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. The size of earthquakes (and other natural hazards)

. Properties of power-law distributions

e Scale invariance. Divergence of moments

. Models for criticality

e Galton-Watson model
e Extinction probability
e Size distribution

. Self-organization towards criticality

e Self-organized branching process
e Manna model, Bak-Tang-Wiesenfeld sandpile model
e Spring-block earthquake models

. Fitting and goodness-of-fit testing of power-law distributions



1. The Size of Earthquakes 3

Only fools and charlatans predict earthquakes.
C. F. RICHTER
Gutenberg-Richter Law (1941)

e Most important law of statistical seismology
and a paradigm of complex-systems geophysicsk

seismo.berkeley.edu

For each earthquake with magnitude m >4
there are about

0.1 with m > 5
0.01 with m Z 6, etc... Gutenberg & Richter, BSSA 19440

Number of earthquakes with magnitude > m

N(m) 107", with b~ 1

Good news! E= Many small earthquakes, few big ones
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e Example: worldwide earthquakes (one-year average)

10°

10°

3 4 5 6 7 8 9
magnitude m
Kanamori & Brodsky, Rep Prog Phys 2004

N(m) 107" = log N (m) — constant — bm



Exponential Distribution of Earthquake Magnitudes

e Complementary cumulative distribution (survivor) function

Sm(m) P{magnitude > m} — Sm(m) N(m) 10—bm

e Probability density

P{m < magnitude <m +dm}  dS;,(m)
dm dm

D, (m)
verifies fooo D,,(m)dm =1 and usually has units! = It is not a probability

Gutenberg-Richter law =  D,,(m)x107™

Sm(m) and D,,(m) are “the same” only for the exponential distribution

A statistician would stop here, wouldn't she?



Which is the Meaning of the Gutenberg-Richter Law?

e |t depends (of course) on the meaning of magnitude...
But magnitude is not a proper physical variable (it has no units)!

Moreover: magnitudes reflect radiation only from subportions of the

rupture, and they saturate above certain size, rather than giving a physical

characterization of the entire earthquake source Ben-Zion, Rev Geophys 2008
e Radiated energy is supposed to be an exponential function of magnitude

E 103m/2

(with proportionality factor around 60 kJ)
An increase of 1 unit in m leads to a factor vV103~32 in E

= An earthquake with m =9 is “equivalent” to 1000 of m =7



e Then, the Gutenberg-Richter law, in terms of E 103m/2.

1 1
E2b/3  EO.7

Sm(m) 107" = Bg(E)

Do you know how to perform the change of variables for the density?

_bm 1
with o
B=14—=1.7
3
= Earthquake energy is power-law distributed Wadati 1932, see Utsu, PAGEOPH 1999

= Power—law flt cannot be rejeCted Main et al. Nature Geosci. 2008



e Shallow worldwide earthquakes (seismic moment ~ energy):
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e Compare world with Southern California
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Valid up to m =~ — 4 in very small regions Kwiatek et al., Bull Seis Soc Am 2010
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e Even valid for fractures in the lab

M

To the amplifier

Piezoelectric
transducer
Sample
Strain gauge
A2 gaug

6.4 cm

10

Baré et al., Phys Rev Lett 2013

0
10 A e all
| i 0s<t<3000s (N=145) -~
’ 3000s<t<6000s (N=240) -
1021 36000s<t<9000s (N=2612)
i 9000s<t<12000s (N=15258) -~~~
! o 12000s<t<15000s (N=4936) -
! i 15000s<t<18000s (N=4541) -~ -
104k 1 B 18000s<t (N=470)
P Yy SR L. S R S
S | R=0.2 kPa/s \
= | 2[ R=l6kPas - ]
100 b || 1.8 R=122kPa/s = A
o 16}
| LA ===
10° F | 12f o
i ! i
to10h0% 10t 10210 10t 107
'10 ,! TARTU | A A .rE(.a':'[). TR MR l”.i A .:: N i it
10 = 0 T P 3 6
10 10 10 10 10 10 10 10

In nanofractures valid up to m~ — 13

Astrom et al. Phys Lett A 2006



= Enormous range of validity of the Gutenberg-Richter law

e This law is amazing! How can the dynamics of all the elements of a system
as complicated as the crust of the earth, with mountains, valleys, lakes, and
geological structures of enormous diversity, conspire, as by magic, to produce
a law with such extreme simplicity?

P. Bak, 1996
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e Other examples of power-law distributions in natural hazards

Rockfalls, Malamud, Phys wortd 2004 Forest fires, Malamud et al. Science 1998; PNAS 2005
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e Volcanic eru ptions, Lahaie & Grasso, J Geophys Res 1998 Auroras, Uritsky et al. J Geophys Res 2002

1000 ) Freeman & Watkins, Science 2002

¢

*  Slope =-1.57
100
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e T[sunamis,

N, Cumulative Number per Year

Burroughs & Tebbens, PAGEOPH 2005
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e Rainfall: flow of water in one point along duration of rain

N(M) [no. events/year/mm]

o O

o I T T B B L
10 4 3 2 1 2 3

10" 100 107 100 100 100 100 10
Event size M [mm]

Peters et al. Phys Rev Lett 2002; J Stat Mech 2010
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e Biological extinctions:

Extinction measured as the percentage of
extinct families in fixed periods of time

(4 millions years)
Sepkoski, Raup; after Bak 1996
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Scaling laws never happen by accident

G. I. BARENBLATT, 2003
Is there anything special about power-law distributions?

Scale transformation

e Consider a function D(x). Let us perform a linear transformation of the axes
TID(2)] = ¢y D(z/cs)
with ¢; >0, for :=x,y. If ¢; > 1 then T acts as a mathematical microscope

e For example:
looking at D(x) at the scale of m, ¢; = ¢, =100 show D(z) at the scale of cm
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e Visual example: T|D(z)] =c¢,D(z/c;) with ¢; =10 and ¢, =2

wmﬂm”””“I‘"|”|||||||||||||\|IIHI\IIIIHHHnmmw




2. Properties of Power-Law Distributions

e Visual example: T|D(z)] =c¢,D(z/c;) with ¢; =10 and ¢, =2

0 0.2 0.4 0.6 0.8

19



Scale invariance

e Mathematicians are allowed to ask themselves “silly” questions:

Invariance under a scale transformation?
T[D(z)] = cyD(x/ci) = D(x)
Solution?

e The only solution of D(x) = c,D(z/c;) for all ¢, is the power law

1 1 1
D(x) o« — with 0= — 1% e, ¢y — —

In Cr Cg

Direct substitution confirms that it is a solution indeed



2. Properties of Power-Law Distributions

e Example: D(z)x+/x (i.e.,, 3= —1/2). If ¢, =10 = ¢, — /10

1

1

0.8

0.8

s
@ 0.6 g 0.6
S @ 04

21

Difference between 3 < 0 (increasing power law) and 3 > 0 (decreasing)

if 3<0andc, >1thenc,—=1/cl >1
if 3>0and c, >1thenc,—=1/cl <1
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e Demonstration Takayasu, Fractals 1989; A.C. in Carpinteri & Lacidogna 2008 I

Differentiate both sides of D(x) — cyD(x/cg) with respect = and isolate cy i

D'(x) N 2 (C)
D'(z/cz)/ce 7 D(z/cx)

so, separating variables x and x /cg and multiplying by x I

xD' (z/cz) B zD'(z)
cxD(x/cx) D(zx)

which has to be valid for all cg, so, it only can be a constant (+, —, or 0),

D’ 1
2D (w) _ constant = — 3 = D(z) o« — for >0
D(x) T




Meaning of scale invariance?

e Power-law distributions do not have a characteristic scale

One can define the time unit (or a clock) from the law of radioactive decay
(which is an exponential, not a power law)

But one cannot define a unit of distance from the law of gravitation
(which is a power law)

In the same way that one cannot built a compass from a sphere
(which has rotational symmetry)

e So, earthquake energies have no characteristic scale

= It is not possible to answer this simple question:

“How big are earthquakes in this region?”



Implications for extreme events

e We have already seen that the GR law for earthquakes implies that:

large earthquakes do not play a special role,
they follow the same law as small earthquakes

= general theory encompassing all earthquakes, large and small P. Bak, 1996

e But scale invariance goes beyond this fact:

there is no unarbitrary way to separate ordinary events from extreme events

(at least attending the statistics of event sizes)
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Discrete scale invariance
e We can consider the constant 8 as a complex number, 38— 8 — w1

1
= — X
T

—B+wi w—Beiw Inx

Then, if cg is real, then ¢y = 1/cﬂ—zw — e Beiwnea i complex (in general)

Imposing that cy is positive real I

and substitute in cy D(z/cx) — D(x)

cx = exp(2mn/w) withn=0,+1,+2 ...

