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1. Collective Properties of Earthquakes 17

Fractals in physics: critical points of phase transitions

• Magnetic material: atom = spin with 2 states
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Fig. 2.29 Real-space renormalisation of the Ising model on a two-dimensional square
lattice. The panels are windows of size ` = 80 inside larger lattices. The three panels
in the top row correspond to lattices in zero external field with reduced temperatures
t < 0, t = 0, t > 0 from left to right. In each of the three columns, the renormalisa-
tion transformation Rb is carried out twice from top to bottom, revealing large scale
behaviour. Coarsening is achieved by employing the majority rule with b = 3.

The real-space renormalisation reduces all lengths, including the corre-

lation length, by a factor b. If the system is not at the critical point, the

correlation length is finite and becomes shorter with each application of the

renormalisation transformation. The reduction in the correlation length is

associated with a flow away from the critical point. In terms of the reduced

T < Tc T = Tc T > Tc
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El modelo de bloques y muelles para una falla fue un hito en la sismoloǵıa (1967)
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Therefore, the size distribution (without binary trees!)

P{S = s}=Cs−1q
s−1ps ∼ 1

4
√
πq

(4pq)s

s3/2
for s→∞

so we again obtain a critical exponent = 3/2

• Cs also counts number of (non-binary) trees with s edges
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Therefore, the size distribution (without binary trees!)

P{S = s}=Cs−1q
s−1ps

• The Catalan numbers also count number of (non-binary) trees with s− 1 edges

1.6 Binary Trees

The Catalan numbers also count the number of rooted binary trees withn internal nodes. Illustrated
in Figure 4 are the trees corresponding to0 ≤ n ≤ 3. There are1, 1, 2, and5 of them. Try to draw
the14 trees withn = 4 internal nodes.

A rooted binary tree is an arrangement of points (nodes) and lines connecting them where there
is a special node (the root) and as you descend from the root, there are either two lines going down
or zero. Internal nodes are the ones that connect to two nodesbelow.
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Figure 4: Binary Trees

1.7 Plane Rooted Trees

A plane rooted tree is just like the binary tree above, exceptthat a node can have any number of
sub-nodes; not just two.

Figure 5 shows a list of the plane rooted trees withn edges, for0 ≤ n ≤ 3. Try to draw the14
trees withn = 4 edges.
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Figure 5: Plane Rooted Trees

1.8 Skew Polyominos

A polyomino is a set of squares connected by their edges. A skew polyomino is a polyomino such
that every vertical and horizontal line hits a connected setof squares and such that the successive
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MODEL AND THEORETICAL SEISMICITY 345  

In  the quiet interval between shocks, the only variable tha t  changes is x0, the coor- 
dinate of the point of contact of the thread and the first spring. If the rate of motion 
of the thread due to the driving motor is constant, then x0 is proportional to time. 
The potential energy is expressed above as an operation upon the coordinates of 
the system and not upon the time; by using x0 instead of real time as the abscissa, 
the potential energy can be plotted as a function of the time for a hypothetical sys- 
tern in which the strain rate applied to the system from the motor is assumed to be 
constant. This fact al]ows us to stop the system immediately after each shock, to 
note the coordinates of all masses. In this way the coordinates of all the masses 
immediately prior to the next shock are also known, since all masses are stationary 
in the interval between shocks. On the other hand the coordinate x0 is effectively 
constant during the shock. 

III. MODEL RESULTS 

We report here observations on two sequences of experiments that have been 
made. In the first of these, all the spring constants are equal. In the second experi- 
ment all of the spring constants are graduated; the spring with smallest constant is 

ROUGH 

////I///////////I///////////////////~]V 
FIG. 3. Schematic diagram of the laboratory model. 

closest to the driving motor. In the latter case the spring constants are adjusted by 
cutting the springs to appropriate lengths so that  each spring constant is propor- 
tional to the sum of all of the masses between the spring and the free end. In the 
experiment all the masses are 142 grams. All the springs are cut from coil spring 
stock with constant (force per unit strain) of 2.0 X 105 dynes. In the first experi- 
ment all the springs were three centimeters in length; in the second they varied from 
1.5 centimeters to 12 centimeters in length. Several hundred shocks of varying sizes 
were usually observed in the space of an hour with a motor drive of about 2 centime- 
ters per minute, for the type of friction used. 

In  Figure 4 we show the charging cycle for the system. We have plotted potential 
energy as a function of time in the equivalent constant strain-rate system. The initial 
conditions for this experiment were those for which the springs were more or less 
unstretched. Hence we see a rather long initial charging cycle in which potential 
energy is loaded into the system through a succession of a large number of small 
shocks. After a considerable length of time, measured in units of x0, shocks of in- 
termediate size occur interspersed with small shocks. Finally beginning at x0 = 120 
cm and thereafter, large shocks occur in which all eight masses move. I t  is interesting 
to note that  the mean slope of the curves between the large shocks are more or less 
the same. This means that  the rate of putt ing energy into the mass-spring system 
between large shocks is more or less uniform. This rate is, of course, less than the 
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1. The size of earthquakes (and other natural hazards)

2. Properties of power-law distributions

• Scale invariance. Divergence of moments

3. Models for criticality

• Galton-Watson model
• Extinction probability
• Size distribution

4. Self-organization towards criticality

• Self-organized branching process
• Manna model, Bak-Tang-Wiesenfeld sandpile model
• Spring-block earthquake models

5. Fitting and goodness-of-fit testing of power-law distributions
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seismo.berkeley.edu

Only fools and charlatans predict earthquakes.
C. F. Richter

Gutenberg-Richter Law (1941)

• Most important law of statistical seismology
and a paradigm of complex-systems geophysics

For each earthquake with magnitude m≥ 4
there are about

? 0.1 with m≥ 5
? 0.01 with m≥ 6, etc... Gutenberg & Richter, BSSA 1944

Number of earthquakes with magnitude ≥m

N(m)∝ 10−bm, with b' 1

Good news! ⇒ Many small earthquakes, few big ones
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• Example: worldwide earthquakes (one-year average)
Conclusions 5165The physics of earthquakes 1473
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Figure 23. Magnitude–frequency relationship for earthquakes in the world for the period 1904 to
1980. N(M) is the number of earthquakes per year with the magnitude �M . The solid line shows
a slope of −1 on the semilog plot which corresponds to a b-value of 1. Note that, on the average,
approximately one earthquake with M � 8 occurs every year. The data sources are as follows:
M � 8, for the period 1904 to 1980 from Kanamori (1983); M = 5.5, 6.0, 6.5, 7.0 and 7.5, for
the period from 1976 to 2000 from Ekstrom (2000); M = 4 and 5, for the period January 1995 to
January 2000 from the catalogue of the Council of National Seismic System. For this range, the
catalogue may not be complete, and N may be slightly underestimated.

At present, the accuracy of the macroscopic source parameters, especially ER and 	σs,
is not good enough to accurately estimate the fracture parameters Gc, Kc and Dc, and to draw
more definitive conclusions on the rupture dynamics of earthquakes. Currently, extensive
efforts are being made to improve the accuracy of determinations of the macroscopic source
parameters.

5. Earthquakes as a complex system

Another possible approach to understanding why earthquakes happen is to take a broad
view beyond a single event. We can study earthquakes by dealing with large groups of
earthquakes statistically. The goal is to find systems that robustly reproduce the general
patterns of seismicity regardless of the details of the rupture microphysics. This approach has
had considerable success characterizing the types of models that will reproduce the observed
magnitude–frequency relationship (i.e. Gutenberg–Richter relation) used in seismology.

The magnitude–frequency relationship (the Gutenberg–Richter relation). In general small
earthquakes are more frequent than large earthquakes. This is quantitatively stated by the
Gutenberg–Richter relation (Gutenberg and Richter (1941), a recent review is found in Utsu
(2002).) It describes the number of earthquakes expected of each size, or magnitude, in a given
area. In any area much larger than the rupture area of the largest earthquake considered, the
number of earthquakes, N(M), which have a magnitude greater than or equal to M is given
by the relation

log N(M) = a − bM, (5.1)

where a and b are constants. Figure 23 shows that the Gutenberg–Richter relationship
even applies to a seismicity catalogue encompassing the entire planet. Approximately
one earthquake with M � 8 occurs every year somewhere in the Earth.

magnitude m
Kanamori & Brodsky, Rep Prog Phys 2004

N(m)∝ 10−bm⇒ logN(m) = constant− bm
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Exponential Distribution of Earthquake Magnitudes

• Complementary cumulative distribution (survivor) function

Sm(m) =P{magnitude ≥ m} ⇒ Sm(m)∝N(m)∝ 10−bm

• Probability density

Dm(m) =
P{m ≤ magnitude < m+ dm}

dm
= − dSm(m)

dm

verifies
∫∞

0
Dm(m)dm= 1 and usually has units! ⇒ It is not a probability

Gutenberg-Richter law ⇒ Dm(m)∝ 10−bm

Sm(m) and Dm(m) are “the same” only for the exponential distribution

A statistician would stop here, wouldn’t she?
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Which is the Meaning of the Gutenberg-Richter Law?

