$ is not conserved in particle interactions by observing the $(\beta \beta)_{0 \nu}$-decay would be a fundamental discovery (similar to establishing baryon number nonconservation (e.g., by observing proton decay)).

Establishing that ν_{j} are Majorana particles would be of fundamental importance, as important as the discovery of ν - oscillations, and would have far reaching implications.

Dirac CP-Nonconservation: δ in UPMNS

Observable manifestations in

$$
\nu_{l} \leftrightarrow \nu_{l^{\prime}}, \quad \bar{\nu}_{l} \leftrightarrow \bar{\nu}_{l^{\prime}}, \quad l, l^{\prime}=e, \mu, \tau
$$

- not sensitive to Majorana CPVP α_{21}, α_{31}

$$
\begin{gathered}
A\left(\nu_{l} \leftrightarrow \nu_{l^{\prime}}\right)=\sum_{j} U_{l^{\prime} j} e^{-i\left(E_{j} t-p_{j} x\right)} U_{j l}^{\dagger} \\
U=V P: P_{j} e^{-i\left(E_{j} t-p_{j} x\right)} P_{j}^{*}=e^{-i\left(E_{j} t-p_{j} x\right)}
\end{gathered}
$$

P - diagonal matrix of Majorana phases.
The result is valid also in the case of oscillations in matter: ν_{l} oscillations are not sensitive to the nature of ν_{j}.

If $\nu_{j}-$ Majorana particles, $U_{\text {PMNS }}$ contains (3- ν mixing) δ-Dirac, α_{21}, α_{31} - Majorana physical CPV phases
ν-oscillations $\nu_{l} \leftrightarrow \nu_{l^{\prime}}, \bar{\nu}_{l} \leftrightarrow \bar{\nu}_{l^{\prime}}, l, l^{\prime}=e, \mu, \tau$,

- are not sensitive to the nature of ν_{j},
S.M. Bilenky et al.,1980;
P. Langacker et al., 1987
- provide information on $\Delta m_{j k}^{2}=m_{j}^{2}-m_{k}^{2}$, but not on the absolute values of ν_{j} masses.

The Majorana nature of ν_{j} can manifest itself in the existence of $\Delta L= \pm 2$ processes:

$$
\begin{gathered}
K^{+} \rightarrow \pi^{-}+\mu^{+}+\mu^{+} \\
\mu^{-}+(\mathrm{A}, \mathrm{Z}) \rightarrow \mu^{+}+(\mathrm{A}, \mathrm{Z}-2)
\end{gathered}
$$

The process most sensitive to the possible Majorana nature of $\nu_{j}-$ $(\beta \beta)_{0 \nu}$-decay

$$
(\mathrm{A}, \mathrm{Z}) \rightarrow(\mathrm{A}, \mathrm{Z}+2)+e^{-}+e^{-}
$$

of even-even nuclei, ${ }^{48} \mathrm{Ca},{ }^{76} \mathrm{Ge},{ }^{82} \mathrm{Se},{ }^{100} \mathrm{Mo},{ }^{116} \mathrm{Cd},{ }^{130} \mathrm{Te},{ }^{136} \mathrm{Xe},{ }^{150} \mathrm{Nd}$. $2 n$ from (A, Z) exchange a virtual Majorana ν_{j} (via the CC weak interaction) and transform into $2 p$ of $(A, Z+2)$ and two free e^{-}.

Nuclear 0 $\alpha \beta \beta$-decay

strong in-medium modification of the basic process

$$
d d \rightarrow \text { ииe }^{-} e^{-}\left(\bar{v}_{e} \bar{v}_{e}\right)
$$

Due to V. Rodin
$(\beta \beta)_{0 \nu}$-Decay Experiments:

- L-nonconservation, Majorana nature of ν_{j}.
- Type of ν-mass spectrum (NH, IH, QD).
- Absolute neutrino mass scale.
${ }^{3} \mathrm{H} \beta$-decay, cosmology: $m_{\nu}(\mathrm{QD}, \mathrm{IH})$,
- Majorana CPV phases.

$$
\begin{aligned}
& A(\beta \beta)_{\mathrm{O} \nu} \sim<m>\mathrm{M}(\mathrm{~A}, \mathrm{Z}), \quad \mathrm{M}(\mathrm{~A}, \mathrm{Z})-\mathrm{NME}, \\
& \begin{aligned}
|<m>| & =\left.\left|m_{1}\right| U_{\mathrm{e} 1}\right|^{2}+m_{2}\left|U_{\mathrm{e} 2}\right|^{2} e^{i \alpha_{21}}+m_{3}\left|U_{\mathrm{e} 3}\right|^{2} e^{i \alpha_{31}} \mid \\
& =\left|m_{1} c_{12}^{2} c_{13}^{2}+m_{2} s_{12}^{2} c_{13}^{2} e^{i \alpha_{21}}+m_{3} s_{13}^{2} e^{i \alpha_{31}}\right|, \quad \theta_{12} \equiv \theta_{\odot}, \theta_{13}-\mathrm{CHOOZ}
\end{aligned}
\end{aligned}
$$

$\alpha_{21}, \alpha_{31}\left(\left(\alpha_{31}-2 \delta\right) \rightarrow \alpha_{31}\right)$ - the two Majorana CPVP of the PMNS matrix.

CP-invariance: $\alpha_{21}=0, \pm \pi, \alpha_{31}=0, \pm \pi$;

$$
\eta_{21} \equiv e^{i \alpha_{21}}= \pm 1, \quad \eta_{31} \equiv e^{i \alpha_{31}}= \pm 1
$$

relative CP-parities of ν_{1} and ν_{2}, and of ν_{1} and ν_{3}.
L. Wolfenstein, 1981;
S.M. Bilenky, N. Nedelcheva, S.T.P., 1984;
B. Kayser, 1984.
$A(\beta \beta)_{0 \nu} \sim<m>M(\mathrm{~A}, \mathrm{Z}), \quad \mathrm{M}(\mathrm{A}, \mathrm{Z})-\mathrm{NME}$,
$\left|<m>|\cong| \sqrt{\Delta m_{\odot}^{2}} \sin ^{2} \theta_{12} e^{i \alpha}+\sqrt{\Delta m_{31}^{2}} \sin ^{2} \theta_{13 e^{i \beta_{\mu X}} \mid}, m_{1} \ll m_{2} \ll m_{3}(N H)\right.$,
$\left|<m>\left|\cong \sqrt{m_{3}^{2}+\Delta m_{13}^{2}}\right| \cos ^{2} \theta_{12}+e^{i \alpha} \sin ^{2} \theta_{12}\right|, m_{3}<(\ll) m_{1}<m_{2}(\mathrm{IH})$,
$\left|<m>|\cong m| \cos ^{2} \theta_{12}+e^{i \alpha} \sin ^{2} \theta_{12}\right|, m_{1,2,3} \cong m \gtrsim 0.10 \mathrm{eV}$ (QD),
$\theta_{12} \equiv \theta_{\odot}, \theta_{13}$-CHOOZ; $\alpha \equiv \alpha_{21}, \beta_{M} \equiv \alpha_{31}$.
CP-invariance: $\alpha=0, \pm \pi, \beta_{M}=0, \pm \pi ;$
$|<m>| \lesssim 5 \times 10^{-3} \mathrm{eV}, \mathrm{NH} ;$
$\sqrt{\Delta m_{13}^{2}} \cos 2 \theta_{12} \cong 0.013 \mathrm{eV} \lesssim|<m>| \lesssim \sqrt{\Delta m_{13}^{2}} \cong 0.055 \mathrm{eV}, \quad \mathrm{IH} ;$
$m \cos 2 \theta_{12} \lesssim|<m>| \lesssim m, m \gtrsim 0.10 \mathrm{eV}, Q \mathrm{Q}$.

S. Pascoli, PDG, 2017
$1 \sigma\left(\Delta m_{21}^{2}\right)=2.3 \%, 1 \sigma\left(\sin ^{2} \theta_{12}\right)=5.4 \%$
$1 \sigma\left(\left|\Delta m_{31(23)}^{2}\right|\right)=1.6 \% \cdot 1 \sigma\left(\sin ^{2} \theta_{13}\right)=4.0 \%$
From F. Capozzi et al., arXiv:1703.04471
$2 \sigma(|<m>|)$ used; $\alpha_{21},\left(\alpha_{31}-2 \delta\right)$ varied in $[0,2 \pi]$.

Results from IGEX (${ }^{76} \mathrm{Ge}$), NEMO3 (${ }^{100} \mathrm{Mo}$), CUORICINO+CUORE-0 (${ }^{130} \mathrm{Te}$):

IGEX ${ }^{76}$ Ge: $|<m>|<(0.33-1.35) \mathrm{eV}(90 \%$ C.L. $)$.
Data from NEMO3 (${ }^{100} \mathrm{Mo}$), CUORICINO+CUORE-0 (${ }^{130} \mathrm{Te}$):
$T\left({ }^{100} \mathrm{Mo}\right)>1.1 \times 10^{24} \mathrm{yr},|<m>|<(0.3-0.6) \mathbf{e V}$; $T\left({ }^{130} \mathrm{Te}\right)>4.0 \times 10^{24} \mathrm{yr}$.