Thus, scale invariance does not hold for all ¢4 but for discrete values

In this case, the real part and the imaginary part are also scale invariantl

Re[x—ﬂ—i—wi] —B—l—wi]

= —cos(wlnzx) or Im[x
P

=3 sin(w In x)
x

25



2.

Properties of Power-Law Distributions

Scale invariance for multivariate functions

e Consider D(x,y) and a scale transformation T [D(x,y)] — czD(x/cz,y/cy)

The scale-invariance condition D(x,y) — czD(x/cx,y/cy) has a unique solution

D(m,y):x_BF(y/xa) for all cx >0

which is called a scaling law, with
a 1
cy = Cyp and Cy — —
B
x
and the scaling function? I7‘() is arbitrary
Equivalent expressions: D(x,y) = x_BFQ(x/yl/a) = y_B/O‘Fg(a:/yl/a), etcll

We will distinguish scaling laws from power laws
For univariate functions both are the same, with ' — constant

26

Christensen & Moloney 2005



Mean earthquake energy...?

. is infinite! (because 1 < 8 < 2)

e Higher-order moment are also infinite.

e Which is the problem? Is mathematical?

This process has a mean waiting time between events which is infinite:
tiv1—=1t; + (1 — ui)l/(ﬁ_l) with u; uniform random in [0, 1)
Is physical then? Mhe Earth contains a finite amount of energy!

e What does (E) = 0o mean in practice?



2. Properties of Power-Law Distributions

e Consider the average up to the N—th event, £ = (E1 + Es+---+ EN)/N

T N

(seismic moment) (10 Nm)

depth < 70 km, seismic moment > 10'® Nm ——

] ] ] ] ] ]
1960 1985 1990 1995 2000 2005 2010 2015
year

The rare big events are crucial for energy dissipation = Bad news!!!

28
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Discrete analog: the St. Petersburg paradox N. Bernoulli 1713 & D. Bernoulli 1738

e Consider a game of chance in which a player tosses a (fair) coin
until a tail appears for the 1st time. Each toss doubles the payoff

tail
heads tail
heads, heads, tail

heads heads tail

e You are a casino: which would be the fair price to pay to enter the game? I

> =1 1 1
(payoff) = kglpk X payoff(k) = z _k :5 X 1$+Z X 28+ ... =00

e Note that the duration k of the game is geometrically (exponentially) distributed

1 _EkIn2 | —klog?2 B
pk—Q—k—e —10 = <K>_kz:1pkk_1/2 2

so, the duration of the game is analogous to magnitude, with b — log2 4 1



2. Properties of Power-Law Distributions

ok—1 10k: log2

e But the payoff — 1OCk is analogous to energy, with ¢ = log 2

e Then, the payoff follows a (sort of) discrete power-law distribution with

This is in the “boundary” of having a finite mean

30



2. Properties of Power-Law Distributions

Laplace transform

e Consider Dy (x) defined for = > 0, then

Dg(z) = /OOO e “TDg(x)dx = (e_ZX>

if Dg(x) is a probability density, normalization implies bgg(z =0)=1
e Assuming that Dy (z) exists and that all moments (X™) are finite,

and using e~ %7 — ;:O:O(—l)nzna:n/n!

Dm(z)—1—<X>z+%<X2>z2—, — Z( 1) (X >Z

so, the Laplace transform of Dy (x) is a sort of moment generating function

31
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Sum and rescaling of independent random variables skip! I

e Define S=X + Y, then Fs(s) = P{sum < s} =P{Y <s— X}=
s s—x s
Fs(s) = /0 d:c/o dyDg(x)Dy(y) — /0 drxDy(x)Fy(s — x)
Differentiating with the Leibniz rule, Dg(s) = dFs(s)/ds =

8 dFy(s — x) (8
— /0 d:cDx(a:)T + Dg(xz)Fy(s — x) = /(; drDg(x)Dy(s — x)

=S

Calculating the Laplace transform, with 6(x) the step function,

Dg(z) = /OOO dse” *°Dg(s) = /OOO dse” ?° /_0:0 dxDg(x)6(x)Dy(s — x)0(s — x)

~ oo _ oo _ ~ ~
= Dg(z) = /0 dye ZyDy(y) /0 dee” **Dg(x) = Dgz(z)Dy(z) usings—z—y

The sum is a convolution of Dy and Dy, which turns a product of Dz and Ey



2. Properties of Power-Law Distributions

Sum and rescaling of independent random variables

e Define S— X + Y, then, the Laplace transform of the distribution of S
_ _ 00 _ 00 OO _
Ds(z) = (e ZS) = / dse ZSDS(S)I: / / drdyDg(x)Dy(y) e z(zty)
0 0 0
where we have used independence [Dg, y(x,y) — Dz (x)Dy(y)], then 1
~ o0 —zx [ —2z ~ =
Bo(z) [ 7 daDa(@ye™ ™ [T ayDy(w)e™ ™~ Da(@)By(y)

So, the Laplace transform of the sum is the product of Dz (z) and ﬁy(z)
It is not necessary to know that Ds(s) is the convolution of Dg(x) and Dy(y)

33



2. Properties of Power-Law Distributions

e In general, if S — X —|—X2—|—---—|—XN,thenI
Ds(2) = [Da ()]

when all X are independent and identically distributed
e Rescaling by a constant, R —=S/C

Dr(z) = /OOO drDy(r)e” *" I/OOO dsDS(s)e_z(s/C) — Dg(z/C)

e Defining the rescaled mean, or “non-conserved” average

p- X1t Xt HXN L p(a) - (Du(e/NY N

e Introducing a cumulant generating function
Gz (z) = InDg(2) = Gr(z) = NGg(z/N )

Sum of X''s turns into product of m.g.f. and into a sum of cumulant g.f.
(if independence holds)

Note: g.f. — generating function, m.g.f. — moment g.f.

34



2. Properties of Power-Law Distributions

e If the moments are finite (and the generating function exists)
_ 1
Da(2) =1 — (X)z + 5<X2>z2 -

Considering In(1 — y) = —y — y2/2 — y3/3 — ..., with =1 < y < 1, then,
the cumulant generating function

Gu(2) — In Dy(z) —ln [1 - <(X)z - %<X2)z2 . )} - |

2

_(<X>z—%(X2)z —|—) —%((X)z—...)2+... —(X)z +

2, etc.

2

From the coefficients we can obtain the cumulants: (X), o

(X% —(X)? o

35



2. Properties of Power-Law Distributions

Distributions stable under “averaging”

e Again a “silly” question: let us look at the fixed points of this transformation
G*(2) = NG*(z/NV/)
This is the scale invariance condition, whose only solution for all IV is I
G*(2) x 2%
e In the case of the arithmetic mean, o — 1, then D} (x) — §(x — p), indeed
DX (z) = /OOO da:e_zch(az—u):l_“Z =

where §(x — p) is a Dirac delta “function”, which has mean p and zero variance

G;(z) = In D;(z) = — uz

36



2. Properties of Power-Law Distributions

Domain of attraction of the Dirac delta distribution

e Considering the expansion of Gz (z) into cumulants (if they exist and are finite)

2
2

Gu(z) = — (X)z+ 222 ..

2

Applying the scale transformation we get the distribution of the mean

z 0'2
Gz(z) = Gr(z) = NGz (z/N) =N [_<X>N + -

The distribution of the mean tends to a delta centered at (X ) when N — oo
So, the fixed point is attractive if Gx(z) exists and all moments are finite
We will see that the domain of attraction is even bigger

37
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e This constitutes a version of the law of large numbers (weak version) Feller 1971

It is somehow analogous to the central limit theorem also

Note that the Gaussian (normal) distribution also tends to a delta
(because we do not have zero mean)

If we had subtracted the mean the “central limit”" would have been Gaussian
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Stability and domain of attraction for “non-conserved” averaging

e Coming back to the general rescaled mean, G*(2) o z%, consider o — 1/2

* * —a2 x a
Gp(z) = —2aVz = D, (xz)=e / m

Abramowitz & Stegun, 29.3.82; Bouchaud & Georges, Phys Rep 1990
As (x1+z9+ -+ ch)/N2 converges, the mean diverges linearly with NV I

e Do it yourself! Simulate N random values of X. How? I

Consider the transformation X — 1/Y2 i

Y follows a half-normal (half-Gaussian) distribution 1
Use standard algorithm (like Box-Muller transformation) to simulate Y’

e Alternative: simulate a power-law with exponent 3/2 = What happens?