• It depends (of course) on the meaning of magnitude...
But magnitude is not a proper physical variable (it has no units)!

Moreover: magnitudes reflect radiation only from subportions of the
rupture, and they saturate above certain size, rather than giving a physical
characterization of the entire earthquake source Ben-Zion, Rev Geophys 2008

• Radiated energy is supposed to be an exponential function of magnitude

E∝ 103m/2

(with proportionality factor around 60 kJ)

An increase of 1 unit in m leads to a factor
√

103' 32 in E

⇒ An earthquake with m= 9 is “equivalent” to 1000 of m= 7
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• Then, the Gutenberg-Richter law, in terms of E∝ 103m/2:

Sm(m)∝ 10−bm ⇒ SE(E)∝ 1

E2b/3
' 1

E0.7

Do you know how to perform the change of variables for the density?

Dm(m)∝ 10−bm ⇒ DE(E)∝ 1

Eβ

with

β= 1 +
2b

3
' 1.7

⇒ Earthquake energy is power-law distributed Wadati 1932, see Utsu, PAGEOPH 1999

⇒ Power-law fit cannot be rejected Main et al. Nature Geosci. 2008
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• Shallow worldwide earthquakes (seismic moment ∼ energy):
Conclusions 50
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D(E)∝ 1/Eβ ⇒ lnD(E) = constant− β lnE

after Kagan

Geophys J Int 2002

Tectonophys 2010
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• Compare world with Southern California

S. California (estimation)

world, depth ≤ 70 km

seismic moment (Nm)

p
ro
b
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ty

d
en
si
ty

(N
−
1
m

−
1
)

102210201018101610141012

10−12

10−14

10−16

10−18

10−20

10−22

10−24

10−26

Valid up to m' − 4 in very small regions Kwiatek et al., Bull Seis Soc Am 2010



1. The Size of Earthquakes 10

• Even valid for fractures in the lab Baró et al., Phys Rev Lett 2013

BET/BJH analysis). After cutting and sanding, cleaning of these samples was

done with a 30% solution of H2O2 for 24 h. Drying was done under vacuum at

400K for another 24 h. The porosity was determined via weighing (accuracy

0.0001 g) samples and measuring dimensions (accuracy 1 mm). The bulk modulus of
the sample was 8.1GPa and the shear modulus was 6.7GPa as determined

by RUS [31,44].
Samples were placed between two aluminium plates as shown in Figure 1. The

lower plate is attached to the load cell hanging from the ceiling. The compression
force is applied by supplying water at a constant rate to a container hanging from the

upper plate, that can move vertically through three Teflon-covered holes that act as

guides. By this method we can reach a good control of the stress rate applied to the

sample.
The average shrinkage of the sample was estimated by measuring the separation

between the two plates using a capacitive strain-gauge. A piezoelectric AE transducer

(micro-80) was attached to the upper plate. The electric signals from the transducer

were pre-amplified (60 dB) and input in a PCI2 acquisition system from Europhysical

acoustic working at 1MSPS. The setup allows for a direct measurement of the
energies of the AE events, which are obtained by performing a fast integration of the

square voltage of signals detected above a given threshold (26 dB). A more detailed

description of this AE setup can be found in [23,27]. The AE activity (counts/MPa)

was computed as the number of AE events recorded in an interval of 20 s divided by
the stress rate.

3. Results and discussion

An example showing the sample shrinkage and the corresponding AE activity during
a compression test is depicted in Figure 2.

Figure 1. Photograph and schematic representation of the compression arrangement.

556 E.K.H. Salje et al.
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⇒ Enormous range of validity of the Gutenberg-Richter law

• This law is amazing! How can the dynamics of all the elements of a system
as complicated as the crust of the earth, with mountains, valleys, lakes, and
geological structures of enormous diversity, conspire, as by magic, to produce
a law with such extreme simplicity?

P. Bak, 1996
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• Other examples of power-law distributions in natural hazards

Rockfalls, Malamud, Phys World 2004

p h y s i c s w e b . o r gP H Y S I C S W O R L D A U G U S T 2 0 0 4 35

that combine the clustering (i.e. the persistence, or memory)
of the events with the statistical distribution of their sizes, be it
heavy tailed or not.

There are certainly no easy answers to the question of
which distribution to use to estimate the risks posed by na-
ture’s hazards. But power laws do allow us to make conserva-
tive and realistic estimates of these risks. Furthermore, since
power laws are the only statistical distributions that are com-
pletely scale invariant, they offer a unique way to explore the
possibility of an underlying universality in nature.

Further reading
R J Adler et al. (ed) 1998 A Practical Guide to Heavy Tails: Statistical

Techniques and Applications (Basel, Birkhäuser)

S Hergarten 2004 Aspects of risk assessment in power-law distributed natural

hazards Natural Hazards and Earth System Sciences 4 309–313

B D Malamud et al. 2004 Landslide inventories and their statistical properties

Earth Surface Processes and Landforms 29 687–711

M Mitzenmacher 2004 A brief history of generative models for power law and

log normal distributions Internet Mathematics 1 226–251

J B Rundle et al. 2003 Statistical physics approach to understanding the

multiscale dynamics of earthquake fault systems Reviews of Geophysics 41
1019 10.1029/2003RG000135

D Sornette 2004 Critical Phenomena in Natural Sciences: Chaos, Fractals,

Self-organization, and Disorder: Concepts and Tools 2nd edn (Berlin, Springer)

D Stauffer 2004 Earthquakes power up Physics World June p23

D L Turcotte 1997 Fractals and Chaos in Geology and Geophysics 2nd edn

(Cambridge University Press)

D L Turcotte et al. 2002 Self-organization, the cascade model, and natural

hazards Proc. Natl Acad. Sci. USA 99 2530–2537

Bruce D Malamud is in the Environmental Monitoring and Modelling Research

Group at King’s College London, and is currently a visiting scientist at the

Oxford Centre for Applied and Industrial Mathematics, Mathematical Institute,

University of Oxford, UK, e-mail bruce@malamud.com

4 Examples of power-law distributions
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Power laws have been found to describe the frequency–size distributions of
many natural hazards. (a) Wildfires in the Mediterranean eco-region of the US.
Frequency densities, f, (i.e. the number of fires per unit area “bin” per year per
eco-region area) are plotted as a function of the area of the wildfire, AF. Fitting
the data with a power law gives excellent agreement with f = 1.0 × 10–5 AF

–1.3

(i.e. a straight line on logarithmic axes) for wildfire areas between about 0.01
to 1000 km2. (b) Rockfalls also follow such power-law behaviour. Here the
number of rockfalls per unit volume bin is plotted as a function of their
volume, VR, for two different datasets: an earthquake-triggered rockslide
event in Umbria, Italy, in 1997 (purple) and historical data from Yosemite
between 1980 and 2002 (green). Despite taking place under very different
conditions, the datasets follow a power law of the form 2.34VR

–1.07

remarkably well for rock volumes between 0.001 to 1000 000 m3.
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Forest fires, Malamud et al. Science 1998; PNAS 2005

�lightning and find (�anthropogenic��lightning) � 1 in the eastern third
of the U.S. (35% by area), where �anthropogenic��lightning � 1.30
(Hot Continental), 1.21 (Warm Continental), 1.14 (Hot Conti-
nental Mtns.), and 1.12 (Subtropical). Most other areas have
(�anthropogenic��lightning) � 1 (within �2� error bars, as described
in Table 1 legend), except for the Temperate Steppe division,
where (�anthropogenic��lightning) � 0.88. At Bailey’s ecoregion
‘‘domain’’ level (38), where divisions with related climates are
grouped, we find that ecoregion divisions with (�anthropogenic�
�lightning) � 1 generally fall into the Humid Temperate domain.

Wildfire Statistics as a Function of Decade. In each ecoregion we also
examine the wildfire data by decade (1970–1979, 1980–1989, and
1990–1999), both by different ignition source and for all fires
irrespective of ignition source. We find similar results for � and
log� as for the entire 31-yr period (Table 1). However, there is
a small (statistically nonsignificant) decrease of 3–12% in �
values from the decades 1970s to 1990s for all ecoregions except
Warm Continental Mtns., Marine, and Prairie (each of which
have scant data).

Wildfire Recurrence Intervals. For each ecoregion we use Eq. 5 to
calculate recurrence intervals T(�0.01 km2) and T(�10 km2).
This probabilistic hazard analysis gives us the average time
between events with burned areas greater than or equal to 0.01
and 10 km2, respectively, occurring in a defined spatial ‘‘area’’
within each ecoregion. For comparison between ecoregions, we
will consider relatively small spatial areas of size 1,000 km2.

To examine the strength of temporal correlation in wildfire
areas (also see ref. 24), we examined the time lags between
successive wildfire areas for specific ecoregion divisions, taking
different lower cutoff bounds for the wildfire areas used. We find
that the wildfire events exhibit short-term but not long-term
memory; the smallest wildfire areas are correlated in time, but
the medium and large ones are approximately uncorrelated (i.e.,
Poissonian). For medium and large events, this allows us to
calculate recurrence intervals based on the results of the fre-
quency–area wildfire statistics found earlier in Table 1.