Best Sensitivity Results from 2012-2016:

$$
\mathrm{T}\left({ }^{136} \mathrm{Xe}\right)>1.6 \times 10^{25} \mathrm{yr} \text { at } 90 \% \text { C.L., EXO }
$$

$\mathrm{T}\left({ }^{136} \times \mathrm{e}\right)>1.07 \times 10^{26} \mathrm{yr}$ at 90% C.L., KamLAND - Zen

$$
\begin{gathered}
|<m>|<(0.061-0.165) \mathrm{eV} . \\
\mathrm{T}\left({ }^{76} \mathrm{Ge}\right)>5.2 \times 10^{25} \mathrm{yr} \text { at 90\% C.L., GERDA II } \\
|<m>|<(0.16-0.26) \mathrm{eV} .
\end{gathered}
$$

H. Klapdor-Kleingrothaus et al., PL B586 (2004),

$$
\mathrm{T}\left({ }^{76} \mathrm{Ge}\right)=2.23_{0.31}^{+0.44} \times 10^{25} \mathrm{yr} \text { at } 90 \% \text { C.L. }
$$

Large number of experiments: $|<m>| \sim(0.01-0.05) \mathrm{eV}$
CUORE - ${ }^{130}$ Te;
GERDA-II - ${ }^{76} \mathrm{Ge}$;
MAJORANA - ${ }^{76} \mathrm{Ge}$;
KamLAND-ZEN - ${ }^{136} \times e$;
(n)EXO - ${ }^{136} \times \mathrm{e}$;

SNO+ - ${ }^{130} \mathrm{Te}$;
AMoRE - ${ }^{100}$ Mo (S. Korea);
CANDLES $-{ }^{48} \mathrm{Ca}$;
SuperNEMO - ${ }^{82}$ Se, ${ }^{150} \mathrm{Nd}$;
MAJORANA - ${ }^{76} \mathrm{Ge}$;
NEXT - ${ }^{136} \mathrm{Xe}$;
DCBA - ${ }^{82} \mathrm{Se},{ }^{150} \mathrm{Nd}$;
XMASS - ${ }^{136}$ Xe;
PANDAX-III - ${ }^{136} \times e$;
ZICOS - ${ }^{96} \mathrm{Zr}$;
MOON - ${ }^{100} \mathrm{Mo}$;
\square
Striet GerDA: Experimental Setup

Majorana CPV Phases and $|<m>|$

CPV can be established provided

- $|\langle m\rangle|$ measured with $\Delta \lesssim 15 \%$;
- $\Delta m_{\text {atm }}^{2}$ (IH) or m_{0} (QD) measured with $\delta \lesssim 10 \%$;
- $\xi \lesssim 1.5$;
$-\alpha_{21}$ (QD): in the interval $\sim\left[\frac{\pi}{4}-\frac{3 \pi}{4}\right]$, or $\sim\left[\frac{5 \pi}{4}-\frac{3 \pi}{2}\right]$;
$-\tan ^{2} \theta_{\odot} \gtrsim 0.40$.
S. Pascoli, S.T.P., W. Rodejohann, 2002
S. Pascoli, S.T.P., L. Wolfenstein, 2002
S. Pascoli, S.T.P., T. Schwetz, hep-ph/0505226

No "No-go for detecting CP-Violation via $(\beta \beta)_{0 \nu}$-decay"
V. Barger et al., 2002
S.T. Petcov, Summer School, TU Dresden, 17/08/2017

NMEs for Light ν Exchange

	mean field meth.	ISM	IBM	QRPA
Large model space	yes	no	yes	yes
Constr. Interm. States	no	yes	no	yes
Nucl. Correlations	limited	all	restricted	restricted

F. Simkovic, September, 2016

The g_{A} Quenching Problem

g_{A} : related to the weak charged axial current which is not conserved and therefore can be and is renormalised, i.e., quenched, by the nuclear medium. Effectively, this implies that g_{A} is reduced from its current standard value $g_{A}=1.269$.
The reduction of g_{A} can have important implications for the $(\beta \beta)_{0 \nu}$-decay searches since $T_{1 / 2}^{0 \nu} \propto\left(g_{A}^{e f f}\right)^{-4}$.

The reduction of g_{A} necessary in various model NME calculations of $T_{1 / 2}^{2 \nu}$ to reproduce the data; does not imply the same reduction of g_{A} takes place in the $(\beta \beta)_{0 \nu}$-decay NME, there are indications that the reduction is much smaller.
The mechanism of quenching is not understood at present. Thus, the degree of quenching cannot be firmly determined quantitatively and is subject to debates.

New Physics and $(\beta \beta)_{0 \nu}$-Decay

Light Sterile Neutrinos and $(\beta \beta)_{0 \nu}$-Decay

One Sterile Neutrino: the $3+1$ Model

$$
\begin{gathered}
\left.\left|<m>\left|=\left|m_{1}\right| U_{e 1}\right|^{2}+m_{2}\right| U_{e 2}\right|^{2} e^{i \alpha}+m_{3}\left|U_{e 3}\right|^{2} e^{i \beta}+m_{4}\left|U_{e 4}\right|^{2} e^{i \gamma} \mid . \\
U_{e 1}=c_{12} c_{13} c_{14}, \quad U_{e 2}=e^{i \alpha / 2} c_{13} c_{14} s_{12}, \\
U_{e 3}=e^{i \beta / 2} c_{14} s_{13}, \quad U_{e 4}=e^{i \gamma / 2} s_{14}, \\
\sin ^{2} \theta_{14}=0.0225, \quad \Delta m_{41(43)}^{2}=0.93 \mathrm{eV}^{2} \quad \text { (A) },
\end{gathered}
$$

J. Kopp et al., 2013
$\sin ^{2} \theta_{14}=0.023(0.028), \Delta m_{41(43)}^{2}=1.78(1.60) \mathrm{eV}^{2}(B)$.
J. Kopp et al., 2013 ($\nu_{e}, \bar{\nu}_{e}$ disappearnce data);
C. Giunti et al., 2013 (global, except for MiniBooNE results at $E_{\nu} \leq 0.475 \mathrm{GeV}$)

I. Girardi A. Meroni, S.T.P., 2013

NO spectrum; green, red and orange lines: $(\alpha, \beta, \gamma)=(0,0,0),(0,0, \pi),(\pi, \pi, \pi)$; five gray lines: the other five sets of CP conserving values.
Left panel: $\Delta m_{41}^{2}=0.93 \mathrm{eV}^{2}, \sin \theta_{14}=0.15$.
Right panel: $\Delta m_{41}^{2}=1.78 \mathrm{eV}^{2}, \sin \theta_{14}=0.15$.

I. Girardi A. Meroni, S.T.P., 2013

IO spectrum; green and orange lines: $(\alpha, \beta, \gamma)=(0,0,0),(\pi, \pi, \pi)$; six gray lines: the other six sets of CP conserving values.
Left panel: $\Delta m_{43}^{2}=0.93 \mathrm{eV}^{2}, \sin \theta_{14}=0.15$.
Right panel: $\Delta m_{43}^{2}=1.78 \mathrm{eV}^{2}, \sin \theta_{14}=0.15$.

Heavy Majorana Neutrino Exchange Mechanisms

Light Majorana Neutrino Exchange

$$
\eta_{\nu}=\frac{\leq m>}{m_{e}}
$$

Heavy Majorana Neutrino Exchange Mechanisms
(V-A) Weak Interaction, LH $N_{k}, M_{k} \gtrsim 10 \mathrm{GeV}$:
$\eta_{N}^{L}=\sum_{k}^{h e a v y} U_{e k}^{2} \frac{m_{p}}{M_{k}}, m_{p}$ - proton mass, $U_{e k}-\mathrm{CPV}$.
S.T. Petcov, Summer School, TU Dresden, 17/08/2017

NMEs for Heavy Majorana Neutrino Exchange

F. Simkovic, September, 2016

Uncovering Multiple CP-Nonconserving Mechanisms of $(\beta \beta)_{0 \nu}$-Decay

If the decay $(A, Z) \rightarrow(A, Z+2)+e^{-}+e^{-}\left((\beta \beta)_{0 \nu}\right.$-decay $)$ will be observed, the question will inevitably arise:

Which mechanism is triggering the decay?
How many mechanisms are involved?
"Standard Mechanism": light Majorana ν exchange.
Fundamental parameter - the effective Majorana mass:
$<m>=\Sigma_{j}^{\text {light }}\left(U_{e j}\right)^{2} m_{j}$, all $m_{j} \geq 0$,
U - the Pontecorvo, Maki, Nakagawa, Sakata (PMNS) neutrino mixing matrix, m_{j} - the light Majorana neutrino masses, $m_{j} \lesssim 1 \mathrm{eV}$.
U - CP violating, in general: $\left(U_{e j}\right)^{2}=\left|U_{e j}\right|^{2} e^{i \alpha_{j 1}}, j=$
$2,3, \alpha_{21}, \alpha_{31}$ - Majorana CPV phases.

A number of different mechanisms possible.
For a given mechanism κ we have in the case of $(A, Z) \rightarrow(A, Z+2)+e^{-}+e^{-}:$
$\frac{1}{T_{1 / 2}^{0 \nu}}=\left|\eta_{\kappa}^{L N V}\right|^{2} G^{0 \nu}\left(E_{0}, Z\right)\left|M_{\kappa}^{\prime 0 \nu}\right|^{2}$,
$\eta_{\kappa}^{L N V}$ - the fundamental LNV parameter characterising the mechanism κ,
$G^{0 \nu}\left(E_{0}, Z\right)$ - phase-space factor (includes $g_{A}^{4}=(1.25)^{4}$, as well as $R^{-2}(A), R(A)=r_{0} A^{1 / 3}$ with $\left.r_{0}=1.1 \mathrm{fm}\right)$, $M^{\prime 0}{ }_{\kappa}=\left(g_{A} / 1.25\right)^{2} M_{\kappa}^{0 \nu}-\mathrm{NME}$ (includes $R(A)$ as a factor).

Different Mechanisms of $(\beta \beta)_{0 \nu}$-Decay

Light Majorana Neutrino Exchange

$$
\eta_{\nu}=\frac{\leq m>}{m_{e}}
$$

Heavy Majorana Neutrino Exchange Mechanisms
(V-A) Weak Interaction, LH $N_{k}, M_{k} \gtrsim 10 \mathrm{GeV}$:
$\eta_{N}^{L}=\sum_{k}^{h e a v y} U_{e k}^{2} \frac{m_{p}}{M_{k}}, m_{p}$ - proton mass, $U_{e k}-\mathrm{CPV}$.
S.T. Petcov, Summer School, TU Dresden, 17/08/2017
$(\mathrm{V}+\mathrm{A})$ Weak Interaction, $\mathrm{RH} N_{k}, M_{k} \gtrsim 10 \mathrm{GeV}:$
$\eta_{N}^{R}=\left(\frac{M_{W}}{M_{W R}}\right)^{4} \sum_{k}^{h e a v y} V_{e k}^{2} \frac{m_{p}}{M_{k}} ; V_{e k}: N_{k}-e^{-}$in the CC.
$M_{W} \cong 80 \mathrm{GeV} ; M_{W R} \gtrsim 2.5 \mathrm{TeV} ; V_{e k}$ - CPV, in general.
A comment.
(V-A) CC Weak Interaction:
$\bar{e}\left(1+\gamma_{5}\right) e^{c} \equiv 2 \overline{e_{L}}\left(e^{c}\right)_{R}, e^{c}=C(\bar{e})^{T}$,
C - the charge conjugation matrix.
($V+A$) CC Weak Interaction:
$\bar{e}\left(1-\gamma_{5}\right) e^{c} \equiv 2 \overline{e_{R}}\left(e^{c}\right)_{L}$.
The interference term: $\propto m_{e}$, suppressed.
A. Halprin, S.T.P., S.P. Rosen, 1983