2. Properties of Power-Law Distributions

e Power-law distributions belong to the domain of attraction of G™*(2) x z¢

Consider Dy (x) = B/a:1+p for z > ¢ > 0 (and O otherwise), then B — pcP and
~ w E— —_— —_—
Dy (z) :B/ e Py P 1dx:I32pF(—p, cz)
c

with T'(v, z) = f;o w? " LeUdy the incomplete gamma function, with expansion

— (="

L(y,z) =D(y) — 27 Z (7 ey v#0,—1,—-2,—-3... Abramowitz & Stegun 6.5.29

with I'(y) =I'(v,0) for v > 0 and I'(y) =I'(y + 1) /~ for v < 0 (non-integer)
2P (—p,z) = 2PT(—p) — =2 1 —p)zP BT
= 2PT(—p, 2) = 2T (—p) Z(n_p)n! p[pl“( p) +(1+1_p+ )}

p#0,1,2,... We are interested in Gz (2) = In Dy (z) = In BzPT(—p, cz), so

In 2P (=p,2z) = —Inp +In]] Llnp+pF(—p)zp+1£+...
—p

40



2. Properties of Power-Law Distributions

pcz
1—0p

B
= Gz (2) = In— +IncP2PT(—p, cz) = pL(=p)c’2" + ..
C

using again the expansion of the logarithm. Applying the transformation

Gr() =~ NGa(s/ N W |pr(-p)e? (= )p+ ()

N1/« 1—p \ N1/

If0<p<1 and o = p then Gr(z)—>lF(—p)cpzpl

Ifp>1 and o =1 then Gr(z):Ga—c(z)—>l— pp_clz

where the coefficient is the mean of the power-law distribution in this case
(in any other case Gr(z) — 0 or co)

41



2. Properties of Power-Law Distributions 42

e The domain of attraction includes distributions that are asymptotically power laws

Dy (xz) ~ for x — oo

zl+p

with B  pcP. If p is not a positive integer

Du(z) ~ BT (—p)eP + 3 =2

|
n.
n=0

Bleistein & Handelsman 4.6.23
which is, except for the multiplying constants, the same as before (with ag — 1)

So, again, there are 2 cases:

fO<p<1 anda—p then Gr(z) » BT(—p)zPl

If p>1 and o — 1 then Gr(z) =Gz(z2) +ayz

e Reciprocally, Gz (z) o zP corresponds to a distribution that is asymptotically power law if 0 < p < 1



Summary

e Assuming independence:
If the moments of D, (x) are finite and its generating function exist or
If D,(x) is asymptotically a power law with exponent =1+ p > 2

— the arithmetic mean Z follows a Dirac’s delta distribution

1
T NZ:EZ- 5(Z — (z)) when N — o0
i=1
= Law of large numbers Feller 1971

— Makes sense of the arithmetic mean!



e Assuming independence:
If D,(x) is asymptotically a power law with exponent =1+ p <2 (but >1)

_ N

1
lep—1 Ni/p sz follows a power-law tailed distribution
i=1

with exponent 1 4 p, when N — oo

— The arithmetic mean diverges as N'/#~! (as 1/p — 1 > 0)

= Case of the generalized central limit theorem Bouchaud & Georges, Phys Rep 1990

e Therefore, the sum of earthquake energies “converges”, if rescaled by

NL/p  NL/(B=1) _ ar3/(20)

Standard (conserved) averaging leads to divergence of E as N3/(20)=1 ~ /N



e Concrete example, case =1+ p—=3/2

A

D, (x) 372

for “large” x

The “correct” average to get convergence is

7 1 & 1 &
N1/p—1 Nl/pzxi mzf‘% Y
=1 =1

Then, for N — oo, the “non-conserved” average y follows

a

—a®/y
Dy(y) € ﬁyS/Q

with a = — AI'(—-1/2)/2 = /7A



What Should One Expect from a Theory of a Complex Phenomenon?

P. Bak, How Nature Works, 1996

e A theory must be abstract

A theory of life does not need to predict elephants

(if your theory predicts elephants it is not general enough)

FExplain why there is variability, or what typical patterns may emerge
If ... we concentrate on an accurate description of the details,

we lose perspective

e A theory must be statistical

Collecting anecdotal evidence can only be an intermediate goal.

Anecdotal evidence carries weight only if enough of it can be gathered to
form a statistical statement.

Confrontation between theories and ... observations... takes place by
comparing the statistical features of general patterns.



e The abstractness and the statistical, probabilistic nature of any such theory
maght appear revolting to geophysicists, biologists, and economists, expecting
to aim for photographic characterization of real phenomena.

e Perhaps too much emphasis has been put on detailed prediction ...
wn today’s materialistic world.

e To predict the statistics of actual phenomena rather than the specific outcome
18 a quite legitimate and ordinary way of confronting theory with observations.



3. Critical Models 48

I cannot tmagine a theory of earthquakes that does not explain the GR law

Domino-like theory: Otsuka’s model (1971) PER BAK, 1996

e Earthquake rupture = cascade process of topplings, but:

T i

M. A. Francisco

(1) No domino effect: one toppling does not lead to another one and so on
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(2) Pieces are not in a row, rather, in a network or tree, and disordered

= When one piece topples, what happens next is random

- 45% gtep - - -
'- End step---
374 step
41:]1 atep - -
appadvice. con Otsuka, Zisin 1971

Seismic fault =
patches that may fail and trigger other patches to fail with some probability
and so on Kanamori & Mori, in Boschi et al. 2000
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Besides gambling, many probabilists have been interested in reproduction

G. GRIMMETT AND D. STIRZAKER, 2001

Galton-Watson (Branching) Process (1873)

e Definition
Start with 1 “element” (parent) which
generates K = 0,1,... elements (offsprings)
with some probability pg, p1,... and so on...

K's are independent identically distributed

' Wikipedia

www.wolframalpha.com

Galton was not interested in earthquakes

Rather, he was worried by the extinction of prominent families:

a rise in physical comfort and intellectual capacity is necessarily accompanied
by diminution in “fertility”... Wf that conclusion be true, our population
18 chiefly maintained though the “proletariat,” and thus a large element
of degradation s inseparably connected with those elements which tend to
ameliorate the race



3. Critical Models

Extinction

e N;— total number of elements in generation ¢ (with Ny = 1)

T T T T T T T

Extinction = N;—0 at some ¢

17 18 19 20 21 22 23 24
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e Extinction extinctionint=1orint=2or ... ¢ lim;_,,{N; = 0}

—= Pe:ctinction tgrgo P{Nt — O}

e Probability generating function of a discrete random variable X
fx(z)= (=Y P{X =a}2"=P{X =0} + P{X =1}z +...
=0

= fx(0)=P{X =0}
This is valid for any random variable, also for V¢, so,

—= Pe:ctz'nction lim th (O)
t— 00

which is easier to calculate



e Main equation

e If N; were a constant

th+1 (Z)

Proof:

Fp (2) = (Ne) = [z B

assuming independence.

<ZK1...



e Let us repeat, N;iq Zf\f:tl K;(t). If Ny is constant, fn,,,(2) = [fx(z)]™

e But /V; is random, so
th+1(Z) ;{—i_l(z)

with fi(2) = fx(fx(... fx(2)...)) = composition t + 1 times

Proof:

([ ()] V) nb= [ (fre(2)).

JNea (2) <ZNt+1> <<ZNt+1>K’£>Nt

As fn,(2) = fr(z), then

= fro(2) = [y (FR(2) = fre (K (2) = [ (2)

and the result follows by induction



3. Critical Models

e In conclusion

Pe:z:tz'nction — tli>moo P{Nt — 0} — tli>moo th(O)

— lim f%(0)

t— o0
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3. Critical Models

e Let us calculate th(z). Note that N| — K = le (2) = [ (2). Also

1 Ny
No— S Kl and ingeneral Ny 3K

if M — >N | K;, with N constant, then

Far(2) = My 2 Kay = K1 BNy Gy GENY e )Y,

assuming independence between the K;'s.
But if IV is random, with far(z) — (zN> then

) = =M ) @™ N = v ).