Using Eq. 5, the recurrence intervals T(�AF) for each ecore-
gion division are given in Table 1, including �2� error bars as
calculated from the error bars on � and log�. Because of the
small amount of data used to fit the medium�upper tail of the
distribution in Eq. 1, the �2� error bars on T(�AF) are large,
averaging 30–60% of the actual recurrence interval value.
Despite this, there are clear differences between ecoregions. For
example, the Mediterranean Ecoregion has T(�10 km2) � 2 �
1 yr. In other words, for any 1,000-km2 ‘‘area’’ in this ecoregion,
we ‘‘expect’’ on average one wildfire with burned area AF � 10
km2 every 1–3 yr (33–100% probability of occurring in any year).
By contrast (Table 1), the Warm Continental Ecoregion has
T(�10 km2) � 203 � 99 yr; the occurrence probability for a
wildfire with AF � 10 km2 has dropped significantly to 0.3–1.0%
in any given year, a factor of �100 between the two ecoregion
divisions. A spatial mapping for T(�10 km2) is given in Fig. 3B.
For both the eastern and western thirds of the U.S., there is a
gradient from large to small recurrence intervals (i.e., lower to
higher hazard) going from north to south, with the largest
recurrence intervals of wildfires (lowest hazard) in the northeast
U.S. Our method for calculating wildfire-recurrence intervals
gives a simple and quick way of determining approximate
quantitative hazard assessments of given size wildfires (or larger)
occurring across the conterminous U.S.

Discussion
Spatial Distribution of �. The east-to-west gradient in � values
(Fig. 3A) observed at Bailey’s ecoregion division level suggests
that the ratio of the number of large to small wildfires decreases
from east to west across the conterminous U.S. Controls on the
wildfire regime (e.g., climate and fuels) vary temporally, spa-
tially, and at different scales (3), so it is difficult to attribute
specific causes to this east-to-west gradient. For example, the
observed reduced contribution of large wildfires to total burned
area (i.e., � large) in eastern ecoregion divisions may be due to
greater human population densities that increase forest frag-
mentation compared with western ecoregions (40). Alterna-
tively, the observed gradient may have natural drivers, with

Fig. 2. Normalized frequency–area wildfire statistics for Subtropical (A) and Mediterranean (B) ecoregions (1970–2000; data from ref. 37). Shown (circles) are
normalized frequency densities ḟ(AF) (number of wildfires per ‘‘unit bin’’ of 1 km2, normalized by database length in years and USFS area within the ecoregion)
plotted as a function of wildfire area AF. Also shown for both ecoregions is a solid line, the best least-squares fit to log[ḟ(AF)] � �� log[AF] � log�, with coefficient
of determination r2. Dashed lines represent lower�upper 95% confidence intervals, calculated from the standard error. Horizontal error bars on burned area
AF are due to measurement and size binning of individual wildfires (AF from 1–5 acres has primary peaks in wildfire occurrence at integer values; 5–30 acres, every
5 acres; 30–100 acres, every 10 acres; etc.). Therefore, for AF � 0.0040–0.010 km2 (1.0–2.5 acres), we use 0.5-acre horizontal error bars of �0.0020 km2, and for
AF � 0.010 km2, horizontal error bars of �0.2AF. Vertical error bars represent two standard deviations (�2�) of the normalized frequency densities ḟ(AF),
calculated as �2��NF (normalized by database length in years and USFS area within the ecoregion), where �NF is the number of wildfires in a ‘‘bin’’ of width
�AF. The �2� error bars are approximately the same as the lower and upper 95% confidence interval (�1.96�). Table 1 summarizes the results for all ecoregion
divisions.

Malamud et al. PNAS � March 29, 2005 � vol. 102 � no. 13 � 4697
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• Volcanic eruptions, Lahaie & Grasso, J Geophys Res 1998

Area covered by lava (106 m2)

Auroras, Uritsky et al. J Geophys Res 2002

Freeman & Watkins, Science 2002
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of magnitude). The probability distribu-
tions of bright spot lifetime, maximum
dissipated power, and dissipated energy
also followed power laws.

From these [and other (5–7)] observa-
tions, a picture has emerged of dynamical-
ly evolving “avalanches” of bright aurora
with fractal structure in time and space.
But why does nature paint such a picture?
What is the answer in the auroral context
to Kadanoff’s famous question: “Fractals:
Where’s the physics?” (10). 

Bak et al. (11) proposed that scale in-
variance in nature might be a result of self-
organized criticality (SOC)—the tendency
of slowly driven, interaction-dominated,
thresholded systems to self-organize to a
critical state, independent of the initial con-
ditions. Here, the critical state is a statisti-
cally steady but nonequilibrium state in
which the accumulating energy from the
driver is released spasmodically in
“avalanches” with a self-similar size distri-
bution. This state arises from long-range
correlations established through short-range
interactions in a system with many degrees
of freedom (12). SOC was first identified in
computer experiments mimicking a slowly
growing pile of sand and was experimental-
ly established in a pile of rice (13).

The SOC paradigm has been applied to

many natural systems, from earthquakes,
measles, and forest fires to astrophysical ac-
cretion disks (14). Contemporary with the
experimental work of Takalo et al., several
theorists recognized that criticality may of-
fer an explanation for self-affine auroral
structure (5, 6). But why should the aurora
behave like a sand pile (6)?

The aurora can be likened to a giant
natural television screen. Charged particles
from a natural electron gun in space are
guided by Earth’s magnetic field toward
the polar atmosphere, where they collide
with other particles and give off light.
Thus, the aurora is a projection of the dy-
namic charged particle structure of the
near-Earth space that is magnetically con-
nected to Earth (a region known as the
magnetosphere).

The collective dynamics of charged parti-
cles in a magnetic field is described by the
equations of magnetohydrodynamics
(MHD). Recently it has been shown that the
MHD equations can be mapped onto dis-
crete SOC equations (15). The scale-free
structure of the aurora is then argued to
come from a scale-free structure of a SOC
magnetosphere. Indeed, satellite measure-
ments in the magnetosphere have begun to
show preliminary evidence of SOC in that
fast flows of charged particles correlated

with auroral emissions have a
scale-free distribution of dura-
tions like that of SOC (16).

However, the scale-free
structure of the aurora may
not come from scale-free
structure in the magneto-
sphere. Instead, it may arise
from a similar scale-free

structure in the turbulent solar wind that
drives the magnetosphere (7). Studies us-
ing long (but non-overlapping) solar wind
and auroral time series show the same stat-
ic fractal properties, but comparisons us-
ing shorter but overlapping series could in-
dicate that this may be coincidental rather
than causal (17). Work continues on this
issue, which is an example of a generic
problem of complex systems coupled to
complex drivers. 

Another question, emphasized by Con-
solini and Chang (5), is how well the as-
sumptions of the SOC model are met in
the magnetosphere. In the original SOC
models, scale-free behavior only emerged
when the driving rate was very slow com-
pared to the interaction time scales. How-
ever, another kind of nonequilibrium sys-
tem exists in which the scale-free behavior
only appears when the driving rate be-
comes sufficiently fast (18) (an example of
forced criticality).

The debate between a driven and an in-
ternal origin for intermittent scale-free dy-
namics is not at all unique to the magneto-
sphere. It parallels a debate in theories of
punctuated evolution between the influ-
ence of “external” events (such as asteroid
impact) on extinctions and self-organized
“internal” extinctions (19). Thus, complex-
ity is providing a new approach to address-
ing long-standing space science problems,
while in return space science is beginning
to play an active role in addressing funda-
mental topical issues in complexity.
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• Tsunamis, Burroughs & Tebbens, PAGEOPH 2005
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Tsunamis, Burroughs & Tebbens, PAGEOPH 2005

Criterion 2. At Miyako and Tosa-Shimizu there are large infrequent events in the

historical record that can be compared to the scaling relationship extrapolated from

the more complete recent record. For Miyako, all recorded tsunami runup heights

are shown in Figure 5a. The record for events smaller than one meter is more

complete after 1957. We therefore examine the scaling relationship for the interval

from 1958 through 1996. We find the cumulative frequency-size distribution for
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Figure 5

(a) Tsunami runup heights reported for Miyako, Japan. Events in the solid box (1958–1996) are analyzed

in Figure 5b. (b) Cumulative frequency-size distribution for runup heights greater than 0.1 m that occurred

from 1958 through 1996. The cumulative distribution is well described by a power law (equation 1). Based

on an extrapolation of the observed scaling relationship, an event greater than or equal to 4 m is expected

every 63 years and an event greater than or equal to 7 m is expected every 101 years (heavy solid lines).