SUSY Models with R-Parity Non-conservation

$$
\begin{aligned}
\mathcal{L}_{R_{p}} & =\lambda_{111}^{\prime}\left[\left(\begin{array}{ll}
\bar{u}_{L} & \bar{d}_{L}
\end{array}\right)\binom{e_{R}^{c}}{-\nu_{e R}^{c}} \tilde{d}_{R}+\left(\bar{e}_{L} \bar{\nu}_{e L}\right) d_{R}\binom{\tilde{u}_{L}^{*}}{-\tilde{d}_{L}^{*}}\right. \\
& \left.+\left(\bar{u}_{L} \bar{d}_{L}\right) d_{R}\binom{\tilde{e}_{L}^{*}}{-\tilde{\nu}_{e L}^{*}}\right]+ \text { h.c. }
\end{aligned}
$$

The Gluino Exchange Dominance Mechanism

$\eta_{\lambda^{\prime}}=\frac{\pi \alpha_{s}}{6} \frac{\lambda^{\prime 2}}{G_{F}^{2} m_{\tilde{d}_{R}}^{4}} \frac{m_{p}}{m_{\tilde{g}}}\left[1+\left(\frac{m_{\tilde{d}_{R}}}{m_{\tilde{u}_{L}}}\right)^{2}\right]^{2}$,
G_{F} - the Fermi constant, $\alpha_{s}=g_{3}^{2} /(4 \pi), g_{3}$ - the $\operatorname{SU}(3)_{c}$ gauge coupling constant, $m_{\tilde{u}_{L}}, m_{\tilde{d}_{R}}$ and $m_{\tilde{g}}$ - the masses of the LH u-squark, RH d-squark and gluino.

The Squark-Neutrino Mechanism
$\eta_{\tilde{q}}=\sum_{k} \frac{\lambda_{11 k}^{\prime} \lambda_{1 k 1}^{\prime}}{2 \sqrt{2} G_{F}} \sin 2 \theta_{(k)}^{d}\left(\frac{1}{m_{\tilde{d}_{1}(k)}^{2}}-\frac{1}{m_{\tilde{d}_{2}(k)}^{2}}\right)$,
$d_{(k)}=d, s, b ; \theta^{d}: \widetilde{d}_{k L}-\widetilde{d}_{k R}-$ mixing (3 light Majorana neutrinos assumed).
The $2 e^{-}$current in both mechanisms:
$\bar{e}\left(1+\gamma_{5}\right) e^{c} \equiv 2 \bar{e}_{L}\left(e^{c}\right)_{R}$, as in the "standard" mechanism.

The problem of distinguishing between different sets of multiple (e.g., two) mechanisms being operative in $(\beta \beta)_{0 \nu}$-decay was studied in

1. A. Faessler, A. Meroni, S.T.P., F. Simkovic and J. Vergados, "Uncovering Multiple CP-Nonconserving Mechanisms of $(\beta \beta)_{0 \nu}$-Decay", arXiv:1103.2434, Phys. Rev. D83 (2011) 113003.
2. A. Meroni, S.T.P. and F. Simkovic, "Multiple CP Non-conserving Mechanisms of bbOnu-Decay and Nuclei with Largely Different Nuclear Matrix Elements', (arXiv:1212.1331, JHEP 1302 (2013) 025.

Earlier studies include:
A. Halprin, S.T.P., S.P. Rosen, "Effects of Mixing of Light and Heavy Majorana Neutrinos in Neutrinoless Double Beta Decay", Phys. Lett. 125B (1983) 335).

The Nature of Massive Neutrinos III:
The Seesaw Mechanisms of Neutrino Mass Generation

- Explain the smallness of ν-masses.
- Through leptogenesis theory link the ν-mass generation to the generation of baryon asymmetry of the Universe.
S. Fukugita, T. Yanagida, 1986.

Three Types of Seesaw Mechanisms

Require the existence of new degrees of freedom (particles) beyond those present in the ST

Type I seesaw mechanism: $\nu_{l R}-\mathrm{RH} \nu \mathrm{S}^{\prime}$ (heavy).
Type II seesaw mechanism: $\mathbf{H}(\mathrm{x})$ - a triplet of H^{0}, H^{-}, H^{--}Higgs fields (HTM).

Type III seesaw mechanism: $\mathrm{T}(\mathrm{x})$ - a triplet of fermion fields.

The scale of New Physics determined by the masses of the New Particles.

Massive neutrinos ν_{j} - Majorana particles.
All three types of seesaw mechanisms have TeV scale versions, predicting rich low-energy phenomenology ($(\beta \beta)_{0 \nu}$-decay, LFV processes, etc.) and New Physics at LHC.

Type I Seesaw Mechanism

- Requires both $\nu_{l L}(x)$ and $\nu_{l^{\prime} R}(x)$.
- Dirac+Majorana Mass Term: $M^{L L}=0, \mid M_{D}=$ $v Y^{\nu} / \sqrt{2}|\ll| M^{R R} \mid$.
- Diagonalising $M^{R R}: N_{j}$ - heavy Majorana neutrinos, $M_{j} \sim T e V$; or $\left(10^{9}-10^{13}\right) \mathrm{GeV}$ in GUTs.

For sufficiently Iarge M_{j}, Majorana mass term for $\nu_{l L}(x)$:

$$
M_{\nu} \cong v_{u}^{2}\left(Y^{\nu}\right)^{T} M_{j}^{-1} Y^{\nu}=U_{\mathrm{PMNS}}^{*} m_{\nu}^{\text {diag }} U_{\mathrm{PMNS}}^{\dagger}
$$

$v_{u} Y^{\nu}=M_{D}, M_{D} \sim 1 \mathrm{GeV}, M_{j}=10^{10} \mathrm{GeV}: M_{\nu} \sim 0.1$ eV .

- $\nu_{l^{\prime} R}(x)$: Majorana mass term at "high scale" (\sim TeV; or $\left(10^{9}-10^{13}\right) \mathrm{GeV}$ in $S O(10)$ GUT)

$$
\mathcal{L}_{M}^{\nu}(x)=+\frac{1}{2} \nu_{l^{\prime} R}^{\top}(x) C^{-1}\left(M^{R R}\right)_{l^{\prime} l}^{\dagger} \nu_{l R}(x)+h . c .=-\frac{1}{2} \sum_{j} \bar{N}_{j} M_{j} N_{j}
$$

- Yukawa type coupling of $\nu_{l L}(x)$ and $\nu_{l^{\prime} R}(x)$ involving $\Phi(x)$:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{Y}}(x) & =\bar{Y}_{l^{\prime}}^{\nu} \overline{\overline{\nu_{l^{\prime} R}}}(x) \Phi^{T}(x)\left(i \tau_{2}\right) \psi_{l L}(x)+\text { h.c. } \\
& =Y_{j l}^{\nu} \\
M_{D R} & =\frac{v}{\sqrt{2}} Y^{\nu}, \quad v=246 \mathrm{GeV}
\end{aligned}
$$

Due to I. Girardi

$$
M_{\nu} \cong h v^{2} M_{H}^{-1}=U_{\mathrm{PMNS}}^{*} m_{\nu}^{\text {diag }} U_{\mathrm{PMNS}}^{\dagger}
$$

$$
h \sim 10^{-2}, v=246 \mathrm{GeV}, M_{H} \sim 10^{12} \mathrm{GeV}: M_{\nu} \sim 0.6 \mathrm{eV}
$$

$$
M_{\nu} \cong v^{2}\left(Y_{T}\right)^{T} M_{T}^{-1} Y_{T}=U_{\mathrm{PMNS}}^{*} m_{\nu}^{\text {diag }} U_{\mathrm{PMNS}}^{\dagger}
$$

$v Y_{T} \sim 1 \mathrm{GeV}, M_{T} \sim 10^{10} \mathrm{GeV}: M_{\nu} \sim 0.1 \mathrm{eV}$.

LEPTOGENESIS

M_{ν} from type I See-Saw Mechanism

P. Minkowski, 1977.
M. Gell-Mann, P. Ramond, R. Slansky, 1979;
T. Yanagida, 1979;
R. Mohapatra, G. Senjanovic, 1980.

- Explains the smallness of ν-masses.
- Through leptogenesis theory links the ν-mass generation to the generation of baryon asymmetry of the Universe Y_{B}.

```
S. Fukugita, T. Yanagida, 1986; GUT's: M. Yoshimura, }1978
```

- In SUSY GUT's with see-saw mechanism of ν-mass generation, the LFV decays

$$
\mu \rightarrow e+\gamma, \quad \tau \rightarrow \mu+\gamma, \quad \tau \rightarrow e+\gamma, \text { etc. }
$$

are predicted to take place with rates within the reach of present and future experiments.

```
F. Borzumati, A. Masiero, 1986.
```

- The ν_{j} are Majorana particles; $(\beta \beta)_{0 \nu}$-decay is allowed.

See-Saw: Dirac ν-mass $m_{D}+$ Majorana mass M_{R} for N_{R}

In GUTs, $M_{1,2,3}<M_{X}, M_{X} \sim 10^{16} \mathrm{GeV}$;
in GUTs, e.g., $M_{1,2,3}=\left(10^{11}, 10^{12}, 10^{13}\right) \mathrm{GeV}, m_{D} \sim 1$ GeV.
TeV Scale (Resonant) Leptogenesis:
$M_{1,2,3} \sim\left(10^{2}-10^{3}\right) \mathrm{GeV}$ (requires fine-tuning (severe)); observation of N_{j} at LHC - problematic (Iow production rates); observable LFV processes: $\mu \rightarrow e+\gamma, \mu \rightarrow 3 e$, $\mu^{-}-e^{-}$conversion.

Can the CP violation necessary for the generation of the observed value of the Baryon Asymmetry of the Universe (BAU) be provided exclusively by the Dirac and/or Majorana CPV phases in the neutrino PMNS matrix?