= Iy (2) = Iy (PR (2) = TR (FR(2)) = FRe(2)
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3. Critical Models

In the same way
Ny

Nep1= ) K

1=1

As g (2) = IN (i (), then, fivg (2) = fing (Fic (2)) = e (PR (2)) = fe (2)
In general, by induction

th (z) = th—l (f(2)) = f;{(z) (t — times composition)

Therefore "
Pextinction — ; 1—1>moo P{N; =0} = . 1—l>moo th (0) = . l—l>moo K (0)
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3. Critical Models

Expected size of population at ¢

e Property of fx(z) — Z%’:o prz”® = fS((l) :.X>

o ¥ﬂ|é'¢ef8Fe?n<>/]\gte)ngating function, so, in the same way
N, (1) = (Ny)

df y, (2)
dz

dfts (2)
dz

)

z=1 az z=1

PO

=1 dz

by the chain rule, and by induction
Y t—1 / t—2 ! 2 / /
(Ne) = f(Fie (DI (Fe 7(2)) - Fe (Fie (D) e (P () e (2)]

using frc(1) — 0 = f2(1) = 1, etc, and fh-(1) = (K) then (N3) —{K)?

dft= 1 (2)

1

z=1
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Extinction probability as a function of K

e Properties of fx(2) in [0, 1]
f&(0) = o



Extinction probability as a function of K

1 ! I T T 1
e Properties of fx(z)
0.8 | : 0.8 |
TK(0) = Po <
fr(1)=1 osf | st
Fre(1) — (K)
fr(2) =0 R ] 0.4t
x(z) =0
0.2 F - 0.2 F
Valid for all probability  ( /~ | [ '
generating functions 0 - - - - 0 : ! , .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(K) <1= P.ptinction tlim H0) =1, I.e., extinction for sure
oo
(K) > 1= P.ptinction tlim fY(0)=2*<1, i.e., non-sure extinction
©.@)

Except for the “monarchic” case p; = 1, which has (K) =1 but P, tinction =0



Phase transition in branching processes

e The fixed point condition for the probability of non-extinction p=1— P, tinction,

Pextinction 1 — P fK(Pesctinction) fK(l — ,0) Zpk(l — p)k
k=0

(because P{A} + P{no A} =1). Expanding using the binomial theorem

- 1
1—0p Zpk [1—kp+§k(/€—1)p2—...]
k=0



e For small p (large Pertinction), introducing ¢ = (K(K — 1)) (2nd factorial
moment)

“0p* — ({K) — 1)p~0
which has 2 solutions,
(K) —1
¢

We need to consider the solution closer to (but smaller than) 1, so

p=0 —and p=~2

(K) —1

p=0 for (K)<1 and p=~2 for (K) > 1

where we have used ¢ — 0% + (K)((K) — 1), if p~0 then (K)~1 and ¢~ o2

e The transition is continuous, but sharp = 2nd order phase transition

The case (K) =1 is critical, as it separates two very different behaviors



Universality: close to the critical point

0.8

0.7

0.6 |

0.5

04

0.3 |

0.2

01 F

0

|
poisson
~ geometric
binomial n=2 ——

-0.5

1.5



Continuous (or second order) phase transition

e Let m be a control parameter ((K) in branching or temperature, etc.)
Let p be an order parameter (non-extinction probability, magnetization, etc.)

Then

0 for m below m,. = critical point
P (m —m.)?  for m above but close to m..

1.2

e Abrupt change in the derivative
il

The derivative is discontinuous if 5 <1
0.8

e For a branching process, o 06f
me.—1and =1 0al

0.2

0

0 0.5 1 1.5 2



e For a magnetic system, m is the inverse of the temperature, p is magnetization

= m, is the inverse of Curie temperature and 5 —=1/3

e N S S O B B s s B B S
900,000, _
800.000*—-\

Cube of 700,000~

magnet- 600000,

Ization 500,000

400,000

300,000—

200,000t—

1 G0,000—

CUBE OF Eu™®* NUCLEAR RESONANCE FREQUENCY IN (Mc/sec)?

} | .
] ' . i i ' 1 !
e e e b bt e e — PR i e

N HOSED WS I NS SR N j
14 OO0 14 50 {5 00 15.50 i6 00 16 50
TEMPERATURE (N DEGREES KELVIN

Magnetization dissappears sharply Heller & Benedek



Example: binomial number of offsprings

e Each element has only a fixed number of trials n to generate other elements

p — P{K =k} < Z )pkqn_k, for k—=0,1,...n.

with p the probability of being successful in each trial, and ¢ =1 — p
e The probability generating function
n
n n—k _k_k n
TOED S G Pl PSS
k=0
using the binomial theorem. We will consider n — 2

o P, tinction Will come from the smallest solution in [0, 1] of

. 1—2pg /(1 2pg)2 — 4p2q?
2

2" (q —I—pz*)2 =z

2p

but for the square root we can write /1 — 4p(1 — p) = 1/(1 — 2p)2 = (1 — 2p)

1—2p+2p2 + (1 — 2p) (1 —2p+ p2)/p? (¢/p)?
2p? p?/p? 1



3. Critical Models

The smallest root depends on whether p is below or above 1/2

1
Pextinction = { (q/p)2

As (K) = np = 2p the critical case (K) = 1 corresponds to p = p¢c = 1/2
(in agreement with the behavior of P, .¢inction)

forp<1/2
forp>1/2
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e In terms of the non-extinction probability p =1 — Pg.tinction

p—0 forp
) <q>2 2p — 1
p — —
p p?
using (K) = 2p
e Expanding around (K) —1~0 <
K)—1 1
p~4({K) — 1) 2% for p > —
oé 2

with o2 2pq and ag 1/2
Then, p=pc—=1/20r (K) =1
is the critical point

1.2

0.8

0.6

0.4

0.2




Total size of the population

e The size of the population, summing across generations is

S S
t=0

total number of individuals that have ever existed, or
total number of domino pieces toppling,
“size” of an earthquake, etc...

e Its mean value, for (K) < 1, using the geometric series, and (IN;) = (K)* (new!)

1
1 —(K)

(S) = (No) + (N1) + (No) + ... =1+ (K) +(K)* + ...

Note that when (K') — 1, the probability of extinction is 1, but (S) — oo (!)



Total size of the population: binomial case

e Each element has only a fixed number of trials n to generate other elements

pr = P{K =k} (Z)pkq”_k, for k=0,1,...n.

with p the probability of being successful in each trial, and ¢g=1 —p
e Remember (K') = np, so the critical point is at p. = 1/n

e Representation of a branching process as a tree (connected graph with no loops).

Each element is associated to a node
Branches linking nodes indicate an offspring relationship between two nodes
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e Representation of a branching process as a tree (connected graph with no loops).
Each element is associated to a node
Branches linking nodes indicate an offspring relationship between two nodes
e All nodes have just one incoming branch, except the one in the zero generation

the number of branches is the number of nodes minus 1, i.e., s — 1
the number of possible branches arising from s nodes is s (in a n-tree)
the number of missing branches (non-successful trials) is ns — (s — 1)

A particular tree of size s comes with a probability

ps_l(l—p)(f'”"_l)s+1 with s—=1,2,...



e For n =2, the probability of having an undefined tree of size s=1,2...
comes from the Catalan numbers! ...

o

P{S =5} Cp* (1 —p)tt o=t
1 2s s—1 s+1
P ( . )p (1—-p) / \
G =2
ith Cy— 2= ( ** ) the numb
wit S 511 S the number / { j\o } \
of different trees of size s, s

called Catalan numbers

The trees are the internal part
of rooted binary trees
Can you draw them? ﬁ {\7 j{ >X /} /\

Cy=14



Calculation of the Catalan numbers

e Let us decompose a tree of size s into its root (zeroth generation) and the rest

This can be done as
A subtree of size s — 1 in the 1st branch and another of size 0 in the 2nd
A subtree of size s — 2 in the 1st branch and another of size 1 in the 2nd

A subtree of size 0 in the 1st branch and another of size s — 1 in the 2nd
So, the total number of trees of size s is

Cs=CpCls—1 +C1Cs_o+ -+ Cs_2C1 +C5_1C

e We define a generating function for the Catalan numbers

h(z)—Co+ Cra+ Coz® +... = 3 Csa®

The properties of the Catalan numbers will allow the calculation of A(x)

0 0

with CO

OO . .
h()]? = > C;C" = S| ST ¢4 2f éz Copra® Tl

i,7=0 s=0 |i+j=s s=0

J/

Cs—l—l

1



SO

h(x) -

+ 1 —4x

but this tell us nothing yet. Using the Taylor expansion of /1 — «

then

and so, taking the minus sign (otherwise h(x)

1 —+1—4x

h(x) 5

then the Catalan numbers are, and using (2s)!