The historical record of 141 years contains three events greater than or equal to 4 m and one event of 7 m,

consistent with these results.
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(a) Tsunami runup heights reported for Tosa-Shimizu, Japan. With one exception in 1707, all reported

events occurred after 1930. Events in the solid box (1931–1995) are analyzed in Figure 6b. (b) The

cumulative frequency-size distribution for runup heights greater than 0.1 m from 1931 through 1995. The

cumulative distribution is well described by a power law (equation 1). If this power law is extrapolated to

larger events, an event greater than or equal to 20 m is expected every 229 years (heavy solid lines). One

20 m event is observed in the nearly 300 year record, consistent with the extrapolated power law.
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• Rainfall: flow of water in one point along duration of rain
2. Natural hazards as Self-Organized Critical Phenomena 32
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A Complexity View of Rainfall

Ole Peters,1 Christopher Hertlein,1,2 and Kim Christensen1,*
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We show that rain events are analogous to a variety of nonequilibrium relaxation processes in Nature
such as earthquakes and avalanches. Analysis of high-resolution rain data reveals that power laws de-
scribe the number of rain events versus size and number of droughts versus duration. In addition, the
accumulated water column displays scale-less fluctuations. These statistical properties are the finger-
prints of a self-organized critical process and may serve as a benchmark for models of precipitation and
atmospheric processes.

DOI: 10.1103/PhysRevLett.88.018701 PACS numbers: 89.75.Da, 05.65. +b, 92.40.Ea

Rainfall and rainfall-related quantities have been
recorded for centuries [1,2]. All these measurements,
however, have the disadvantage of low temporal resolution
and low sensitivity. The rain measurements are based on
the simple idea of collecting rain in a container and mea-
suring the amount of water after a certain time. The time
intervals between readings are typically hours or days.
Even with the most sophisticated of these conventional
methods, the fine details of rain events cannot be captured
at all and very light rain might not be recorded due to
evaporation or insufficient sensitivity of the instrument,
making it impossible to address questions regarding single
rain events.

Recently, high-resolution data have been collected with
a compact vertically pointing Doppler radar MRR-2, de-
veloped by METEK [3]. The instrument is operated by
the Max-Planck-Institute for Meteorology, Hamburg, Ger-
many, at the Baltic coast Zingst �54±430N 12±670E� un-
der the Precipitation and Evaporation Project (PEP) in
BALTEX [4]. Rain rate, liquid water content, and drop size
distribution were obtained from the radar Doppler spec-
tra, based on a method described by Atlas [5–7]. At ver-
tical incidence, the Doppler shift can be identified with
the droplet fall velocity. As, in the atmosphere, larger
drops fall faster than smaller drops, spectral bins can be
attributed to corresponding drop sizes. For a given size,
the scattering cross section of the droplets can be calcu-
lated by Mie theory [8]. This yields the number density
of drops which is proportional to the spectral power di-
vided by the corresponding cross section. The rain rate
q�t� �

P
i niViyi, where ni is the number density of drops

of volume Vi falling with velocity yi . The detection thresh-
old for rain rates under the pertinent operation parameters
was qmin � 0.005 mm�h. Below this threshold, q�t� � 0
by definition.

Precipitation profiles up to some thousand meters alti-
tude can be observed. At present, the quantitative retrieval
is restricted to rain. Snow and hail can be identified from
the form of the Doppler spectra but have been excluded
from the quantitative analysis. The analyzed data refer to

250 m above sea level and have been collected from Janu-
ary to July 1999 with 1-min resolution.

The processes that make a cloud release its water content
are only very little understood. However, with the high
temporal resolution of 1 min, single rain events can be
identified and characterized. Previous work focused on the
rainfall during a fixed period of time [9–11]. What makes
the present analysis fundamentally new is the identification
of a rain event as the basic entity. We define an event as
a sequence of successive nonzero-rain rates. Sequences of
zero-rain rates in between rain events are called drought
periods. The event size is defined as the released water
column in mm, M �

P
t q�t�Dt, where Dt � 1 min, that

is, the time integral of the rain rate over an event. In Fig. 1,
the number density of rain events per year N�M� versus
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FIG. 1. The number density of rain events per year N�M�
versus event size M (open circles) on a double logarithmic scale.
A rain event is defined as a sequence of consecutive nonzero-rain
rates (averaged over 1 min). This implies that a rain event ter-
minates when it stops raining for a period of at least 1 min. The
size M of a rain event is the water column (volume per area)
released. Over at least 3 decades, the data are consistent with a
power law N�M� ~ M21.36, shown as a solid line.

018701-1 0031-9007�02�88(1)�018701(4)$15.00 © 2001 The American Physical Society 018701-1

Peters et al. Phys Rev Lett 2002; J Stat Mech 2010



1. The Size of Earthquakes 16

• Biological extinctions:

Extinction measured as the percentage of
extinct families in fixed periods of time
(4 millions years)
Sepkoski, Raup; after Bak 1996

2. Natural hazards as Self-Organized Critical Phenomena 37
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Scaling laws never happen by accident

G. I. Barenblatt, 2003

Is there anything special about power-law distributions?

Scale transformation

• Consider a function D(x). Let us perform a linear transformation of the axes

>[D(x)] = cyD(x/cx)

with ci> 0, for i=x, y. If ci > 1 then > acts as a mathematical microscope

• For example:
looking at D(x) at the scale of m, cx= cy = 100 show D(x) at the scale of cm
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• Visual example: >[D(x)] = cyD(x/cx) with cx= 10 and cy = 2
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• Visual example: >[D(x)] = cyD(x/cx) with cx= 10 and cy = 2
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Scale invariance

• Mathematicians are allowed to ask themselves “silly” questions:

Invariance under a scale transformation?

>[D(x)] = cyD(x/cx) =D(x)

Solution?

• The only solution of D(x) = cyD(x/cx) for all cx is the power law

D(x)∝ 1

xβ
with β= − ln cy

ln cx
i.e., cy =

1

cβx

Direct substitution confirms that it is a solution indeed
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• Example: D(x)∝√x (i.e., β= − 1/2). If cx= 10 ⇒ cy =
√

10 53

34 Álvaro Corral and Francesc Font-Clos

It is trivial to check that a solution is given by the power-law function

D(E) ∝
1

Eα (91)

with α given by

α =− lnc2

lnc1
, (92)

in other words, a power law with exponent α does not change under a scale trans-
formation if the scale factors are related through

c2 =
1

cα
1

(93)

Figure 12 shows how indeed this is the case, with c1 = 10, c2 =
√

10, and D(E) =√
E. Note that the constant of proportionality in equation (91), contained in the

symbol ∝, does not play any role here.
More importantly, it can also be demonstrated that not only the power law is

a solution, but it is the only solution valid for all values of c1 (positive real) if c1
and c2 are related by equation (93) (Takayasu, 1989; Newman, 2005; Christensen
and Moloney, 2005; Corral, 2008). In summary, the condition of scale invariance
demands that

D(E) = c2D(E/c1) for all c1 positive real, (94)

and then, the only solution is the power law. One can verify that other solutions, as
D(E) = sin(lnE), only work for special values of c1 and c2.
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Fig. 12: A scale transformation acting on its corresponding scale-invariant function.
The function is expanded by factors c1 = 10 and c2 =

√
10, in such a way that the

small box at the left is the full figure at the right. The function is D(E) =
√

E.

Scale invariance is in fact the symmetry associated to scale transformations, in an
analogous way as rotational invariance is the symmetry corresponding to rotations.
If scale invariance is fulfilled, no characteristic scale can be defined for the variable
E, in the same way as if there is rotational invariance in a system, this system cannot

Difference between β < 0 (increasing power law) and β > 0 (decreasing)

? if β < 0 and cx> 1 then cy = 1/cβx> 1
? if β > 0 and cx> 1 then cy = 1/cβx< 1
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• Demonstration Takayasu, Fractals 1989; A.C. in Carpinteri & Lacidogna 2008

Differentiate both sides of D(x) = cyD(x/cx) with respect x and isolate cy

D′(x)

D′(x/cx)/cx
= cy =

D(x)

D(x/cx)

so, separating variables x and x/cx and multiplying by x

xD′(x/cx)

cxD(x/cx)
=
xD′(x)

D(x)

which has to be valid for all cx, so, it only can be a constant (+, −, or 0),

xD′(x)

D(x)
= constant = − β ⇒ D(x)∝ 1

xβ
for x> 0
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Meaning of scale invariance?

• Power-law distributions do not have a characteristic scale

One can define the time unit (or a clock) from the law of radioactive decay
(which is an exponential, not a power law)

But one cannot define a unit of distance from the law of gravitation
(which is a power law)

In the same way that one cannot built a compass from a sphere
(which has rotational symmetry)

• So, earthquake energies have no characteristic scale

⇒ It is not possible to answer this simple question:

“How big are earthquakes in this region?”
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Implications for extreme events

• We have already seen that the GR law for earthquakes implies that:

large earthquakes do not play a special role,
they follow the same law as small earthquakes

⇒ general theory encompassing all earthquakes, large and small P. Bak, 1996

• But scale invariance goes beyond this fact:

there is no unarbitrary way to separate ordinary events from extreme events

(at least attending the statistics of event sizes)
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Discrete scale invariance

• We can consider the constant β as a complex number, β→ β − ωi

⇒ 1

xβ
→ x
−β+ωi

= x
−β

e
iω ln x

and substitute in cyD(x/cx) =D(x)

Then, if cx is real, then cy = 1/c
β−iω
x = c

−β
x eiω ln cx is complex (in general)

Imposing that cy is positive real
cx= exp(2πn/ω) with n= 0,±1,±2 . . .