Demonstrated in (incomplete list):

S. Pascoli et al., hep-ph/0609125 and hep-ph/0611338.
E. Molinaro et al., arXiv:0808.3534.
A. Meroni et al., arXiv:1203.4435.
C. Hagedorn et al., arXiv:0908.0240.
J. Gehrlein et al., arXiv:1502.00110 and arXiv:1508.07930.
J. Zhang, Sh. Zhou, arXiv:1505.04858 (FGY 2002 model).
P. Chen et al., arXiv:1602.03873.
C. Hegdorn, E. Molinaro, arXiv:1602.04206.
P. Hernandez et al., arXiv:1606.06719 and 1611.05000.
M. Drewes et al., arXiv:1609.09069.
G. Bambhaniya et al., arXiv:1611.03827.

The Seesaw Lagrangian

$$
\begin{aligned}
& \mathcal{L}^{l \mathrm{ep}}(x)=\mathcal{L}_{\mathrm{CC}}(x)+\mathcal{L}_{\mathrm{Y}}(x)+\mathcal{L}_{\mathrm{M}}^{\mathrm{N}}(x), \\
& \mathcal{L}_{\mathrm{CC}}=-\frac{g}{\sqrt{2}} \overline{l_{L}}(x) \gamma_{\alpha} \nu_{l L}(x) W^{\alpha \dagger}(x)+\text { h.c. }, \\
& \mathcal{L}_{\mathrm{Y}}(x)= \lambda_{i l} \overline{N_{i R}}(x) H^{\dagger}(x) \psi_{l L}(x)+Y_{l} H^{c}(x) \overline{l_{R}}(x) \psi_{l L}(x)+\text { h.c. }, \\
& \mathcal{L}_{\mathrm{M}}^{\mathrm{N}}(x)=-\frac{1}{2} M_{i} \overline{N_{i}}(x) N_{i}(x) .
\end{aligned}
$$

$\psi_{l L}-\mathrm{LH}$ doublet, $\psi_{l L}^{\top}=\left(\nu_{l L} l_{L}\right), l_{R}-\mathrm{RH}$ singlet, H - Higgs doublet. Basis: $M_{R}=\left(M_{1}, M_{2}, M_{3}\right) ; D_{N} \equiv \operatorname{diag}\left(M_{1}, M_{2}, M_{3}\right), D_{\nu} \equiv \operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)$. m_{D} generated by the Yukawa interaction:

$$
-\mathcal{L}_{Y}^{\nu}=\lambda_{i l} \overline{N_{i R}} H^{\dagger}(x) \psi_{l L}(x), v=174 \mathrm{GeV}, v \lambda=m_{D}-\text { complex }
$$

For M_{R} - sufficiently large,

$$
m_{\nu} \simeq v^{2} \lambda^{T} D_{N}^{-1} \lambda=U_{\mathrm{PMNS}}^{*} D_{\nu} U_{\mathrm{PMNS}}^{\dagger}
$$

$$
\begin{aligned}
m_{\nu} \simeq v^{2} \lambda^{T} D_{N}^{-1} \lambda & =U_{\mathrm{PM} N S}^{*} D_{\nu} U_{\mathrm{PM}}^{\dagger} \\
\lambda & \equiv Y_{\nu}
\end{aligned}
$$

$Y_{\nu} \equiv \lambda=\sqrt{D_{N}} R \sqrt{D_{\nu}}\left(U_{\mathrm{PMNS}}\right)^{\dagger} / v_{u}$, all at M_{R};

$$
R \text {-complex, } R^{T} R=1
$$

J.A. Casas and A. Ibarra, 2001
$D_{N} \equiv \operatorname{diag}\left(M_{1}, M_{2}, M_{3}\right), D_{\nu} \equiv \operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)$.
Theories, Models:

- R - CP conserving ($S U(5) \times T^{\prime}$, A. Meroni et al., arxiv:1203.4435; S_{4}, P. Cheng et al., arXiv:1602.03873; C. Hagedorn, E. Molinaro, arXiv:1602.04206).
- CPV parameters in R determined by the CPV phases in U (e.g., class of A_{4} theories).
- Texture zeros in Y_{ν} : CPV parameters in R determined by the CPV phases in U
(Frampton, Glashow Yanagida (FGY), 2002: $N_{1,2}$, two texture zeros in Y_{ν}; LG in FGY model: J. Zhang, Sh. Zhou, arXiv:1505.04858).

The CP-Invarinace Constraints

Assume: $\quad C\left(\bar{\nu}_{j}\right)^{T}=\nu_{j}, \quad C\left(\bar{N}_{k}\right)^{T}=N_{k}, \quad j, k=1,2,3$.
The CP-symmetry transformation:

$$
\begin{aligned}
U_{\mathrm{CP}} N_{j}(x) U_{\mathrm{CP}}^{\dagger} & =\eta_{j}^{N C P} \gamma_{0} N_{j}\left(x^{\prime}\right), \quad \eta_{j}^{N C P}=i \rho_{j}^{N}= \pm i, \\
U_{\mathrm{CP} \nu_{k}}(x) U_{\mathrm{CP}}^{\dagger} & =\eta_{k}^{\nu C P} \gamma_{0} \nu_{k}\left(x^{\prime}\right), \quad \eta_{k}^{\nu C P}=i \rho_{k}^{\nu}= \pm i
\end{aligned}
$$

CP-invariance:

$$
\lambda_{j l}^{*}=\lambda_{j l}\left(\eta_{j}^{N C P}\right)^{*} \eta^{l} \eta^{H *}, \quad j=1,2,3, l=e, \mu, \tau,
$$

Convenient choice: $\eta^{l}=i, \quad \eta^{H}=1 \quad\left(\eta^{W}=1\right)$:

$$
\begin{aligned}
\lambda_{j l}^{*} & =\lambda_{j l} \rho_{j}^{N}, \rho_{j}^{N}= \pm 1 \\
U_{l j}^{*} & =U_{l j} \rho_{j}^{\nu}, \rho_{j}^{\nu}= \pm 1 \\
R_{j k}^{*} & =R_{j k} \rho_{j}^{N} \rho_{k}^{\nu}, \quad j, k=1,2,3, \quad l=e, \mu, \tau
\end{aligned}
$$

$\lambda_{j l}, U_{l j}, R_{j k}$ - either real or purely imaginary.
Relevant quantity:

$$
\begin{aligned}
P_{j k m l} & \equiv R_{j k} R_{j m} U_{l k}^{*} U_{l m}, k \neq m \\
C P: \quad P_{j k m l}^{*} & =P_{j k m l}\left(\rho_{j}^{N}\right)^{2}\left(\rho_{k}^{\nu}\right)^{2}\left(\rho_{m}^{\nu}\right)^{2}=P_{j k m l}, \quad \operatorname{Im}\left(P_{j k m l}\right)=0 .
\end{aligned}
$$

$$
\begin{aligned}
P_{j k m l} & \equiv R_{j k} R_{j m} U_{l k}^{*} U_{l m}, k \neq m \\
C P: \quad P_{j k m l}^{*} & =P_{j k m l}\left(\rho_{j}^{N}\right)^{2}\left(\rho_{k}^{\nu}\right)^{2}\left(\rho_{m}^{\nu}\right)^{2}=P_{j k m l}, \quad \operatorname{Im}\left(P_{j k m l}\right)=0
\end{aligned}
$$

Consider NH $N_{j}, \mathrm{NH} \nu_{k}: \quad P_{123 \tau}=R_{12} R_{13} U_{\tau 2}^{*} U_{\tau 3}$
Suppose, CP-invrainace holds at low $E: \delta=0, \alpha_{21}=\pi, \quad \alpha_{31}=0$.
Thus, $U_{\tau 2}^{*} U_{\tau 3}$ - purely imaginary.
Then real $R_{12} R_{13}$ corresponds to CP-violation at "high" E due to the interplay of R and $U: \operatorname{Im}\left(P_{123 \tau}\right) \neq 0(!)$

Baryon Asymmetry

$$
Y_{B}=\frac{n_{B}-n_{\bar{B}}}{n_{\gamma}}=(6.1 \pm 0.3) \times 10^{-10}, \quad \mathrm{CMB}
$$

Sakharov conditions for a dynamical generation of $Y_{B} \neq 0$ in the Early Universe

- B number non-conservation.
- Violation of C and $C P$ symmetries.
- Deviation from thermal equilibrium.

Leptogenesis

- The heavy Majorana neutrinos N_{i} are in equilibrium in the Early Universe as far as the processes which produce and destroy them are efficient.
- When $T<M_{1}, N_{1}$ drops out of equilibrium as it cannot be produced efficiently anymore.
- If $\Gamma\left(N_{1} \rightarrow \Phi^{-} \ell^{+}\right) \neq \Gamma\left(N_{1} \rightarrow \Phi^{+} \ell^{-}\right)$, a lepton asymmetry will be generated.
- Wash-out processes, like $\Phi^{+}+\ell^{-} \rightarrow N_{1}, \quad \ell^{-}+\Phi^{+} \rightarrow \Phi^{-}+\ell^{+}$, etc. tend to erase the asymmetry. Under the condition of non-equilibrium, they are less efficient than the direct processes in which the lepton asymmetry is created. The final resullt is a net (non-zero) lepton asymmetry.
- This lepton asymmetry is then converted into a baryon asymmetry by $(B+L)$ violating but ($B-L$) conserving sphaleron processes which exist within the SM (at $T \gtrsim M_{\text {EWSB }}$).
S. Fukugita, T. Yanagida, 1986.