2x

e
— 1 — — —
2
2s — 1)N125+1
1—4x—=1—2x — (
v > o
is not a g.f.)
Z (2s — 1)”28+1 s+1
23: = (s +1)! *
(25)!1(25 — 1)1 — 5125 (25 — 1)
(25 — 1)112%

Cs

the latter being valid for s =0,1,2. ..

(2s)! 1 (
(s + 1)! sls+1)! s+1

s+1

S

23)



3. Critical Models

Coming back to the Taylor expansion of /1 — 4x

o0
VvV1—4x—1—2x Z C’S:US
s=0
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Parenthesis: many uses of the Catalan numbers Davis, geometer 2010

e Number of balanced configurations with n pairs of parenthesis

n=0:]* 1 way
n=1.1 0 1 way
n=2.1 00, (O) 2 ways
n=3 1000, O, (OXO, (OO, (O 5 ways
n=4:1 0000, OO0CO), OO, OCOO), OO, 14 ways
(O)XOO, COXO), COOXO, (CONO, (OOO),
(OCO», CCO)O), (OO, O

e Number of mountains profiles with n upstrokes and n downstrokes

n=0:| % 1 way
n=11/\ 1 way
n = 2. /\ 2 ways
/N/\, 7\
n = 3: /\ 5 ways
/\ /\ /\/\ /\
/NIN/N, /NN, / N\/\, / \, / \




e Number of paths above (or on) the diagonal in a n x n lattice

e Number of triangulations of polygons with n + 2 sides
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e Non-crossing hand-shaking configurations of 2n people in a round table

o——=O

-

ANV f/f —

o |\/|any more! Stanley Enumerative Combinatorics 1999



Normalization of the size distribution

e P{S = s} is normalized for p < 1/2 but not for p > 1/2
o= . q -~ s s 4
D P{S=s}==> Csp’q° = =[h(pq) — 1]
s=1 P s=1 p
with ¢ =1 — p and introducing h(x) Zgio Csz®. As h(zx) = (1 — /1 = 4z)/(22)
2p 1 .
== if 1
hoa) 1-T—dpg 1—-y/(1=-2p)2 1|12 2pq 4
pq
2pq 2pq 2pq 2(1-p) 1 iy
2pq p I
Therefore 1
0o . FG-1n-1 ifp<1/2
> P{S=s} ]—)[h(pQ) — 1] . )
s=1 (-1 =(a/p)° ifp>1/2
which turns out into
00
Z P{S = s} = Peytinction
s=1

But how does P{S = s} look like?

And what this has to do with power laws?



e Summarizing, the size distribution

1 2s
_ s—1/1 . \s+1 s—1/1 . \s+1
P{S =s}=Csp* (1 —p) ) ( ) )p (1—p)

for a branching process with binomial distribution and n =2

e But what this has to do with power laws??



Asymptotic total size of the population

® USing Stir|ing's approximation, valid for s OX  Christensen & Moloney 2005; A.C. & Font-Clos 2013

s! 27S (f)
e

the binomial coefficient turns out to be

25 (2s)!  4mws(2s)?° 48
S slsl  2ms 28 /TS

and the Catalan number, replacing s + 1~ s

C 1 25 4°
S os+1\ s VT s3/2

essentially, an exponential increasing function of s




e Introducing the factor p*~1¢*T! we get P{S = s}

P(s = s} 0

How does this function looks like for large s?

If p(1 —p)<1/4=p+1/2= HUecreasing exponential
If p(1 —p)=1/4=p—=1/2= Exponential dissapears = power law!

It becomes more transparent writting

(4pq)® esnldp(1—p)] _ ,—s/&(p)

with the characteristic size defined as

—1

| 1
0= ap —p) (1“4p<1—p>)




and then

q e_s/g(p)
P(S =) VTp  s3/2

Case p#1/2

For s large but s < £(p) = power law with exponent 3/2
For s large with s > &(p) = exponential decay

Case p—1/2
Then, £ — oo and for large s we obtain a power law

The critical exponent for the size distribution is 3/2



s)

P(S

~
~
~
~
~
~
~
~
N
~\
S

'O'O'O'O'O'O ]

35, exact

.35, asymptotic
47, exact
47, asymptotic
.50, exact
.50, asymptotic




Divergence of the characteristic size

e Another critical exponent arises for the divergence of £(p) at the critical point.

Introducing the deviation with respect to the critical point, A=p—p.=p—1/2

p(1 —p) G+A> G—A) E—M

So, close to the critical point (for small A)

1

1+4A%+ ...
Ap(1 —p) 1 —4A2 i i

(using the formula of the geometric series), then

1
In In(1+ 4A%) ~BAZ + . ..

4p(1 — p)




(using the Taylor expansion of the logarithm at point 1), therefore

« (m 410(11— p)> _1 ﬁ T

So, &(p) diverges at the critical point as a power law, with an exponent

Then, for s large and A small

1 e—4(p—pc)’s

VT 83/2

P(S =s)



Expected value of the size

e We already know that for (K) <1 (i.e., p<1/2,i.e., A <0)

(8 = (Ng) + (N1) + (No) 4+ ... =1+ (K) + (K)* + ...

1 —(K)  2A

substituting (K) = 2p and A =p — 1/2 = deviation with respect criticality

This defines another critical exponent

o As &(p) ~ A™2/4 close but below p. —1/2 then

So, if the mean increases by 2, the extreme values given by & increase by 4
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e Demonstration Hawkins & Ulam 1944; A.C. & Font-Clos, arXiv 2012
Consider the size from generation 1 to oo (excluding the O—th generation)

&
Sg—S—1 Zth
t=

with gg P(S(~) = s) and a generating function g(z) — > vy qg2°
A size s in generations from 1 to oo can be decomposed into

a size k in the first generation, with probability Pl and
a size s — k in the remaining generations (from 2 to o)

(K )

but starting with k elements; this has a probability qq

()

(note that g4 — g4
Using the law of total probability,

qS Z pkqs k?

except for s = 0, where 4o — PO

If we multiply by 2% and sum for all s we will obtain the g.f. of 56

9(z) =pg + Z Z pkqgk_)kzs po + Z Pk Z q(k) P %
k=1

s=1k=1



The term in [] is the g.f. of the size from 1 to co generations
but starting with k elements (N1 = k)

As these k parents are independent of each other
= size will be the sum of k independent random variables each with g.f. §(z)

This yields [g(z)]l€ as the corresponding generating function,

10 L S A
s—k=0

Substituting into the equation above

3(2)=po+ 3 PRlaNF R = fr(25(2))
k=1

As S =1+ Sﬁ we need to add an independent variable with g.f. z
(as N takes the value 1 with probability 1) then, the g.f. of the size from generation 0 to oo is the product zg, so

9(z) = 29(z) = 2f g (29(2)) = 2f g (9(2))



e Binomial case. Substituting fr(2) — (q + pz)2 then

9(z2) = 2fg(9(=) = 2(a +pg(z))* = g(2) 1_2pq2;2@

Using the Taylor expansion for the square root

— st

- (2s s+1
V1—4pgqz —1 — 2pqz — Z ' (pqz)
=1 (s + 1)!
where we do not need to compute the Catalan numbers C'g, so, taking “‘-"
q =
9(z) == > Cs(pqz)
P s
From the coefficients we recover the probability distribution we knew
P{S — S} Csps—lqs—l—l



Geometric case. “Success” probability p and ¢g—=1 — p and values kK —=0,1,2... 000

(o]

k k

pp— P{K =k} —q'p = fK(2) E PLZ
k=0

using the geometric series. The generating function for the size is

pz 1— 1 —4pgz
—— = 9(?)
1 —qg(2) 2q

9(2) = 2f K (9(2))

where we have used the following, with C; the i—th Catalan number

m .
Vi—dz-1-20-Y 20"
i=1

o0
—1
pz+ » Cs_14° 'p
s§=2

S _S
z



Therefore, the size distribution (without binary trees!)