Thus, scale invariance does not hold for all cx but for discrete values

In this case, the real part and the imaginary part are also scale invariant

Re[x
−β+ωi

] =
1

xβ
cos(ω ln x) or Im[x

−β+ωi
] =

1

xβ
sin(ω ln x)
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Scale invariance for multivariate functions Christensen & Moloney 2005

• Consider D(x, y) and a scale transformation >[D(x, y)] = czD(x/cx, y/cy)

The scale-invariance condition D(x, y) = czD(x/cx, y/cy) has a unique solution

D(x, y) = x
−β

F (y/x
α

) for all cx > 0

which is called a scaling law, with

cy = c
α
x and cz =

1

c
β
x

and the scaling function? F () is arbitrary

• Equivalent expressions: D(x, y) = x−βF2(x/y1/α) = y−β/αF3(x/y1/α), etc.

• We will distinguish scaling laws from power laws
For univariate functions both are the same, with F = constant
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Mean earthquake energy...?

E[E] = 〈E〉=
∫ ∞
min

ED(E)dE∝
∫ ∞
min

dE

Eβ−1
=∞

... is infinite! (because 1 < β ≤ 2)

• Higher-order moment are also infinite.

• Which is the problem? Is mathematical?

This process has a mean waiting time between events which is infinite:

ti+1 = ti + (1− ui)1/(β−1) with ui uniform random in [0, 1)

Is physical then? The Earth contains a finite amount of energy!

• What does 〈E〉=∞ mean in practice?
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• Consider the average up to the N−th event, Ē= (E1 + E2 + · · ·+ EN)/N

A. Corral (CRM, Barcelona) Criticality and Self-organization in Models of Earthquake Occurrence July 2013 2 / 2The rare big events are crucial for energy dissipation ⇒ Bad news!!!
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Discrete analog: the St. Petersburg paradox N. Bernoulli 1713 & D. Bernoulli 1738

• Consider a game of chance in which a player tosses a (fair) coin
until a tail appears for the 1st time. Each toss doubles the payoff

Outcome Probability Payoff
tail p1 = 1/2 1 $
heads,tail p2 = 1/4 2 $
heads,heads,tail p3 = 1/8 4 $
...

heads ... heads,tail pk= 1/2k 2k−1 $ for k tosses, in general

• You are a casino: which would be the fair price to pay to enter the game?

〈payoff〉=
∞∑
k=1

pk × payoff(k) =
∞∑
k=1

1

2k
× 2

k−1
$ =

1

2
× 1$ +

1

4
× 2$ + . . . =∞

• Note that the duration k of the game is geometrically (exponentially) distributed

pk=
1

2k
= e
−k ln 2

= 10
−k log 2 ⇒ 〈K〉=

∞∑
k=1

pkk=
1

1/2
= 2

so, the duration of the game is analogous to magnitude, with b= log 2 6= 1
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• But the payoff = 2k−1∝ 10k log 2 = 10ck is analogous to energy, with c= log 2

• Then, the payoff follows a (sort of) discrete power-law distribution with

β= 1 +
b

c
= 1 +

log 2

log 2
= 2

This is in the “boundary” of having a finite mean
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Laplace transform

• Consider Dx(x) defined for x≥ 0, then

D̃x(z) =

∫ ∞
0

e
−zx

Dx(x)dx= 〈e−zX〉

if Dx(x) is a probability density, normalization implies D̃x(z = 0) = 1

• Assuming that D̃x(z) exists and that all moments 〈Xn〉 are finite,

and using e−zx=
∑∞
n=0(−1)nznxn/n!

D̃x(z) = 1− 〈X〉z +
1

2
〈X2〉z2 − . . . =

∞∑
n=0

(−1)
n 〈Xn〉zn

n!

so, the Laplace transform of Dx(x) is a sort of moment generating function
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Sum and rescaling of independent random variables skip!

• Define S=X + Y , then Fs(s) =P{sum < s}=P{Y < s−X}⇒

Fs(s) =

∫ s
0
dx

∫ s−x
0

dyDx(x)Dy(y) =

∫ s
0
dxDx(x)Fy(s− x)

Differentiating with the Leibniz rule, Ds(s) = dFs(s)/ds=

=

∫ s
0
dxDx(x)

dFy(s− x)

ds
+ Dx(x)Fy(s− x)

∣∣∣∣
x=s

=

∫ s
0
dxDx(x)Dy(s− x)

Calculating the Laplace transform, with θ(x) the step function,

D̃s(z) =

∫ ∞
0

ds e
−zs

Ds(s) =

∫ ∞
0

ds e
−zs

∫ ∞
−∞

dxDx(x)θ(x)Dy(s− x)θ(s− x)

⇒ D̃s(z) =

∫ ∞
0

dy e
−zy

Dy(y)

∫ ∞
0

dx e
−zx

Dx(x) = D̃x(z)D̃y(z) using s− x= y

The sum is a convolution of Dx and Dy, which turns a product of D̃x and D̃y
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Sum and rescaling of independent random variables

• Define S=X + Y , then, the Laplace transform of the distribution of S

D̃s(z) = 〈e−zS〉=
∫ ∞

0
ds e
−zs

Ds(s) =

∫ ∞
0

∫ ∞
0

dxdyDx(x)Dy(y) e
−z(x+y)

where we have used independence [Dx,y(x, y) =Dx(x)Dy(y)], then

D̃s(z) =

∫ ∞
0

dxDx(x)e
−zx

∫ ∞
0

dyDy(y)e
−zy

= D̃x(x)D̃y(y)

So, the Laplace transform of the sum is the product of D̃x(z) and D̃y(z)

It is not necessary to know that Ds(s) is the convolution of Dx(x) and Dy(y)
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• In general, if S=X1 +X2 + · · ·+XN , then

D̃s(z) = [D̃x(z)]
N

when all Xi are independent and identically distributed
• Rescaling by a constant, R=S/C

D̃r(z) =

∫ ∞
0

drDr(r)e
−zr

=

∫ ∞
0

dsDs(s)e
−z(s/C)

= D̃s(z/C)

• Defining the rescaled mean, or “non-conserved” average

R=
X1 +X2 + · · ·+XN

N1/α
⇒ D̃r(z) = [D̃x(z/N

1/α
)]
N

• Introducing a cumulant generating function

Gx(z) = ln D̃x(z) ⇒ Gr(z) =NGx(z/N
1/α

)

Sum of X’s turns into product of m.g.f. and into a sum of cumulant g.f.
(if independence holds)

Note: g.f. = generating function, m.g.f. = moment g.f.



2. Properties of Power-Law Distributions 35

• If the moments are finite (and the generating function exists)

D̃x(z) = 1− 〈X〉z +
1

2
〈X2〉z2 − . . .

Considering ln(1− y) = − y − y2/2− y3/3− . . . , with −1 ≤ y < 1, then,
the cumulant generating function

Gx(z) = ln D̃x(z) = ln

[
1−

(
〈X〉z − 1

2
〈X2〉z2 + . . .

)]
=

−
(
〈X〉z − 1

2
〈X2〉z2 + . . .

)
− 1

2
(〈X〉z − . . . )2 + . . . = − 〈X〉z +

〈X2〉 − 〈X〉2
2

z
2 − . . .

From the coefficients we can obtain the cumulants: 〈X〉, σ2, etc.
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Distributions stable under “averaging”

• Again a “silly” question: let us look at the fixed points of this transformation

G
∗
(z) =NG

∗
(z/N

1/α
)

This is the scale invariance condition, whose only solution for all N is

G
∗
(z)∝ zα

• In the case of the arithmetic mean, α= 1, then D∗x(x) = δ(x− µ), indeed

D̃
∗
x(z) =

∫ ∞
0

dx e
−zx

δ(x− µ) = e
−µz ⇒ G

∗
x(z) = lnD

∗
x(z) = − µz

where δ(x− µ) is a Dirac delta “function”, which has mean µ and zero variance
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Domain of attraction of the Dirac delta distribution

• Considering the expansion of Gx(z) into cumulants (if they exist and are finite)

Gx(z) = − 〈X〉z +
σ2

2
z
2 − . . .

Applying the scale transformation we get the distribution of the mean

Gx̄(z) =Gr(z) =NGx(z/N) =N

[
−〈X〉 z

N
+
σ2

2

(
z

N

)2
− . . .

]
→ − 〈X〉z

The distribution of the mean tends to a delta centered at 〈X〉 when N→∞
So, the fixed point is attractive if Gx(z) exists and all moments are finite

We will see that the domain of attraction is even bigger
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• This constitutes a version of the law of large numbers (weak version) Feller 1971

It is somehow analogous to the central limit theorem also

Note that the Gaussian (normal) distribution also tends to a delta
(because we do not have zero mean)

If we had subtracted the mean the “central limit” would have been Gaussian



2. Properties of Power-Law Distributions 39

Stability and domain of attraction for “non-conserved” averaging

• Coming back to the general rescaled mean, G∗(z) ∝ zα, consider α= 1/2

G
∗
x(z) = − 2a

√
z ⇒ D

∗
x(x) = e

−a2/x a
√
π x3/2

Abramowitz & Stegun, 29.3.82; Bouchaud & Georges, Phys Rep 1990

As (x1 + x2 + · · ·+ xN )/N2 converges, the mean diverges linearly with N

• Do it yourself! Simulate N random values of X. How?