In order to compute Y_{B} :

1. calculate the CP-asymmetry:

$$
\varepsilon_{1}=\frac{\Gamma\left(N_{1} \rightarrow \Phi^{-} \ell^{+}\right)-\Gamma\left(N_{1} \rightarrow \Phi^{+} \ell^{-}\right)}{\Gamma\left(N_{1} \rightarrow \Phi^{-} \ell^{+}\right)+\Gamma\left(N_{1} \rightarrow \Phi^{+} \ell^{-}\right)}
$$

2. solve the Boltzmann (or similar) equation to account for the wash-out of the asymmetry:

$$
Y_{\mathrm{L}}=\kappa \varepsilon
$$

where $\kappa=\kappa(\widetilde{m})$ is the "efficiency factor", \widetilde{m} is the "the wash-out mass parameter" - determines the rate of wash-out processes;
3. the lepton asymmetry is converted into a baryon asymmetry:

$$
Y_{\mathrm{B}}=-\frac{c_{s}}{g_{*}} \kappa \varepsilon, \quad c_{s} \cong 1 / 3, \quad g_{*}=215 / 2
$$

Baryon number violation in the SM

Instanton and Sphaleron processes
$\mathbf{S U (2)}$ instantons lead to (leading order) to effective 12 fermion ($B+L$) nonconserving, but ($B-L$) conserving, interactions:
$O(B+L)=\Pi_{i} q_{L i} q_{L i} q_{L i} l_{L i}$
These would induce $\Delta B=\Delta L=3$ processes:
$u_{L}+d_{L}+c_{L}+s_{L}+t_{L}+b_{L}+\nu_{e L}+\nu_{\mu L}+\nu_{\tau L} \rightarrow \bar{d}_{R}+\bar{b}_{R}+\bar{s}_{R}$
However, at $\mathbf{T}=\mathbf{0}$ the probability of such processes is $\Gamma / V \sim e^{-4 \pi / \alpha} \sim 10^{-165}$.
't Hooft, 1976

At finite T, the transitions proceed via thermal fluctuations (over the barrier) with an unsuppressed probability (due to sphaleron (static) configurations - saddle "points" of the field energy of the $S U(2)$ gauge - Higgs field system):

$$
\Gamma / V \sim \alpha^{4} T^{4}
$$

Kuzmin, Rubakov, Shaposhnikov, 1985;
Arnold et al., 1987 and 1997.
Sphaleron processes are efficient (in the case of interest) at

$$
T_{\mathrm{EW}} \sim 100 \mathrm{GeV}<T<10^{12} \mathrm{GeV}
$$

Can generate $B \neq 0, L \neq 0$ at $T_{\mathrm{EW}}<T\left(<10^{12} \mathrm{GeV}\right.$) from $(B-L)_{0} \neq 0$ (with $(B-L)=$ const.).

Leptogenesis

$$
\begin{array}{rr}
Y_{B}=\frac{n_{B}-n_{\bar{E}}}{S} \sim 8.6 \times 10^{-11} \quad\left(n_{\gamma}: \sim 6.1 \times 10^{-10}\right) \\
Y_{B} \cong-3 \times 10^{-3} \varepsilon \kappa \quad & \text { W. Buchmüller, M. Plümacher, 1998; } \\
& \text { W. Buchmüller, P. Di Bari, M. Plümacher, 2004 }
\end{array}
$$

κ - efficiency factor; $\kappa \sim 10^{-1}-10^{-3}: \varepsilon \gtrsim 10^{-7}$.
ε : $C P-, L-$ violating asymmetry generated in out of equilibrium $N_{R j}$-decays in the early Universe,

$$
\varepsilon_{1}=\frac{\Gamma\left(N_{1} \rightarrow \Phi^{-} \ell^{+}\right)-\Gamma\left(N_{1} \rightarrow \Phi^{+} \ell^{-}\right)}{\Gamma\left(N_{1} \rightarrow \Phi^{-} \ell^{+}\right)+\Gamma\left(N_{1} \rightarrow \Phi^{+} \ell^{-}\right)}
$$

M.A. Luty, 1992;
L. Covi, E. Roulet and F. Vissani, 1996; M. Flanz et al., 1996;
M. Plümacher, 1997;
A. Pilaftsis, 1997.
$\kappa=\kappa(\widetilde{m}), \widetilde{m}$ - determines the rate of wash-out processes:
$\Phi^{+}+\ell^{-} \rightarrow N_{1}, \quad \ell^{-}+\Phi^{+} \rightarrow \Phi^{-}+\ell^{+}$, etc.
W. Buchmuller, P. Di Bari and M. Plumacher, 2002;
G. F. Giudice et al., 2004

S.T. Petcov, Summer School, TU Dresden, 17/08/2017

Low Energy Leptonic CPV and Leptogenesis

Assume: $\quad M_{1} \ll M_{2} \ll M_{3}$
Individual asymmetries:
$\varepsilon_{1 l}=-\frac{3 M_{1}}{16 \pi v^{2}} \frac{\operatorname{Im}\left(\sum_{j, k} m_{j}^{1 / 2} m_{k}^{3 / 2} U_{l j}^{*} U_{l k} R_{1 j} R_{1 k}\right)}{\sum_{j} m_{j}\left|R_{1 j}\right|^{2}}, \quad v=174 \mathrm{GeV}$

$$
\widetilde{m_{l}} \equiv \frac{\left|\lambda_{1 l}\right|^{2} v^{2}}{M_{1}}=\left|\sum_{k} R_{1 k} m_{k}^{1 / 2} U_{l k}^{*}\right|^{2}, \quad l=e, \mu, \tau .
$$

The "one-flavor" approximation - $\mathbf{Y}_{\mathrm{e}, \mu, \tau}$ - "small":
Boltzmann eqn. for $n\left(N_{1}\right)$ and $\Delta L=\Delta\left(L_{e}+L_{\mu}+L_{\tau}\right)$.
$Y_{l} H^{c}(x) \overline{l_{R}}(x) \psi_{l L^{-}}$out of equilibrium at $T \sim M_{1}$.
One-flavor approximation: $M_{1} \sim T>10^{12} \mathrm{GeV}$

$$
\begin{aligned}
\varepsilon_{1} & =\sum_{l} \varepsilon_{1 l}=-\frac{3 M_{1}}{16 \pi v^{2}} \frac{\operatorname{Im}\left(\sum_{j, k} m_{j}^{2} R_{1 j}^{2}\right)}{\sum_{k} m_{k}\left|R_{1 k}\right|^{2}} \\
\widetilde{m_{1}} & =\sum_{l} \widetilde{m_{l}}=\sum_{k} m_{k}\left|R_{1 k}\right|^{2}
\end{aligned}
$$

Two-Flavour Regime
At $M_{1} \sim T \sim 10^{12} \mathrm{GeV}: Y_{\tau}$ - in equilibrium, $Y_{e, \mu}$ - not;
wash-out dynamics changes: $\tau_{R}^{-}, \tau_{L}^{+}$
$N_{1} \rightarrow\left(\lambda_{1 e} e_{L}^{-}+\lambda_{1 \mu} \mu_{L}^{-}+\lambda_{1 \tau} \tau_{L}^{-}\right)+\Phi^{+} ; \quad\left(\lambda_{1 e} e_{L}^{-}+\lambda_{1 \mu} \mu_{L}^{-}+\lambda_{1 \tau} \tau_{L}^{-}\right)+\Phi^{+} \rightarrow N_{1} ;$
$\tau_{L}^{-}+\Phi^{0} \rightarrow \tau_{R}^{-}, \quad \tau_{L}^{-}+\tau_{L}^{+} \rightarrow N_{1}+\nu_{L}$, etc.
$\varepsilon_{1 \tau}$ and $\left(\varepsilon_{1 e}+\varepsilon_{1 \mu}\right) \equiv \varepsilon_{2}$ evolve independently.
Three-Flavour Regime
At $M_{1} \sim T \sim 10^{9} \mathrm{GeV}: Y_{\tau}, Y_{\mu}$ - in equilibrium, Y_{e} - not.
$\varepsilon_{1 \tau}, \varepsilon_{1 e}$ and $\varepsilon_{1 \mu}$ evolve independently.
Thus, at $M_{1} \sim 10^{9}-10^{12} \mathrm{GeV}: L_{\tau}, \Delta L_{\tau}$ - distinguishable;
$L_{e}, L_{\mu}, \Delta L_{e}, \Delta L_{\mu}$ - individually not distinguishable;
$L_{e}+L_{\mu}, \Delta\left(L_{e}+L_{\mu}\right)$
A. Abada et al., 2006; E. Nardi et al., 2006
A. Abada et al., 2006

Individual asymmetries:

Assume: $\quad M_{1} \ll M_{2} \ll M_{3}, \quad 10^{9} \lesssim M_{1}(\sim T) \lesssim 10^{12} \mathrm{GeV}$,

$$
\begin{aligned}
& \varepsilon_{1 l}=-\frac{3 M_{1}}{16 \pi v^{2}} \frac{\operatorname{Im}\left(\sum_{j, k} m_{j}^{1 / 2} m_{k}^{3 / 2} U_{l j}^{*} U_{l k} R_{1 j} R_{1 k}\right)}{\sum_{j} m_{j}\left|R_{1 j}\right|^{2}} \\
& \widetilde{m_{l}} \equiv \frac{\left|\lambda_{1 l}\right|^{2} v^{2}}{M_{1}}=\left|\sum_{k} R_{1 k} m_{k}^{1 / 2} U_{l k}^{*}\right|^{2}, \quad l=e, \mu, \tau .
\end{aligned}
$$

The baryon asymmetry is

$$
\begin{aligned}
Y_{B} & \simeq-\frac{12}{37 g_{*}}\left(\epsilon_{2} \eta\left(\frac{417}{589} \widetilde{m_{2}}\right)+\epsilon_{\tau} \eta\left(\frac{390}{589} \widetilde{m_{\tau}}\right)\right), \\
\eta\left(\widetilde{m_{l}}\right) & \simeq\left(\left(\frac{\widetilde{m_{l}}}{8.25 \times 10^{-3} \mathrm{eV}}\right)^{-1}+\left(\frac{0.2 \times 10^{-3} \mathrm{eV}}{\widetilde{m_{l}}}\right)^{-1.16}\right)^{-1} .
\end{aligned}
$$

$$
Y_{\mathcal{B}}=-(12 / 37)\left(Y_{2}+Y_{\tau}\right),
$$

$$
Y_{2}=Y_{e+\mu}, \quad \varepsilon_{2}=\varepsilon_{1 e}+\varepsilon_{1 \mu}, \quad \widetilde{m_{2}}=\widetilde{m_{1 e}}+\widetilde{m_{1 \mu}}
$$

A. Abada et al., 2006; E. Nardi et al., 2006
A. Abada et al., 2006

Real (Purely Imaginary) R : $\varepsilon_{1 l} \neq 0$, CPV from U

$\varepsilon_{1 e}+\varepsilon_{1 \mu}+\varepsilon_{1 \tau}=\varepsilon_{2}+\varepsilon_{1 \tau}=0$,
$\varepsilon_{1 \tau}=-\frac{3 M_{1}}{16 \pi v^{2}} \frac{\operatorname{Im}\left(\sum_{j, k} m_{j}^{1 / 2} m_{k}^{3 / 2} U_{\tau j}^{*} U_{\tau k} R_{1 j} R_{1 k}\right)}{\sum_{j} m_{j}\left|R_{1 j}\right|^{2}}$
$=-\frac{3 M_{1}}{16 \pi v^{2}} \frac{\sum_{j, k>j} m_{j}^{1 / 2} m_{k}^{1 / 2}\left(m_{k}-m_{j}\right) R_{1 j} R_{1 k} \operatorname{Im}\left(U_{\tau j}^{*} U_{\tau k}\right)}{\sum_{j} m_{j}\left|R_{1 j}\right|^{2}}, R_{1 j} R_{1 k}= \pm\left|R_{1 j} R_{1 k}\right|$,
$=\mp \frac{3 M_{1}}{16 \pi v^{2}} \frac{\sum_{j, k>j} m_{j}^{1 / 2} m_{k}^{1 / 2}\left(m_{k}+m_{j}\right)\left|R_{1 j} R_{1 k}\right| \operatorname{Re}\left(U_{\tau j}^{*} U_{\tau k}\right)}{\sum_{j} m_{j}\left|R_{1 j}\right|^{2}}, R_{1 j} R_{1 k}= \pm i\left|R_{1 j} R_{1 k}\right|$
S. Pascoli, S.T.P., A. Riotto, 2006.