1 s 1 (4pq)®

P{S=s}-Cs_14° "p ived 32 for s — oo
s

so we again obtain a critical exponent — 3/2 (and also the others)

e (s also counts number of (non-necessarily-binary) trees with s edges

O Edges.
1 Edge:

3 Edges:

ST T 0

Davis 2010



3. Critical Models

e Normalization of the size distribution in the geometric case

0

—1
D P{S=s}=Cs_ 14" p° =

s=1

which corresponds to the probability of extinction in the geometric case
Note that (K') = q/p, so pc =qc —1/2

{

1
p/q

ifqg<1/2
ifg>1/2

95



e Another offspring distribution
0 offsprings with probability g —=1 — p
2 offsprings with probability p

Then fr-(z) —q+ pz2. The generating function for the size is

2
14+ 4/1 — 4pgz i Copigitl 2it1
1

9(2) = 2fpc(9(2)) = 2(g + pg(2)®) =  g(2)

2pz i—0
Therefore
s—1 s+1
P{S=s}=Cgq_1p 2 q 2 fors—1,3,5...
2
So, C;; counts the number of rooted binary trees of size s — 27 + 1
Asymptotically we do not scape from the exponent 3/2
2 4 3/2
P{S = s} —q% for s — oo

P 83/2



21 +1

C; counts the number of rooted binary trees of size s

010Z stred

T + 2g =S 9ZIS JO S93.1 AJeulq pa1ooJ JO Jaquinu Y3 sunod %)

S|PPOIA [e213LD) °E

Davis 2010



Finite size effects in branching processes Garcia-Millan, Font-Clos & A. C. Phys Rev E 2015

e Let us consider a limitation in the number of generations: t=0,1,... L
(this plays the role of boundaries)

The probability of extinction, with f(z) = fx(z), will be

Peyi(L) = f7(0) Py = lim f*(0)

t— 00

e Consider a very large number of generations, n
= f™(0) will be close to f*°(0) = Py
Let us Taylor expand f(f™(0)) around the fixed point P

FH0) = £(£(0)) = Poo + f'(Poo) (f™(0) — Pso) + ...



e Taking up to 2nd-order terms and arranging, the inverse of the distance is’

1 Cn N C
Cn+1 P — f7H(0) M M2

with M = f'(Py) and C' = f"(Ps)/2. Iterating

Cn C(1— M*)
Cn+¢ Me‘l_Me_i_l(l_M)

In the subcritical case, P,, — 1, then M — (K) and 2C — 0* + (K)({K) — 1), so

oo A -(K)) 1K)
K 2AK) (- (K)) (K




e Let us introduce a rescaled distance to the critical point y = /¢((K) — 1), so

) (1 (K)) | 01— ev)
MK (K)) T 2evy

with (K) =1+ y/¢ and (K)* — ¥ and with ¢ large (then (K) is close to 1)

For L = ¢ + n > n, we have that the probability of non-extinction will be

1 2eYy

c, o2(evy—1)L°

p(L) =1 —= Peyy(L) =1 — f2(0)

with L~ /. So, a scaling law is fulfilled, with scaling function G(y)

1 _ 2yeY
LUgG(L(<K>—1)) with — G(y) = ——

p(L)

valid also for the supercritical case.llhis is called finite-size scaling



Let us repeat

p(L)

0.35 . T | |

L = 10 = .
o | L =20 |
0.3 L =50 | ‘_4
L =100 o
0.25 b L =200 o
L = 500 N
vo | L =1000 0
02 17 Z 9000 )
C‘: {\ 1€ |
J. L)
0.1+
0.05 |
0 .

1.4

2
ac L Payry

: 2yeY
with  G(y)
ey —1
12 . T T
L = 500
| L =1000 o } Binomial (N = 2)
10 7 Zo000 o
L =500 )
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Simulation of a branching process

e Initialize t =0 and Ny =1 (one single ancestor)

e Loop for ¢

Simulate V; values of K
Compute Nt_|_1 Zé\’tl KZ

|f Nt_|_1 0 = stop
t—=t+1

e For the twins-or-nothing example

2 ifu<p
K {O otherwise

with u a uniform random number between 0 and 1



Plot of P{S = s} (with (n)
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As the mean of the number of offsprings is (K) = 2p, then, p.—1/2

Plot of P{S = s} (with (n) = (K))
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As the mean of the number of offsprings is (K)

Plot of P{S = s} (with (n)
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Earthquakes and branching processes

e Gutenberg-Richter power law holds only for (K) =1
Critical branching process = Fine tuning of mean number of offsprings
= Very difficult to get in practice!

e Agreement only qualitative, not quantitative

2b 3

e Model too simple, still

e Kagan: Gutenberg-Richter exponent should be 3/2 (i.e., b—value =0.75)

Instrumental artifacts makes the exponent increase Kagan, Tectonophys 2010 I



Consequences for predictability
e Consider (N¢y1|N¢) with N; known, then
(Ni+1|Ne) = (K) N

using Nyp1 — oty K

For critical branching processes (K') =1 and then

(Ni41|Ne) = Ny

Note that it is not only that the outcome of the next step is random

It is much worst: the earthquake is in the limit of attenuation and intensification

e But what makes earthquakes critical?



e | CMT catalog, 1077 - 2010, depth < 70 km  + |
lg 10718 Ty N power-law fit, exponent 1.68 ]
Zg | -
=
=102 k- i
Summary Z 107
< g b ]
=10
e The size (energy) of earthquakes %10_% i ]
(and other natural hazards) 20 | ]

T ey T T Res Ry e Rty apec )
10 10 10 10 10 10 10 10 10
seismic moment (Nm)

follows a power-law distribution
e A power law signals the absence of a characteristic scale

e (Decreasing) power-law densities, with 5 < 2 have an infinite mean value

e Galton-Watson branching process can be - /
a model of earthquakes 1'
08 F
Continuous phase transition at (K) =1 |
Size distribution is only power law T
at the critical point "
0.2 |
0
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Self-Organized Branching Process

e Consider: 0 offsprings with prob 1 — p
2 offsprings with prob p

Limit the maximum number of generations
= analogous to introduce a boundary at t = L

Change p from one realization 1" to the next as

1 — N.(T)

p(T +1) = p(T) + —

where N, is the population in the last generation (

and M is a big number (explained later)

Note that there are 2 times scales

t — fast time scale, counts generations ,from ¢

T — slow time scale, counts realizations

Zapperi et al. Phys Rev Lett 1995

2 in Fig.)

0to L



i
1 — N (T o g
p(T +1) = p(T) 4 - ED e
M °
o
e Dynamics & /O:/\/Co>
If pislow = small size = Ny —=0 = p increases I—P\O</\g
If pis high = large size = Ny >1 = p decreases
e Indeed, we know that (Np) — (K)¥ — (2p)*
So, we can write, Nz — (2p)¥ 4+ n, with () =0
Considering the deterministic equation (removing 7)
1 —(2p(T))"

p(T + 1)~ F(p(T)) ~ p(T) + —

Therefore, the deterministic equation has a fixed point p* =1/2 = p,



e Moreover, if M is big enough then |F’(p*)| < 1 and the fixed point is attractive,so

p(T) p* Pc

As the noise is small, it only adds small perturbations to p*
Then, p tends, or self-organizes, to its critical value, on average

e Note:

Self-organization is the spontaneous emergence of structures or global order
(here we do not have any structure yet, but wait...)

Examples:
convection patterns in fluids, chemical oscillations, self-regulations of markets

e Nevertheless, the global condition (on p) is very difficult to justify, in practice



Cellular automaton Manna model?

e |Let us consider a lattice in d dimensions

Each site can store only 1 particle (or 0) Bak 1996, after Grassberger

If extra particles arrive at a site:

= 2 of them are transferred to 2 randomly chosen sites among its neighbors
(this may generate an avalanche)

Particles leave the system through the (open) boundary

If there is no activity (all sites with 1 particle or less):

= Add 1 particle to a random site

In a formula, with nn(j) denoting 2 random neighbors of j

Zj Zj — 2

if z. > 2 =
’ {Znnu') Zon@) t+ 1

if z,. <2Vk = Zn — 2n + 1 with n—=rand



e The Manna model defines a complex system:

System composed of many interacting parts, such that the collective behavior
of those parts together is more than the sum of their individual behaviors

Other examples, more complex: the cell, the brain, ecosystems, the economy,
the Earth’s crust... Newman, Am J Phys 2011
e Let us go back to the Manna model in the limit of infinite dimensions, d — oo

Then, the propagation of the activity will show no loops mean field
(a neighbor will not be selected twice to get a grain = no overlap)

So, there will be no spatial correlations, and all sites are equivalent
(the boundary conditions need to be readjusted)

Each site will become active (z > 2) with the same probability

p = fraction of sites with one particle = P|z = 1]



e Then, the activity propagates through the system as a branching process

e The offspring distribution will be binomial, with n =2 and parameter p

But note that there is no pre-existing tree
e The total number of particles will evolve as
mass(T + 1) =mass(T) + 1 — out(T)

(one particle added before the avalanche, “out” particles lost at the boundaries)
Dividing by the total number of sites M, with p = P[z = 1] = mass/M

1 —out(T)

p(T +1)—p(T) + —

which corresponds to the self-organized branching process Christensen & Moloney 2005