? Consider the transformation X = 1/Y 2

? Y follows a half-normal (half-Gaussian) distribution
? Use standard algorithm (like Box-Muller transformation) to simulate Y

• Alternative: simulate a power-law with exponent 3/2 ⇒ What happens?
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• Power-law distributions belong to the domain of attraction of G∗(z)∝ zα

Consider Dx(x) =B/x1+ρ for x≥ c> 0 (and 0 otherwise), then B= ρcρ and

D̃x(z) =B

∫ ∞
c

e
−zx

x
−ρ−1

dx=Bz
ρ
Γ(−ρ, cz)

with Γ(γ, z) =
∫∞
z uγ−1e−udu the incomplete gamma function, with expansion

Γ(γ, z) = Γ(γ)− zγ
∞∑
n=0

(−z)n
(γ + n)n!

γ 6= 0,−1,−2,−3 . . . Abramowitz & Stegun 6.5.29

with Γ(γ) = Γ(γ, 0) for γ > 0 and Γ(γ) = Γ(γ + 1)/γ for γ < 0 (non-integer)

⇒ z
ρ
Γ(−ρ, z) = z

ρ
Γ(−ρ)−

∞∑
n=0

(−z)n
(n− ρ)n!

=
1

ρ

[
ρΓ(−ρ)zρ +

(
1 +

ρz

1− ρ + . . .

)]

ρ 6= 0, 1, 2, . . . We are interested in Gx(z) = ln D̃x(z) = lnBzρΓ(−ρ, cz), so

ln z
ρ
Γ(−ρ, z) = − ln ρ+ ln [ ] = − ln ρ+ ρΓ(−ρ)zρ +

ρz

1− ρ + . . .
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⇒Gx(z) = ln
B

cρ
+ ln c

ρ
z
ρ
Γ(−ρ, cz) = ρΓ(−ρ)cρzρ +

ρcz

1− ρ + . . .

using again the expansion of the logarithm. Applying the transformation

Gr(z) =NGx(z/N
1/α

) =N

[
ρΓ(−ρ)cρ

(
z

N1/α

)ρ
+

ρc

1− ρ

(
z

N1/α

)
+ . . .

]

If 0<ρ< 1 and α= ρ then Gr(z)→ ρΓ(−ρ)cρzρ

If ρ> 1 and α= 1 then Gr(z) =Gx̄(z)→ − ρc
ρ−1z

where the coefficient is the mean of the power-law distribution in this case
(in any other case Gr(z)→ 0 or∞)
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• The domain of attraction includes distributions that are asymptotically power laws

Dx(x)∼ B

x1+ρ
for x→∞

with B 6= ρcρ. If ρ is not a positive integer

D̃x(z)∼BΓ(−ρ)zρ +
∞∑
n=0

an(−z)n
n!

Bleistein & Handelsman 4.6.23
which is, except for the multiplying constants, the same as before (with a0 = 1)

So, again, there are 2 cases:

If 0<ρ< 1 and α= ρ then Gr(z)→BΓ(−ρ)zρ

If ρ> 1 and α= 1 then Gr(z) =Gx̄(z)→ a1z

• Reciprocally, Gx(z)∝ zρ corresponds to a distribution that is asymptotically power law if 0<ρ< 1
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Summary

• Assuming independence:

If the moments of Dx(x) are finite and its generating function exist or

If Dx(x) is asymptotically a power law with exponent β= 1 + ρ> 2

⇒ the arithmetic mean x̄ follows a Dirac’s delta distribution

x̄=
1

N

N∑
i=1

xi ∼ δ(x̄− 〈x〉) when N→∞

⇒ Law of large numbers Feller 1971

⇒ Makes sense of the arithmetic mean!
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• Assuming independence:
If Dx(x) is asymptotically a power law with exponent β= 1 + ρ< 2 (but > 1)

x̄

N1/ρ−1
=

1

N1/ρ

N∑
i=1

xi follows a power-law tailed distribution

with exponent 1 + ρ, when N→∞

⇒ The arithmetic mean diverges as N1/ρ−1 (as 1/ρ− 1> 0)

⇒ Case of the generalized central limit theorem Bouchaud & Georges, Phys Rep 1990

• Therefore, the sum of earthquake energies “converges”, if rescaled by

N1/ρ=N1/(β−1) =N3/(2b)

Standard (conserved) averaging leads to divergence of Ē as N3/(2b)−1'
√
N
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• Concrete example, case β= 1 + ρ= 3/2

Dx(x)∼ A

x3/2
for “large” x

The “correct” average to get convergence is

x̄

N1/ρ−1
=

1

N1/ρ

N∑
i=1

xi=
1

N2

N∑
i=1

xi= y

Then, for N→∞, the “non-conserved” average y follows

Dy(y) = e−a
2/y a√

π y3/2

with a= −AΓ(−1/2)/2 =
√
πA
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What Should One Expect from a Theory of a Complex Phenomenon?

P. Bak, How Nature Works, 1996

• A theory must be abstract

? A theory of life does not need to predict elephants
(if your theory predicts elephants it is not general enough)

? Explain why there is variability, or what typical patterns may emerge
? If ... we concentrate on an accurate description of the details,

we lose perspective

• A theory must be statistical

? Collecting anecdotal evidence can only be an intermediate goal.
? Anecdotal evidence carries weight only if enough of it can be gathered to

form a statistical statement.
? Confrontation between theories and ... observations... takes place by

comparing the statistical features of general patterns.
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• The abstractness and the statistical, probabilistic nature of any such theory
might appear revolting to geophysicists, biologists, and economists, expecting
to aim for photographic characterization of real phenomena.

• Perhaps too much emphasis has been put on detailed prediction ...
in today’s materialistic world.

• To predict the statistics of actual phenomena rather than the specific outcome
is a quite legitimate and ordinary way of confronting theory with observations.
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I cannot imagine a theory of earthquakes that does not explain the GR law

Per Bak, 1996
Domino-like theory: Otsuka’s model (1971)

• Earthquake rupture = cascade process of topplings, but: 14

M. A. Francisco

(1) No domino effect: one toppling does not lead to another one and so on
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(2) Pieces are not in a row, rather, in a network or tree, and disordered

⇒ When one piece topples, what happens next is random

appadvice.com Otsuka, Zisin 1971

Seismic fault =
patches that may fail and trigger other patches to fail with some probability
and so on Kanamori & Mori, in Boschi et al. 2000
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Besides gambling, many probabilists have been interested in reproduction

G. Grimmett and D. Stirzaker, 2001

Galton-Watson (Branching) Process (1873) Harris 1963

• Definition
Start with 1 “element” (parent) which
generates K = 0, 1, . . . elements (offsprings)
with some probability p0, p1, . . . and so on...

K’s are independent identically distributed
Wikipedia www.wolframalpha.com

Galton was not interested in earthquakes
Rather, he was worried by the extinction of prominent families:
a rise in physical comfort and intellectual capacity is necessarily accompanied
by diminution in “fertility”... If that conclusion be true, our population
is chiefly maintained though the “proletariat,” and thus a large element
of degradation is inseparably connected with those elements which tend to
ameliorate the race
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Extinction

• Nt= total number of elements in generation t (with N0 = 1)

Extinction ⇒ Nt= 0 at some t
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• Extinction = extinction in t = 1 or in t = 2 or . . . ∈ limt→∞{Nt = 0}

⇒Pextinction= lim
t→∞

P{Nt = 0}

• Probability generating function of a discrete random variable X

fX(z) = 〈zX〉=
∞∑
x=0

P{X = x}zx=P{X = 0}+ P{X = 1}z + . . .

⇒ fX(0) =P{X = 0}
This is valid for any random variable, also for Nt, so,

⇒ Pextinction= lim
t→∞

fNt(0)

which is easier to calculate
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• Main equation

Nt+1 =

Nt∑
i=1

Ki(t)

• If Nt were a constant
fNt+1(z) = [fK(z)]Nt

Proof:

fNt+1(z) = 〈zNt+1〉= 〈z
∑
iKi〉= 〈zK1 · · · zKNt〉= 〈zK1〉 · · · 〈zKNt〉= [fK(z)]Nt,

assuming independence.
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• Let us repeat, Nt+1 =
∑Nt
i=1Ki(t). If Nt is constant, fNt+1(z) = [fK(z)]Nt

• But Nt is random, so

fNt+1(z) = f t+1
K (z)

with f t+1
K (z) = fK(fK(. . . fK(z) . . . )) = composition t+ 1 times

Proof:

fNt+1(z) = 〈zNt+1〉=
〈
〈zNt+1〉Ki

〉
Nt

= 〈[fK(z)]Nt〉Nt = fNt(fK(z)).