CP-Violation: $\quad \operatorname{Im}\left(U_{\tau j}^{*} U_{\tau k}\right) \neq 0, \quad \operatorname{Re}\left(U_{\tau j}^{*} U_{\tau k}\right) \neq 0$;

$$
Y_{B}=-\frac{12}{37} \frac{\varepsilon_{1 \tau}}{g_{*}}\left(\eta\left(\frac{390}{589} \widetilde{m_{\tau}}\right)-\eta\left(\frac{417}{589} \widetilde{m_{2}}\right)\right)
$$

$$
m_{1} \ll m_{2} \ll m_{3}, M_{1} \ll M_{2,3} ; \quad R_{12} R_{13}-\text { real } ; m_{1} \cong 0, R_{11} \cong 0 \text { (} N_{3} \text { decoupling) }
$$

$$
\begin{aligned}
\varepsilon_{1 \tau}= & -\frac{3 M_{1} \sqrt{\Delta m_{31}^{2}}}{16 \pi v^{2}}\left(\frac{\Delta m_{\odot}^{2}}{\Delta m_{31}^{2}}\right)^{\frac{1}{4}} \frac{\left|R_{12} R_{13}\right|}{\left(\frac{\Delta m_{\odot}^{2}}{\Delta m_{31}^{2}}\right)^{\frac{1}{2}}\left|R_{12}\right|^{2}+\left|R_{13}\right|^{2}} \\
& \times\left(1-\frac{\sqrt{\Delta m_{\odot}^{2}}}{\sqrt{\Delta m_{31}^{2}}}\right) \operatorname{Im}\left(U_{\tau 2}^{*} U_{\tau 3}\right)
\end{aligned}
$$

$$
\operatorname{Im}\left(U_{\tau 2}^{*} U_{\tau 3}\right)=-c_{13}\left[c_{23} s_{23} c_{12} \sin \left(\frac{\alpha_{32}}{2}\right)-c_{23}^{2} s_{12} s_{13} \sin \left(\delta-\frac{\alpha_{32}}{2}\right)\right]
$$

$\alpha_{32}=\pi, \delta=0: \quad \operatorname{Re}\left(U_{\tau 2}^{*} U_{\tau 3}\right)=0, \quad$ CPV due to the interplay of R and U.
S. Pascoli, S.T.P., A. Riotto, 2006.
$M_{1} \ll M_{2} \ll M_{3}, m_{1} \ll m_{2} \ll m_{3}(N H)$
Dirac CP-violation
$\alpha_{32}=0(2 \pi), \beta_{23}=\pi(0) ; \beta_{23} \equiv \beta_{12}+\beta_{13} \equiv \arg \left(R_{12} R_{13}\right)$.
$\left|R_{12}\right| \cong 0.86,\left|R_{13}\right|^{2}=1-\left|R_{12}\right|^{2},\left|R_{13}\right| \cong 0.51$ - maximise $\left|Y_{B}\right|:$
$\left|Y_{B}\right| \cong 2.1 \times 10^{-13}|\sin \delta|\left(\frac{s_{13}}{0.15}\right)\left(\frac{M_{1}}{10^{9} \mathrm{GeV}}\right)$.
$\left|Y_{B}\right| \gtrsim 8 \times 10^{-11}, \quad M_{1} \lesssim 5 \times 10^{11} \mathrm{GeV}$ imply

$$
\left|\sin \theta_{13} \sin \delta\right| \gtrsim 0.11, \quad \sin \theta_{13} \cong 0.15
$$

The lower limit corresponds to

$$
\left|J_{\mathrm{CP}}\right| \gtrsim 2.4 \times 10^{-2}
$$

$\mathrm{FOR} \alpha_{32}=0(2 \pi), \beta_{23}=0(\pi):$

$$
\left|\sin \theta_{13} \sin \delta\right| \gtrsim 0.09, \quad \sin \theta_{13} \cong 0.15 ; \quad\left|J_{\mathrm{CP}}\right| \gtrsim 2.0 \times 10^{-2}
$$

Realised in a theory based on the S_{4} symmetry: P. Cheng et al., arXiv:1602.03873.

The requirement $\sin \theta_{13} \gtrsim 0.09$ (0.11) - compatible with the Daya Bay, RENO, Double Chooz results: $\sin \theta_{13} \cong$ 0.15 .
$\left|\sin \theta_{13} \sin \delta\right| \gtrsim 0.11$ implies $|\sin \delta| \gtrsim 0.7$ - compatible with $\delta \cong 3 \pi / 2$.
$\sin \theta_{13} \cong 0.15$ and $\delta \cong 3 \pi / 2$ imply relatively large (observable) CPV effects in neutrino oscillations: $J_{\mathrm{CP}} \cong$ -3.5×10^{-2}.

```
\(M_{1} \ll M_{2} \ll M_{3}, m_{1} \ll m_{2} \ll m_{3}(\mathrm{NH})\)
```

Majorana CP-violation

$$
\begin{aligned}
& \delta=0, \text { real } R_{12}, R_{13}\left(\beta_{23}=\pi(0)\right) ; \\
& \alpha_{32} \cong \pi / 2, \quad\left|R_{12}\right|^{2} \cong 0.85,\left|R_{13}\right|^{2}=1-\left|R_{12}\right|^{2} \cong 0.15 \text { - maximise }\left|\epsilon_{\tau}\right| \text { and }\left|Y_{B}\right|:
\end{aligned}
$$

$$
\left|Y_{B}\right| \cong 2.2 \times 10^{-12}\left(\frac{\sqrt{\Delta m_{31}^{2}}}{0.05 \mathrm{eV}}\right)\left(\frac{M_{1}}{10^{9} \mathrm{GeV}}\right) \frac{\left|\sin \left(\alpha_{32} / 2\right)\right|}{\sin \pi / 4}
$$

We get $\left|Y_{B}\right| \gtrsim 8 \times 10^{-11}$, for $M_{1} \gtrsim 3.6 \times 10^{10} \mathrm{GeV}$, or $\left|\sin \alpha_{32} / 2\right| \gtrsim 0.15$

The see-saw mechanism provides a link between the ν-mass generation and the baryon asymmetry of the Universe (BAU).

Any of the CPV phases in $U_{P M N S}$ can be the leptogenesis CPV parameters.
Low energy leptonic CPV can be directly related to the existence of BAU.

The next most important steps are:

- determination of the nature - Dirac or Majorana, of massive neutrinos $\left((\beta \beta)_{0 \nu}\right.$-decay exps: GERDA, CUORE, EXO, KamLAND-Zen, SNO+, SuperNEMO, MAJORANA, AMORE,...).
- determination of the status of the CP symmetry in the Iepton sector (T2K, NO A; DUNE, T2HK)
- determination of the neutrino mass ordering (JUNO, RENO50; ORCA, PINGU (IceCube), HK, INO; T2K + NO 1 A; DUNE (future); + T2HKK (future)) ;
- determination of the absolute neutrino mass scale, or $\min \left(m_{j}\right)$ (KATRIN, new ideas; cosmology);

The program of research extends beyond 2030.

JUNO (20 kton LS, $L \cong 50$ km, China)

LBL Oscillation Experiments T2K, NO AA, DUNE, T2HK (HK=Hyper-Kamiokande: water-Cherenkov, ~ 0.5 Mton, fiducial ~ 0.25 Mton).

NO A: Fermilab - site in Minnesota; off-axis ν beam, $E=2 \mathrm{GeV}, L \cong 810 \mathrm{~km}, 14 \mathrm{kt}$ liquid scintillator; 2014.
T2HK: $L=295 \mathrm{~km}, 2.5^{\circ}$ off-axis (narrow band) ν_{μ} beam (from 750 kW proton) beam, maximum at $E \cong 0.6 \mathrm{GeV}$ (the first osc. maximum).

DUNE: Fermilab-DUSEL, $L=1290 \mathrm{~km}, 1.2 \mathrm{MW}$ (2.3 MW) proton beam, wide band ν beam (first and second osc. maxima at $E=2.4 \mathrm{GeV}$ and 0.8 GeV); 34 kt fiducial volume LAr detecors; plans to run 5 years with ν_{μ} and 5 years with $\bar{\nu}_{\mu} ; 2025$ (?)

LBNE Design

Atmospheric ν experiments
S.T. Petcov, Summer School, TU Dresden, 17/08/2017
vspace-0.8cm HyperKamiokande (10SK), IceCube-PINGU, KM3Net-ORCA;

Iron Magnetised detector: INO
INO: 50 or 100 kt (in India); ν_{μ} and $\bar{\nu}_{\mu}$ induced events detected (μ^{+}and μ^{-}); not designed to detect ν_{e} and $\bar{\nu}_{e}$ induced events.

IceCube at the South Pole: PINGU
PINGU: 50SK; ν_{μ} and $\bar{\nu}_{\mu}$ induced events detected (μ^{+} and μ^{-}, no μ charge identification); Challenge: $E_{\nu} \gtrsim 2$ GeV (?)

KM3Net in Mediteranian sea: ORCA
vspace-0.8cm HyperKamiokande (10SK), IceCube-PINGU, KM3Net-ORCA;

Iron Magnetised detector: INO

INO: 50 or 100 kt (in India); ν_{μ} and $\bar{\nu}_{\mu}$ induced events detected (μ^{+}and μ^{-}); not designed to detect ν_{e} and $\bar{\nu}_{e}$ induced events.

IceCube at the South Pole: PINGU
PINGU: 50SK; ν_{μ} and $\bar{\nu}_{\mu}$ induced events detected (μ^{+} and μ^{-}, no μ charge identification); Challenge: $E_{\nu} \gtrsim 2$ GeV (?)