The evolution and adjustment of p is implemented in a natural way
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Self-Organized Criticality (SOC)  Baketal. Phys Rev Lett 1987

e The dynamics arises from the sandpile metaphor

If there are few grains (flat pile)

= small avalanches, pile grows

If there are many grains (steep pile)

= large avalanches, pile decreases
(through boundary dissipation) y

This mechanism makes the slope
of the pile fluctuate around the
critical state

= Bak-Tang-Wiesenfeld (BTW)
model
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e BTW model: one-dimensional lattice, d =1, with j=1...L

Modification: no random selection of neighbors

if 2, >0 N 2; — z; — 2 forj AL
Zi+1 7 Zj+1 + 1
if 2z, <2Vk = Zn — 2n + 1 with n—randl

The “particles” are in fact elements of slope in a 2—d sandpile
height at j = hj — hj_|_1 + 2z = Z5 = hj — hj_|_1

with hy 11 =0 = 2z, =hy = 2z — zr — 1 (conserved BC)

h; — h;  — 1
' - h:, 1 >9 J J
it h‘y h]—'_l o = { hj—|—1 — ]’Lj_|_1 + 1

if hpy —hp 1 <2Vk = hpy, — hy, + 1 for m < n with n —rand



e Height h picture (grains) versus slope z picture (repelling particles)

(@)

5'5,?5,5“-‘:?
L
o

G v
T

o

o
.._lrw

-_%iﬁ%%
N

Christensen & Moloney 2005



Relation with interface depinning Paczuski & Boettcher, Phys Rev Lett 1996

e Define H; as the total number of topplins in a sandpile

When:

the initial condition is empty (h; =0 for all j and for 7' 0) and
the addition takes place at 7 —1

then, H defines an advancing interface, whose gradient gives the pile height
hj Hj—l — Hj

with Hy giving the total number of grains added



4. Self-organization towards criticality

Retrospective of models

e Domino (Otsuka) model of fracture

e Galton-Watson branching process

e Self-organized branching model

e Cellular automaton Manna (bureaucrats) model
e Bak et al. sandpile model
e Interface depinning model

e These models serve as metaphors for earthquakes




e Inspiration: Critical Points of Thermodynamic Phase Transitions
Magnetic material: atom spin with 2 states
There exists a critical temperature T,

Above T.: no magnetization, small clusters
Below T.: magnetization, one very large cluster
At the precise value T'="T,. = clusters of all sizes = power law!

LR AAB ol 2
e '

Christensen & Moloney, Complexity and Criticality 2005



Burridge-Knopoff spring-block models Bull Seism Soc Am 1967

e Earthquakes take place in “pre-existing” faults
= Alternative: modeling friction in a fault

Experiment: spring-block system pulled from one end

ROUGH

(a ) 2 e a7 Y
/////////////% - o -

v

Computer simulations:
All blocks connected by flat springs to a moving plate



e stick-slip dynamics: slow driving (pull) + fast avalanches (shocks)

The force on the block(s) increases (linearly) very slowly

At some time (for some block) the force exceeds the static frictional force
Then, that block moves fast, changing the force over the neighbor blocks
and so on

“Size" of the earthquake number of sliding blocks



Coupled-map lattice model

fixed plate

e Olami-Feder-Christensen (OFC) model, Phys Rev Lett 1992
Two-dimensional version of Burridge-Knopoff model

Coil (helical) springs connecting blocks in the direction of motion of the plate
Flat (leaf) springs connecting blocks in the perpendicular direction

(making the force then in the direction of motion also)

In both cases the value of the elastic constants is K

Flat springs connecting blocks with the upper moving plate

with constants K + K



e Let us define

F; ;j — Force on block ¢, 5
x; ; — Displacement in the direction of motion
of 7, 7 relative to the upper flat spring

« >

Also, the zero force between each pair corresponds to
the lattice of upper springs. By Hooke's law F; ;

—K (@i j=wi1,) =K (i j—2ig1,5) =K (@i j— 4 1) =K (i j—2i j41) KL

K| D Tonag) — 4wy | — Koz
nn(%,j)
If the upper plate moves with constant (small) velocity v then

dF d
d;“’l _K; ‘Z’;’l K;v  forall k.l




e When the force on some block 7, j reaches the frictional threshold force Fij,
= block 1, 7 slips instantaneously to the position with of zero force, so

F;;—0 (assumption of the model)

/

Then, if we denote the new position of ¢, j as x;

0=K Z xnn(i,j)_4xfi,j _KL:CQ,J'
(4,7)

where nn(i, j) denotes the nearest neighbors of ¢, j. Substracting,

Fq;’j —0 — (4K + KL)(.CU@'J' — ZL'/ )

2]



e Therefore, the force on the ¢ 4 1, j neighbor (for instance)

Fig1;,— K E Ton(it1,5) — 4it1,5 | — KLTig1,;
nn(i+1,7)

1

So,as F; ;= — (4K + Kp)(x; j — 90’-73-) then F;11 ; changes to

K
1K + K1, 7

/
Fiv1j— Figry+ K5 — 245) = Figr +
»J

and the model is non-conservative, as o = K/(4K + K) < 0.25
except if K, — 0



Summary of the rules of the OFC model

if F; ; < Fy,  foralli,j = dF; ;/dt = Kpv with v very small

if [ ; > Fy,  forsomeid,j = { ?bfb(i,j) gnn(i,j) + alk;
0]

The boundary conditions are disregarded

Note that there are 2 times scales:
The slow one is continuous, but the fast one is discrete

In practice, in simulations, don't use dFZ-,j/dt Krv. Why?
Then, the slow time scale turns into discontinuous

= coupled map lattice model®

continuous discrete



Earthquakes can be a SOC phenomenon

L |ngredients for SOC (and fUlfllIment in earthquakeS) Pruessner, private comm.
Time scale separation (= OK)
Thresholds, interaction (= OK) \

’ [ — <»<
Avalanche dynamics (= OK) Q"‘iﬁ%
Power-law distributions (= OK) K K
(with finite-size scaling) fixed plate

Underlying 2nd-order phase transition,
reached by self-organization (= 77)

Think in the critical temperature of Fe, T, — 770°C
or in the critical point of water, at T, — 374°C and 218 atm Andrews 1869 (for CO5)
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Other candidates for SOC

e For rain, Peters and Neelin have shown: Nature Phys 2006, Neelin et al. Phil Trans R Soc A 2008

1. Existence in the atmosphere of a non-equilibrium stability-instability transition

(@)
10 B 035 T T T T T
L=10 o 1
g | Li=20 0 =
ol 0.3 + L =50 m\_\ 1
L =100 o
_ 0.25 - L = 200 o 1
Z: L =500 HD
| | L = 1000 X Oo Z
g © £ 0-2 7 ~ 2000 e
g i O
e 015 - Du ;f“/ T
S 4¢ e (C(“
0.1 + O ¢’Y i
ai
O
2t 0.05 DDDD & -
ol gt
0 DDDDWI‘WDDDQWI??M‘Q@@?) m«%‘(?ﬁ ;ﬁ 1 1
O e : 0.6 0.8 1 1.2 1.4
50 (K)

precipitable water w (mm)

Stanley, Rev Mod Phys 1999 I
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e Finite size effects

Finite size scaling: (Py— L7 2/VH[(w — w.) L] (L system size)

lx|77 forx— — o0 0 for w < w,
H{(w) o { 02 forxz— + ¢ Ljoo (P) o (w —we)"?  for w > w,

With critical point w. >~ 63 mm (@)
if I'—271 K, and so on

Phase transitions (abrupt changes)
only exist in the limit L — oo

50 55 60 65 70 75
precipitable water w (mm)
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e Peters and Neelin have also shown: Nature Phys 2006, Neelin et al. Phil Trans R Soc A 2008

2. The atmosphere is attracted towards the critical point of the transition

1071 g~ -
T
270 x
102 271 %
272 o
o

1
<
o0

1
<
@)

occurrence probability (log-scale)
precipitation variance

precipitation, (P)(normalized)

0.6 0.8 1.0 1.2

w/wC



Continuous, non-upper-truncated power-law distributions

e Given by a probability density D(x) with x real (continuous)

D)~

for a < x < o0

with a > 0. Then, [ D(z)dz =1 with v > 1 implies

B—(y—1)a"!

e In order to decide between competing explanations, universality classes, etc.,
it is important not only to determine if power laws hold,
but also the precise value of the exponent ~



Fitting power-law distributions

e Most common method to fit power laws has been linear regression in log-log
(needs to estimate first the empirical density = delicate)