As fN1(z) = fK(z), then

⇒ fN2(z) = fN1(fK(z)) = fK(fK(z))≡ f2
K(z)

and the result follows by induction
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• In conclusion

Pextinction= lim
t→∞

P{Nt = 0}= lim
t→∞

fNt(0) = lim
t→∞

f tK(0)
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• Let us calculate fNt
(z). Note that N1 =K⇒ fN1

(z) = fK(z). Also

N2 =

N1∑
i=1

Ki, and, in general Nt+1 =

Nt∑
i=1

Ki

If M =
∑N
i=1Ki, with N constant, then

fM (z) = 〈zM 〉= 〈z
∑
i Ki〉= 〈zK1 · · · zKN 〉= 〈zK1〉 · · · 〈zKN 〉= [fK(z)]

N
,

assuming independence between the Ki’s.

But if N is random, with fN (z) = 〈zN 〉, then

fM (z) = 〈zM 〉=
〈
〈zM 〉Ki

〉
N

= 〈[fK(z)]
N 〉N = fN (fK(z)).

⇒ fN2
(z) = fN1

(fK(z)) = fK(fK(z))≡ f2
K(z)
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In the same way

Nt+1 =

Nt∑
i=1

Ki

As fM (z) = fN (fK(z)), then, fN3
(z) = fN2

(fK(z)) = f2
K(fK(z))≡ f3

K(z)

In general, by induction

fNt
(z) = fNt−1

(fK(z))≡ ftK(z) (t− times composition)

Therefore
Pextinction= lim

t→∞P{Nt = 0}= lim
t→∞ fNt

(0) = lim
t→∞ f

t
K(0)
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Expected size of population at t

• Property of fX(z) =
∑∞
x=0 pxz

x ⇒ f ′X(1) = 〈X〉
Valid for any generating function, so, in the same way

f
′
Nt

(1) = 〈Nt〉
• Therefore, 〈Nt〉=

dfNt
(z)

dz

∣∣∣∣∣
z=1

=
dftK(z)

dz

∣∣∣∣∣
z=1

=
dfK(ft−1

K
(z))

dz

∣∣∣∣∣∣
z=1

= f
′
K(f

t−1
K (z))

dft−1
K

(z)

dz

∣∣∣∣∣∣
z=1

by the chain rule, and by induction

〈Nt〉= f
′
K(f

t−1
K (z))f

′
K(f

t−2
K (z)) · · · f ′K(f

2
K(z))f

′
K(fK(z)) f

′
K(z)

∣∣∣
z=1

using fK(1) = 1⇒ f2
K(1) = 1, etc., and f ′K(1) = 〈K〉 then 〈Nt〉= 〈K〉t



3. Critical Models 59

Extinction probability as a function of K

• Properties of fK(z) in [0, 1]

? fK(0) = p0

? fK(1) =
? f ′K(1) =
? f ′K(z)
? f ′′K(z)
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Extinction probability as a function of K

• Properties of fK(z)

? fK(0) = p0

? fK(1) = 1
? f ′K(1) = 〈K〉
? f ′K(z)≥ 0
? f ′′K(z)≥ 0

Valid for all probability

generating functions

2. Critical Models 25
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〈K〉≤ 1⇒Pextinction= lim
t→∞

f t(0) = 1, i.e., extinction for sure

〈K〉> 1⇒Pextinction= lim
t→∞

f t(0) = z∗< 1, i.e., non-sure extinction

Except for the “monarchic” case p1 = 1, which has 〈K〉= 1 but Pextinction= 0
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Phase transition in branching processes

• The fixed point condition for the probability of non-extinction ρ= 1−Pextinction,

Pextinction= 1− ρ= fK(Pextinction) = fK(1− ρ) =

∞∑
k=0

pk(1− ρ)k

(because P{A}+ P{noA}= 1). Expanding using the binomial theorem

1− ρ=

∞∑
k=0

pk

[
1− kρ+

1

2
k(k − 1)ρ2 − . . .

]
=

=

∞∑
k=0

pk −
( ∞∑
k=0

pkk

)
ρ+

1

2

( ∞∑
k=0

pkk(k − 1)

)
ρ2 + . . . =

= 1− 〈K〉ρ+
1

2
〈K(K − 1)〉ρ2 + . . .
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• For small ρ (large Pextinction), introducing φ= 〈K(K − 1)〉 (2nd factorial
moment)

1

2
φρ2 − (〈K〉 − 1)ρ' 0

which has 2 solutions,

ρ= 0 and ρ' 2
〈K〉 − 1

φ

We need to consider the solution closer to (but smaller than) 1, so

ρ= 0 for 〈K〉≤ 1 and ρ' 2
〈K〉 − 1

σ2
c

for 〈K〉≥ 1

where we have used φ=σ2 + 〈K〉(〈K〉 − 1), if ρ' 0 then 〈K〉' 1 and φ'σ2
c

• The transition is continuous, but sharp ⇒ 2nd order phase transition

The case 〈K〉= 1 is critical, as it separates two very different behaviors
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Universality: close to the critical point
3. Critical Models 49
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Continuous (or second order) phase transition

• Let m be a control parameter (〈K〉 in branching or temperature, etc.)

Let ρ be an order parameter (non-extinction probability, magnetization, etc.)

Then

ρ∝
{

0 for m below mc= critical point
(m−mc)

β for m above but close to mc

• Abrupt change in the derivative

The derivative is discontinuous if β≤ 1

• For a branching process,
mc= 1 and β= 1

2. Critical Models 49
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• For a magnetic system, m is the inverse of the temperature, ρ is magnetization

⇒ mc is the inverse of Curie temperature and β= 1/3

Magnetization dissappears sharply Heller & Benedek

Cube of
magnet-
ization
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Example: binomial number of offsprings

• Each element has only a fixed number of trials n to generate other elements

pk=P{K = k}=

(
n
k

)
p
k
q
n−k

, for k= 0, 1, . . . n.

with p the probability of being successful in each trial, and q= 1− p
• The probability generating function

fK(z) =
n∑
k=0

(
n
k

)
q
n−k

p
k
z
k

= (q + pz)
n
.

using the binomial theorem. We will consider n= 2

• Pextinction will come from the smallest solution in [0, 1] of

z
∗

= (q + pz
∗
)
2⇒ z

∗
=

1− 2pq ±
√

(1− 2pq)2 − 4p2q2

2p2

but for the square root we can write
√

1− 4p(1− p) =
√

(1− 2p)2 = (1− 2p)

⇒ z=
1− 2p+ 2p2 ± (1− 2p)

2p2
=

{
(1− 2p+ p2)/p2 = (q/p)2

p2/p2 = 1
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The smallest root depends on whether p is below or above 1/2

Pextinction=

{
1 for p≤ 1/2

(q/p)2 for p≥ 1/2

As 〈K〉=np= 2p the critical case 〈K〉= 1 corresponds to p= pc= 1/2
(in agreement with the behavior of Pextinction)
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• In terms of the non-extinction probability ρ= 1− Pextinction

ρ= 0 for p≤ 1/2

ρ= 1−
(
q

p

)2
=

2p− 1

p2
= 4
〈K〉 − 1

〈K〉2
for p≥ 1

2

using 〈K〉= 2p

• Expanding around 〈K〉 − 1' 0

ρ' 4(〈K〉 − 1)' 2
〈K〉 − 1

σ2
c

for p≥ 1

2

with σ2 = 2pq and σ2
c = 1/2

Then, p= pc= 1/2 or 〈K〉= 1
is the critical point

2. Critical Models 49
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Total size of the population

• The size of the population, summing across generations is

S=

∞∑
t=0

Nt,

? total number of individuals that have ever existed, or
? total number of domino pieces toppling,
? “size” of an earthquake, etc...

• Its mean value, for 〈K〉< 1, using the geometric series, and 〈Nt〉= 〈K〉t (new!)

〈S〉= 〈N0〉+ 〈N1〉+ 〈N2〉+ . . . = 1 + 〈K〉+ 〈K〉2 + . . . =
1

1− 〈K〉

Note that when 〈K〉→ 1, the probability of extinction is 1, but 〈S〉→∞ (!)
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Total size of the population: binomial case

• Each element has only a fixed number of trials n to generate other elements

pk =P{K = k}=

(
n
k

)
pkqn−k, for k= 0, 1, . . . n.

with p the probability of being successful in each trial, and q= 1− p

• Remember 〈K〉=np, so the critical point is at pc= 1/n

• Representation of a branching process as a tree (connected graph with no loops).

? Each element is associated to a node
? Branches linking nodes indicate an offspring relationship between two nodes
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• Representation of a branching process as a tree (connected graph with no loops).

? Each element is associated to a node
? Branches linking nodes indicate an offspring relationship between two nodes

• All nodes have just one incoming branch, except the one in the zero generation

? the number of branches is the number of nodes minus 1, i.e., s− 1
? the number of possible branches arising from s nodes is ns (in a n-tree)
? the number of missing branches (non-successful trials) is ns− (s− 1)

A particular tree of size s comes with a probability

ps−1(1− p)(n−1)s+1 with s= 1, 2, . . .
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• For n= 2, the probability of having an undefined tree of size s= 1, 2 . . .
comes from the Catalan numbers! ...