KM3Net in Mediteranian sea: ORCA

IceCube at the South Pole

Dal wor

Oulinis
ゆumi
4-1075

1
S.T. Petcov, Summer School, TU Dresden, 17/08/2017

S.T. Petcov, Summer School, TU Dresden, 17/08/2017

Conclusions

There are a number of real (neutrinos, neutron + anti-neutron) and hypothetical (neutralinos, gluinos in minimal SUSY extension of ST) particles which can be Majorana fermions.

Massive Dirac Neutrinos: $U(1)$, Conserved (Additive) Charge, e.g., L.

Massive Majorana Neutrinos: No Conserved (Additive) Charge(s).

The type of massive neutrinos in a given theory is determined by the type of (effective) mass term $\mathcal{L}_{m}^{\nu}(x)$ neutrinos have, more precisely, by the symmetries $\mathcal{L}_{m}^{\nu}(x)$ and the total Lagrangian $\mathcal{L}(x)$ of the theory have.

Determining the nature - Dirac or Majorana, of massive neutrinos is of fundamental importance for understanding the origin of neutrino masses.

The $(\beta \beta)_{0^{\nu}}$-decay experiments:

- Are testing the status of L conservation, can establish the Majorana nature of ν_{j};
- Can provide unique information on the ν mass spectrum;
- Can provide unique information on the absolute scale of $\quad \nu$ masses;
- Can provide information on the Majorana CPV phases;
- Provide crtitical tests of neutrino-related BSM theoretical ideas.
$T_{1 / 2}^{0 \nu}=10^{25} \mathrm{yr}$ probes $|<m>| \sim 0.1 \mathrm{eV}$;
$T_{1 / 2}^{0 \nu}=10^{25} \mathrm{yr}$ probes $\wedge_{L N V} \sim 1 \mathrm{TeV}$.
- Synergy with searches of BSM physics at LHC.

Program of Research - Challenging Problems:

- determination of the nature - Dirac or Majorana, of massive neutrinos $\left((\beta \beta)_{0 \nu}\right.$-decay exps: GERDA, CUORE, EXO, KamLAND-Zen, SNO+, SuperNEMO, MAJORANA, AMORE,...).
- determination of the status of the CP symmetry in the Iepton sector (T2K, NO A; DUNE, T2HK)
- determination of the neutrino mass ordering (JUNO, RENO50; ORCA, PINGU (IceCube), HK, INO; T2K + NO 1 A; DUNE (future); + T2HKK (future)) ;
- determination of the absolute neutrino mass scale, or $\min \left(m_{j}\right)$ (KATRIN, new ideas; cosmology);

The program of research extends beyond 2030.

We are at the beginning of the Road...

The future of neutrino physics is bright.

Supporting Slides

Understanding the Neutrino Mass and Mixing Patterns (The Quest for Nature's Message)

Understanding the origin of the pattern of neutrino mixing and of neutrino mass squared differences that emerged from the neutrino oscillation data in the recent years is one of the most challenging problems in neutrino physics. It is part of the more general fundamental problem in particle physics of understanding the origins of flavour in the quark and lepton sectors, i.e., of the patterns of quark masses and mixing, and of the charged lepton and neutrino masses and of neutrino mixing.

With the observed pattern of neutrino mixing Nature is sending us a Message. The Message is encoded in the values of the neutrino mixing angles, leptonic CP violation phases and neutrino masses. The Message can have two completely different contents: it can read

ANARCHY or SYMMETRY.

ANARCHY:

A. De Gouvea, H. Murayama, hep-ph/0301050; PLB, 2015.
L. Hall, H. Murayama, N. Weiner, hep-ph/9911341.

Understanding the Pattern of Neutrino Mixing: Symmetry Approach.

Examples of Predictions and Correlations.

- $\sin ^{2} \theta_{23}=\frac{1}{2}$.
- $\sin ^{2} \theta_{23} \cong \frac{1}{2}\left(\left(1 \mp \sin ^{2} \theta_{13}\right)+O\left(\sin ^{4} \theta_{13}\right)\right)$.
- $\sin ^{2} \theta_{23}=0.455 ; 0.463 ; 0.537 ; 0.545$ (small uncert.).
- $\sin ^{2} \theta_{12} \cong \frac{1}{3}\left(\left(1+\sin ^{2} \theta_{13}\right)+O\left(\sin ^{4} \theta_{13}\right)\right) \cong 0.340$.
- $\delta=0$ or $\pi ; \delta=\pi / 2$ or $3 \pi / 2$.
- and/or $\cos \delta=\cos \delta\left(\theta_{12}, \theta_{23}, \theta_{13} ; \theta_{12}^{\nu}, \ldots\right)$,
$J_{C P}=J_{C P}\left(\theta_{12}, \theta_{23}, \theta_{13}, \delta\right)=J_{C P}\left(\theta_{12}, \theta_{23}, \theta_{13} ; \theta_{12}^{\nu}, \ldots\right)$,
$\theta_{12}^{\nu}, \ldots$ - known (fixed) parameters, depend on the underlying symmetry.

Improvements of the precision on the mixing angles θ_{12}, θ_{13} and θ_{23}, together with the measurement of the Dirac phase in the PMNS mixing matrix, can provide unique information about the possible existence of new fundamental symmetry in the lepton sector.

Understanding the Pattern of Neutrino Mixing: Predictions for the CPV Phase δ.

Neutrino Mixing: New Symmetry?

- $\theta_{12}=\theta_{\odot} \cong \frac{\pi}{5.4}, \quad \theta_{23}=\theta_{\text {atm }} \cong \frac{\pi}{4}(?), \quad \theta_{13} \cong \frac{\pi}{20}$

$$
U_{\text {PMNS }} \cong\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & \epsilon \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}}(?) \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}(?)
\end{array}\right)
$$

Very different from the CKM-matrix!

- $\theta_{12} \cong \sin ^{-1} \frac{1}{\sqrt{3}}-0.020 ; \theta_{12} \cong \pi / 4-0.20$,
$\theta_{13} \cong 0+\pi / 20, \quad \theta_{23} \cong \pi / 4 \mp 0.10$.
- UPMNS due to new approximate symmetry?

A Natural Possibility (vast literature):

$$
U=U_{\text {lep }}^{\dagger}\left(\theta_{i j}^{\ell}, \delta^{\ell}\right) Q(\psi, \omega) U_{\mathrm{TBM}, \mathrm{BM}, \mathrm{LC}, \ldots} \bar{P}\left(\xi_{1}, \xi_{2}\right)
$$

with

$$
U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}
\end{array}\right) ; \quad U_{\mathrm{BM}}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \pm \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{2} & \pm \frac{1}{2} & \frac{1}{\sqrt{2}} \\
\frac{1}{2} & \mp \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right) .
$$

- $U_{\text {lep }}^{\dagger}\left(\theta_{i j}^{\ell}, \delta^{\ell}\right)$ - from diagonalization of the l^{-}mass matrix;
- $U_{\text {TBM }, \mathrm{BM}, \mathrm{LC}, \ldots .} \bar{P}\left(\xi_{1}, \xi_{2}\right)$ - from diagonalization of the ν mass matrix;
- $Q(\psi, \omega)$, - from diagonalization of the l^{-}and/or ν mass matrices.
P. Frampton, STP, W. Rodejohann, 2003
$U_{\text {LC }}, U_{\text {GRAM }}, U_{\text {GRBM }}, U_{\text {HGM }}:$

$$
\begin{aligned}
& U_{\mathrm{LC}}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{c_{23}^{\nu}}{\sqrt{2}} & \frac{c_{23}^{\nu}}{\sqrt{2}} & s_{23}^{\nu} \\
\frac{s_{23}^{\nu}}{\sqrt{2}} & -\frac{s_{23}^{\nu}}{\sqrt{2}} & c_{23}^{\nu}
\end{array}\right) ; \mu-\tau \text { symmetry : } \theta_{23}^{\nu}=\mp \pi / 4 ; \\
& U_{\mathrm{GR}}=\left(\begin{array}{ccc}
c_{12}^{\nu} & s_{12}^{\nu} & 0 \\
-\frac{s_{12}^{\nu}}{\sqrt{2}} & \frac{c_{12}^{\nu}}{\sqrt{2}} & -\sqrt{\frac{1}{2}} \\
-\frac{s_{12}^{\nu}}{\sqrt{2}} & \frac{c_{12}^{\nu}}{\sqrt{2}} & \sqrt{\frac{1}{2}}
\end{array}\right) ; U_{\text {HGM }}=\left(\begin{array}{ccc}
\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2 \sqrt{2}} & \frac{\sqrt{3}}{2 \sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{2 \sqrt{2}} & \frac{\sqrt{3}}{2 \sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right), \theta_{12}^{\nu}=\pi / 6 . \\
& U_{\text {GRAM }}: \sin ^{2} \theta_{12}^{\nu}=(2+r)^{-1} \cong 0.276, r=(1+\sqrt{5}) / 2 \\
& \text { (GR: } r / 1 ; a / b=a+b / a, a>b) \\
& U_{\text {GRBM }}: \sin ^{2} \theta_{12}^{\nu}=(3-r) / 4 \cong 0.345 .
\end{aligned}
$$

- $U_{\text {TBM }}: s_{12}^{2}=1 / 3, s_{23}^{2}=1 / 2, s_{13}^{2}=0 ; s_{13}^{2}=0$ must be corrected; if $\theta_{23} \neq \pi / 4, s_{23}^{2}=0.5$ must be corrected.
- $U_{\mathrm{BM}}: s_{12}^{2}=1 / 2, s_{23}^{2}=1 / 2, s_{13}^{2}=0 ; \quad s_{13}^{2}=0$, $s_{12}^{2}=1 / 2$ and possibly $s_{23}^{2}=1 / 2$ must be corrected.
$U_{\mathrm{TBM}(\mathrm{BM})}$: Groups $A_{4}, T^{\prime}\left(S_{4}\right), \ldots$ (vast literature)
(Reviews: G. Altarelli, F. Feruglio, arXiv:1002.0211; M. Tanimoto et al., arXiv:1003.3552;
S. King and Ch. Luhn, arXiv:1301.1340)
- $U_{\text {GRA: }}$: Group $A_{5}, \ldots ; s_{13}^{2}=0$ and possibly $s_{12}^{2}=0.276$ and $s_{23}^{2}=1 / 2$ must be corrected.
L. Everett, A. Stuart, arXiv:0812.1057; ...
- U_{LC} : alternatively $U(1), \quad L^{\prime}=L_{e}-L_{\mu}-L_{\tau}$
S.T.P., 1982
- $U_{\mathrm{LC}}: s_{12}^{2}=1 / 2, s_{13}^{2}=0, s_{23}^{\nu}$ - free parameter;
$s_{13}^{2}=0$ and $s_{12}^{2}=1 / 2$ must be corrected.
- $U_{\text {GRB }}: ~ G r o u p ~ D_{10}, \ldots ; s_{13}^{2}=0$ and possibly $s_{12}^{2}=0.345$ and $s_{23}^{2}=1 / 2$ must be corrected.
- U_{HG} : Group $D_{12}, \ldots ; s_{13}^{2}=0, s_{12}^{2}=0.25$ and possibly $s_{23}^{2}=1 / 2$ must be corrected.