. 10
e Some authors have pointed out the

superiority of maximum-likelihood
(ML) estimation

— Nlog

o
—— —— — ]

Goldstein et al. Fur Phys J B 2004 6! MLE
Bauke, Eur Phys J B 2007 CDF
White et al. Ecol 2008 ol — = == Actual

Clauset et al. SIAM Rev 2009

e ML estimators are: asymptotically unbiased o
and with lowest variance

—2.2 -2.0 —-1.8 -16 -1.4 -1.2
Estimated exponent

Invariant under re-parameterizations



Maximum likelihood (ML) estimation

e Given a dataset of size IV, x1,x9,...xy, the likelihood is the joint distribution

N

L(7)=D(x1, 22, ...x5:7) = [ D(xi:7)

7

(assuming independence). For a power law, D(x) = B/x”, the log-likelihood is

nL(y) 1 < al
0() NV N g In D(x;;7) lnB—% g Inz;,=InB—~InG
i=1 i=1

with G the geometric mean of the data and B — (v —1)a” ! (continuous case).
Maximizing
dl 1

— =0 = l+—5
dry 7 ln%



e Note that the ML solution depends only on the geometric mean GG

—1
v=1+ (ln€>
a

So, any data, from any distribution, with the same G yields the same ~

Then, maximum likelihood should be called minimum unlikelihood

= A goodness-of-fit test is necessary



Goodness-of-fit test

e In order to test the goodness of the (ML) fit let us consider Kolmogorov-Smirnov

. . . 1 T T T T T T T T T T T T T
KS distance or KS statistic Original Cumulative Distribution, S(x) with a=1.15
maximum difference for all 0.9 - Empirical Cumulative Distribution, Sg(x)
. 8 Fitted Cumulative Distribution, S(x) .
between empirical S(x) and 08 o
. P ( ) o7 | KS-statistic, dg —— |
theoretical S(x) 085 o
0.6 ' .
. o0 04
with S(z) = [~ D(x)dx 075 |
0.3 f N\
Care with p—value: 0.2 | “ 0.7
Monte Carlo simulations 0.1}
L] L] O 1 " 1 " 1 " 1 " 1 " 1 " T
o The pr.obl.err? of power-law fitting 02 100 102 10°  10°  10° 10 102
Is not in fitting the power law X

It is in the selection of ¢ — minimum value of &



Clauset’s et al. recipe Clauset, Shalizi & Newman SIAM Rev 2009

e  Take an arbitrary value of a (= minimum z for which the power law holds)
Calculate fit by ML estimation = yields exponent ~
Calculate Kolmogorov-Smirnov distance between empirical distribution and fit
(no goodness-of-fit yet)

e  Select the value of a which minimizes Kolmogorov-Smirnov distance d = dem,,
So, we come out with a fit given by aemp and Yemyp

e  Calculate p—value of the fit by simulating Ng;,, synthetic samples:
+ Simulating a power law with exponent yem, for = aemyp
+ Bootstrap of the empirical distribution for = < a¢y,,
Proceed with synthetic samples in exactly the same way as with the empirical

= Each synthetic sample yields a value of dg;m,

— Calculate p—value as p =~ {number of dgim > demp}/Nsim



e Justification of the minimization of d

Under the null hypothesis, Kolmogorov-Smirnov distance goes as

VN

So, under the null hypothesis, the smaller a, the larger N and the smaller d
But as soon as the null hypothesis fails, the fit deviates and d increases
A sort of balance between the two effects is implicit

Nevertheless, there is no reason why this deviation should compensate and
overcome the reduction in d

(it would depend on the shape of the distribution for x < a)
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Problems of Clauset et al.’s recipe

e The method performs bad when generalized to truncated power laws

1079 ————

| —— Northwestern Pacific 1986 2007
- — x1/PDI

2l L L PR | L L PR |
10° 1010 10t
PDI (m?s™?)



More problems of Clauset et al.’s recipe A.C., Font & Camacho Phys Rev [ 2011

o Consider nuclear half-lives: from below 1071% s to 1023 yr ~ 103! s for 1?3Te

Clauset et al.’s recipe yields
Aemp — 30 s and Yemp — 1.16 :

e Simulate power law for > 10% s and £ 5 ¢

bootstrap original data for x < 10%s S0t
1075
In 80 % of the cases p =0 T

10735 a

S _ 10710105 1 10° 109 108 109 10% 109
rejection of the power-law hypothesis t (s)

when it iIs true!

So, the recipe leads to the usual

(p should be uniformly distributed between 0 and 1 under the null hypothesis)



5. Fitting and goodness-of-fit testing of power-law distributions

10°

1

107°

.
P,

— 10~

b .
= 10~

10—25

10730 F

1035
T B

10719 1072

1

' B T T T T T T BT T S T B T T T A R R R .:
10° 1019 1015 1029 10%° 10

t(s)

= Failure of the Clauset’s et al. recipe

142



Alternatlve rEClpe Peters et al. J Stat Mech 2010; Deluca & A.C. Acta Geophys 2013

e  Take an arbitrary value of a (= minimum z for which the power law holds)
Calculate fit by ML estimation = yields exponent ~
Calculate KS distance d between empirical distribution and fit
(no difference with Clauset et al. yet)

e  Calculate a p—value for fixed a
« Simulate Ng;,, power-law synthetic samples with ~ for = > a
Proceed with synthetic samples in exactly the same way as with the empirical

= Each synthetic sample yields a value of dg;,

Calculate p as
number of d;,, > d

Nsim

p

e Select the smallest value of a provided that p > 0.20 (e.g.)
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We obtain aepmp =3 X 107 s (~ 1 yr) and Yemp — 1.09 (with p > 0.20)
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e Comparison between Clauset et al.’s solution (red) (power-law rejected) and
alternative (green) (for the (complementary) cumulative distribution)

0.1 ¢

+ > 2985s +

0.001 E ]

F X f.}jﬁ.ﬁ--l[:‘l'_ﬁ . | | .
1 10° 1010 10 1020 0% 1™

t(s)
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e Global earthquakes revisited: power law cannot be rejected

/_\10_16 A ) S Bl R ) BN ) L ) B
— -, CMT catalog, 1977 - 2010, depth < 70 km  +

|
= 10-18 + N power-law fit, exponent 1.68 —— _

| i
Z 10—20 -

N———"

—_ —_
- (-
| |
[\] [\
H~ [\
I I

—_
(-
|
[\&)
(@)
|

probability density

T T T T T NS T T T
seismic moment (Nm)

But other fits are possible! = LRT, or AIC, or BIC... Main et al. Nature Geosci 2008



(Upper) Truncated power laws

e Deviations from a power law arise for large x, due to finite size effects. So,

B _ (v — a1
D(x) e with a <z <b and B 1~ (a/b)—

Be careful: b is not b—value. Mhe log-likelihood is now

G v —1
l(y)=InB—-~vInG —vlng—lna—l—lnl_(a/bw_l

with G the geometric mean of data between a and b.
The log-likelihood needs to be maximized numerically

But the rest of the method is the same, swapping both a and b
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Tropical cyclones

e (hurricanes, typhoons)

—— TROFECAL &TOR
e CATEEORY
— LATEEORT

CRATEBORY
CATEEORY
. . CATEEDRY 5
http://cimss.ssec.wisc.edu S

- . o
MOMTRGE OF KATREINA GOES-12-IMNFRARED ULl-CTIMSS

Energy -~ / / Cpplv(r, t)|>d*rdt Bister & Emanuel, Met Atm Phys 1998
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e Typhoons in the North Western Pacific (only the largest ones)

100° 120° 140° 160° 180° -160° -140°
60°
»
20 f
20° > 20°
—
Oo L®, ‘ ¢ ‘ Oo

100° 120° 140° 160° 180° -160° -140°
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e Tropical cyclones (hurricanes, typhoons),

107Y ¢

D(PDI) (m™3s?)

A.C., Ossé, Llebot, Nature Phys 2010

J—— Northwestern Pacific 1986f2007
- —— x 1/PDI
N T |

10°

i
PDI (m?s™?)

' '1'011
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e Rainfall Peters et al. Stat Mech 2010
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Discrete power laws A. C., A. Deluca, & R. Ferrer-i-Cancho, ArXiv 2012

e The probability function is given by

B
f(n)=— with x=a,a+1,..., andy>1 and B
)= (v a)

where ((, a) is the Hurwitz theta function ({(, 1) is the Riemann function)

The log-likelihood is
l(y) = —In¢(y,a) —yInG

which is more difficult to maximize
Care with the cumulative distribution function (for the KS test)

The simulation of the discrete distribution is more involving also
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