For all symmetry forms considered we have: $\theta_{13}^{\nu}=0$, $\theta_{23}^{\nu}=\mp \pi / 4$.
They differ by the value of θ_{12}^{ν} :
TBM, BM, GRA, GRB and HG forms correspond to $\sin ^{2} \theta_{12}^{\nu}=1 / 3 ; 0.5 ; 0.276 ; 0.345 ; 0.25$.

Examples of symmetries: $A_{4}, S_{4}, D_{4}, A_{5}$
From M. Tanimoto et al., arXiv:1003.3552
S.T. Petcov, Summer School, TU Dresden, 17/08/2017

Group	Number of elements	Generators	Irreducible representations
S_{4}	24	S, T, U	$\mathbf{1}_{1} \mathbf{1}^{\prime}, \mathbf{2}, \mathbf{3}, \mathbf{3}^{\prime}$
A_{4}	12	S, T	$\mathbf{1}_{1}, \mathbf{1}^{\prime}, \mathbf{1}^{\prime \prime}, \mathbf{3}$
T^{\prime}	24	S, T, R	$\mathbf{1}, \mathbf{1}^{\prime}, \mathbf{1}^{\prime \prime}, \mathbf{2}, \mathbf{2}^{\prime}, \mathbf{2}^{\prime \prime}, \mathbf{3}$
A_{5}	60	S, T	$\mathbf{1}, \mathbf{3}, \mathbf{3}^{\prime}, \mathbf{4}, \mathbf{5}$
D_{10}	20	A, B	$\mathbf{1}_{1}, \mathbf{1}_{2}, \mathbf{1}_{3}, \mathbf{1}_{4}, \mathbf{2}_{1}, \mathbf{2}_{2}, \mathbf{2}_{3}, \mathbf{2}_{4}$
D_{12}	24	A, B	$\mathbf{1}_{1}, \mathbf{1}_{2}, \mathbf{1}_{3}, \mathbf{1}_{4}, \mathbf{2}_{1}, \mathbf{2}_{2}, \mathbf{2}_{3}, \mathbf{2}_{4}, \mathbf{2}_{5}$

Number of elements, generators and irreducible representations of some discrete groups.

In all cases TBM, BM (LC), GRA, GRB, HG:

- New sum rules relating $\theta_{12}, \theta_{13}, \theta_{23}$ and δ;
- $J_{C P}=J_{C P}\left(\theta_{12}, \theta_{23}, \theta_{13}, \delta\right)=J_{C P}\left(\theta_{12}, \theta_{23}, \theta_{13} ; \theta_{12}^{\nu}\right)$.
S.T.P., arXiv:1405.6006

For arbitrary fixed θ_{12}^{ν} and any θ_{23} ("minimal" and "next-to-minimal" cases):

$$
\begin{gathered}
\cos \delta=\frac{\tan \theta_{23}}{\sin 2 \theta_{12} \sin \theta_{13}}\left[\cos 2 \theta_{12}^{\nu}\right. \\
\left.+\left(\sin ^{2} \theta_{12}-\cos ^{2} \theta_{12}^{\nu}\right)\left(1-\cot ^{2} \theta_{23} \sin ^{2} \theta_{13}\right)\right]
\end{gathered}
$$

This results is exact.
"Minimal" case: $\sin ^{2} \theta_{23}=\frac{1}{2} \frac{1-2 \sin ^{2} \theta_{13}}{1-\sin ^{2} \theta_{13}}$.

- $J_{C P}=J_{C P}\left(\theta_{12}, \theta_{23}, \theta_{13}, \delta\right)=J_{C P}\left(\theta_{12}, \theta_{23}, \theta_{13} ; \theta_{12}^{\nu}\right)$.
- TBM case: $\delta \cong 3 \pi / 2$ or $\pi / 2$; b.f.v. of $\theta_{i j}$:
$\delta \cong 263.5^{\circ}$ or $96.5^{\circ}, \cos \delta=-0.114, J_{C P} \cong \mp 0.034$.
- GRAM case, b.f.v. of $\theta_{i j}: \delta \cong 286.8^{\circ}$ or 73.2°; $\cos \delta=0.289, J_{C P} \cong \mp 0.0327$.
- GRBM case, b.f.v. of $\theta_{i j}: \delta \cong 258.5^{\circ}$ or 101.5°; $\cos \delta=-0.200, J_{C P} \mp 0.0333$.
- HGM case, b.f.v. of $\theta_{i j}: \delta \cong 298.4^{\circ}$ or 61.6°; $\cos \delta=0.476, J_{C P} \cong \mp 0.0299$.
- BM, LC cases: $\delta \cong \pi, \cos \delta \cong-0.978, J_{C P} \cong \mp 0.008$

The results shown - for NO neutrino mass spectrum; the results are practically the same for IO spectrum. (Best fit values of $\theta_{i j}$: F. Capozzi et al., arXiv:1312.2878v1.)
S.T.P., arXiv:1405.6006

By measuring $\cos \delta$ or δ one can distiguish between different symmetry forms of \widetilde{U}_{ν} !

Relatively high precision measurement of δ will be performed at the future planned neutrino oscillation experiments, (DUNE, T2HK) see, e.g., A. de Gouvea et al., arXiv:1310.4340; P. Coloma et al., arXiv:1203.5651; R. Acciarri et al. [DUNE Collab.], arXiv:1512.06148, 1601.05471 and 1601.02984.

Theoretical Model Predictions
T^{\prime} model of lepton flavour: $U_{\mathrm{TBM}}, \delta \cong 3 \pi / 2$ or $\pi / 2$. (The pr I. Girardi, A. Meroni, STP, M. Spinrath, arXiv:1312.1966

- Light neutrino masses: type I seesaw mechanism.
- ν_{j} - Majorana particles.
- Diagonalisation of $M_{\nu}: U_{\mathrm{TBM}}{ }^{\Phi}, \Phi=\operatorname{diag}(1,1,1(i))$
- UTBM "corrected" by
$U_{\text {lep }}^{\dagger} Q=R_{12}\left(\theta_{12}^{\ell}\right) R_{23}\left(\theta_{23}^{\ell}\right) Q, \quad Q=\operatorname{diag}\left(1, e^{i \phi}, 1\right)$
T^{\prime} model of lepton flavour: $U_{\text {TBM }}, \delta \cong 3 \pi / 2$ or $\pi / 2$.
- T^{\prime} : double covering of A_{4} (tetrahedral symmetry group).
- $T^{\prime}: 1,1^{\prime}, 1^{\prime \prime} ; 2,2^{\prime}, 2^{\prime \prime} ; 3$.
- T^{\prime} model: $\psi_{e L}(x), \psi_{\mu L}(x), \psi_{\tau L}(x)$ - triplet of T^{\prime}; $e_{R}(x), \mu_{R}(x)$ - a doublet, $\tau_{R}(x)$ - a singlet, of T^{\prime}; $\nu_{e R}(x), \nu_{\mu R}(x), \nu_{\tau R}(x)$ - a triplet of T^{\prime}; the Higgs doublets $H_{u}(x), H_{d}(x)$ - singlets of T^{\prime}.
- The discrete symmetries of the model are $T^{\prime} \times H_{\mathrm{CP}} \times$ $Z_{8} \times Z_{4}^{2} \times Z_{3}^{2} \times Z_{2}$, the Z_{n} factors being the shaping symmetries of the superpotential required to forbid unwanted operators.

Predictions of the T^{\prime} Model

- $m_{1,2,3}$ determined by 2 real parameters $+\Phi^{2}$:

NO spectrum A: $\quad\left(m_{1}, m_{2}, m_{3}\right)=(4.43,9.75,48.73) \cdot 10^{-3}$
NO spectrum $\mathrm{B}: \quad\left(m_{1}, m_{2}, m_{3}\right)=(5.87,10.48,48.88) \cdot 10^{-3}$
IO spectrum : $\quad\left(m_{1}, m_{2}, m_{3}\right)=(51.53,52.26,17.34) \cdot 10^{-}$

$$
\begin{aligned}
\mathrm{NOA}: & \sum_{j=1}^{3} m_{j}=6.29 \times 10^{-2} \mathrm{eV} \\
\mathrm{NO} \mathrm{~B}: & \sum_{j=1}^{3} m_{j}=6.52 \times 10^{-2} \mathrm{eV} \\
\mathrm{IO}: & \sum_{j=1}^{3} m_{j}=12.11 \times 10^{-2} \mathrm{eV}
\end{aligned}
$$

- $\theta_{12}, \theta_{23}, \theta_{13}, \delta, \alpha_{21}, \alpha_{31}$ determined by 3 real parameters.

Given the values of $\theta_{12}, \theta_{23}, \theta_{13}, \delta, \alpha_{21}, \alpha_{31}$ are predicted:
$\delta \cong 3 \pi / 2\left(266^{\circ}\right)\left(\right.$ or $\left.\pi / 2\left(94^{\circ}\right)\right) ;$
NO A: $\alpha_{21} \cong+47.0^{\circ}\left(\right.$ or $\left.-47.0^{\circ}\right)(+2 \pi)$,

$$
\alpha_{31} \cong-23.8^{\circ}\left(\text { or }+23.8^{\circ}\right)(+2 \pi)
$$

S.T. Petcov, Summer School, TU Dresden, 17/08/2017

[^0]: S.T. Petcov, Summer School, TU Dresden, 17/08/2017

[^1]: F. Capozzi et al. (Bari Group), arXiv:1601.07777 [arXiv:1703.04471].