P{S = s}=Csp
s−1(1− p)s+1 =

=
1

s+ 1

(
2s
s

)
ps−1(1− p)s+1

with Cs= 1
s+1

(
2s
s

)
the number

of different trees of size s,
called Catalan numbers

The trees are the internal part
of rooted binary trees

Can you draw them?

2. Critical Models 5138 Álvaro Corral and Francesc Font-Clos

and so on this simple formula generates all Catalan numbers. The curious reader

C1 = 1

C2 = 2

C3 = 5

C4 = 14

Fig. 13: The number of rooted trees with no more than two branches per node is
shown, up to size s = 4. The number of such trees of a given size is given by Cs, the
s-th Catalan number.

can check Figure 13, where all possible rooted trees with no more than two branches
per node, of size up to 4, are shown.

If we want a closed expression for these numbers, we may define a generating
function

h(x) =C0 +C1x+C2x2 + · · ·=
∞

∑
s=0

Csxs. (106)

One can obtain an expression for h(x) just using the properties of the Catalan num-
bers (Wilf, 1994). First, let us calculate
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Calculation of the Catalan numbers

• Let us decompose a tree of size s into its root (zeroth generation) and the rest

This can be done as

? A subtree of size s− 1 in the 1st branch and another of size 0 in the 2nd
? A subtree of size s− 2 in the 1st branch and another of size 1 in the 2nd
? ...
? A subtree of size 0 in the 1st branch and another of size s− 1 in the 2nd

So, the total number of trees of size s is

Cs=C0Cs−1 + C1Cs−2 + · · ·+ Cs−2C1 + Cs−1C0 with C0 = 1

• We define a generating function for the Catalan numbers

h(x) =C0 + C1x+ C2x
2

+ . . . =
∞∑
s=0

Csx
s

The properties of the Catalan numbers will allow the calculation of h(x)

[h(x)]
2

=
∞∑

i,j=0

CiCjx
i+j

=
∞∑
s=0

 ∑
i+j=s

CiCj


︸ ︷︷ ︸

Cs+1

x
s

=
1

x

∞∑
s=0

Cs+1x
s+1

=
h(x)− C0

x
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so

h(x) =
1±√1− 4x

2x

but this tell us nothing yet. Using the Taylor expansion of
√

1− x

√
1− x= 1− x

2
− 1

4

(
x2

2!

)
− 3

8

(
x3

3!

)
− . . . = 1− x

2
−
∞∑
s=1

(2s− 1)!!

2s+1(s+ 1)!
x
s+1

then
√

1− 4x= 1− 2x−
∞∑
s=1

(2s− 1)!!2s+1

(s+ 1)!
x
s+1

and so, taking the minus sign (otherwise h(x) is not a g.f.)

h(x) =
1−√1− 4x

2x
= 1 +

1

2x

∞∑
s=1

(2s− 1)!!2s+1

(s+ 1)!
x
s+1

= 1 +
∞∑
s=1

(2s− 1)!!2s

(s+ 1)!
x
s

then the Catalan numbers are, and using (2s)! = (2s)!!(2s− 1)!! = s!2s(2s− 1)!!

Cs=
(2s− 1)!!2s

(s+ 1)!
=

(2s)!

s!(s+ 1)!
=

1

s+ 1

(
2s
s

)

the latter being valid for s= 0, 1, 2 . . .
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Coming back to the Taylor expansion of
√

1− 4x

√
1− 4x= 1− 2x

∞∑
s=0

Csx
s
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Parenthesis: many uses of the Catalan numbers Davis, geometer 2010

• Number of balanced configurations with n pairs of parenthesis

3. Critical Models 63

• Number of different pairs of balanced parenthesis

Catalan Numbers
Tom Davis

tomrdavis@earthlink.net
http://www.geometer.org/mathcircles

November 24, 2010

We begin with a set of problems that will be shown to be completely equivalent. The solution to
each problem is the same sequence of numbers called the Catalan numbers. Later in the document
we will derive relationships and explicit formulas for the Catalan numbers in many different ways.

1 Problems

1.1 Balanced Parentheses

Suppose you haven pairs of parentheses and you would like to form valid groupings of them, where
“valid” means that each open parenthesis has a matching closed parenthesis. For example, “(()())”
is valid, but “())()(” is not. How many groupings are there for each value ofn?

Perhaps a more precise definition of the problem would be this: A string of parentheses is valid
if there are an equal number of open and closed parentheses and if you begin at the left as you move
to the right, add1 each time you pass an open and subtract1 each time you pass a closed parenthesis,
then the sum is always non-negative.

Table 1 shows the possible groupings for0 ≤ n ≤ 5.

n = 0: * 1 way
n = 1: () 1 way
n = 2: ()(), (()) 2 ways
n = 3: ()()(), ()(()), (())(), (()()), ((())) 5 ways
n = 4: ()()()(), ()()(()), ()(())(), ()(()()), ()((())), 14 ways

(())()(), (())(()), (()())(), ((()))(), (()()()),

(()(())), ((())()), ((()())), (((())))

n = 5: ()()()()(), ()()()(()), ()()(())(), ()()(()()), ()()((())), 42 ways
()(())()(), ()(())(()), ()(()())(), ()((()))(), ()(()()()),

()(()(())), ()((())()), ()((()())), ()(((()))), (())()()(),

(())()(()), (())(())(), (())(()()), (())((())), (()())()(),

(()())(()), ((()))()(), ((()))(()), (()()())(), (()(()))(),

((())())(), ((()()))(), (((())))(), (()()()()), (()()(())),

(()(())()), (()(()())), (()((()))), ((())()()), ((())(())),

((()())()), (((()))()), ((()()())), ((()(()))), (((())())),

(((()()))), ((((()))))

Table 1: Balanced Parentheses

* It is useful and reasonable to define the count forn = 0 to be1, since there is exactly one way
of arranging zero parentheses: don’t write anything. It will become clear later that this is exactly the
right interpretation.

1

• Number of mountains profiles with n upstrokes and n downstrokes

3. Critical Models 65

• Number of mountains profiles with n upstrokes and n downstrokes

1.2 Mountain Ranges

How many “mountain ranges” can you form withn upstrokes andn downstrokes that all stay above
the original line? If, as in the case above, we consider thereto be a single mountain range with zero
strokes, Table 2 gives a list of the possibilities for0 ≤ n ≤ 3:

n = 0: * 1 way
n = 1: /\ 1 way
n = 2: /\ 2 ways

/\/\, / \

n = 3: /\ 5 ways
/\ /\ /\/\ / \

/\/\/\, /\/ \, / \/\, / \, / \

Table 2: Mountain Ranges

Note that these must match the parenthesis-groupings above. The “(” corresponds to “/” and
the “) to “\”. The mountain ranges forn = 4 andn = 5 have been omitted to save space, but there
are14 and42 of them, respectively. It is a good exercise to draw the14 versions withn = 4.

In our formal definition of a valid set of parentheses, we stated that if you add one for open
parentheses and subtract one for closed parentheses that the sum would always remain non-negative.
The mountain range interpretation is that the mountains will never go below the horizon.

1.3 Diagonal-Avoiding Paths

In a grid ofn×n squares, how many paths are there of length2n that lead from the upper left corner
to the lower right corner that do not touch the diagonal dotted line from upper left to lower right? In
other words, how many paths stay on or above the main diagonal?

/\ /\/\

/ \/ \

Figure 1: Corresponding Path and Range

This is obviously the same question as in the example above, with the mountain ranges running
diagonally. In Figure 1 we can see how one such path corresponds to a mountain range.

Another equivalent statement for this problem is the following. Suppose two candidates for
election,A andB, each receiven votes. The votes are drawn out of the voting urn one after the
other. In how many ways can the votes be drawn such that candidateA is never behind candidate
B?

2

• Number of diagonal-avoiding paths in a n× n lattice
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• Number of paths above (or on) the diagonal in a n× n lattice
3. Critical Models 66

1.2 Mountain Ranges

How many “mountain ranges” can you form withn upstrokes andn downstrokes that all stay above
the original line? If, as in the case above, we consider thereto be a single mountain range with zero
strokes, Table 2 gives a list of the possibilities for0 ≤ n ≤ 3:

n = 0: * 1 way
n = 1: /\ 1 way
n = 2: /\ 2 ways

/\/\, / \

n = 3: /\ 5 ways
/\ /\ /\/\ / \

/\/\/\, /\/ \, / \/\, / \, / \

Table 2: Mountain Ranges

Note that these must match the parenthesis-groupings above. The “(” corresponds to “/” and
the “) to “\”. The mountain ranges forn = 4 andn = 5 have been omitted to save space, but there
are14 and42 of them, respectively. It is a good exercise to draw the14 versions withn = 4.

In our formal definition of a valid set of parentheses, we stated that if you add one for open
parentheses and subtract one for closed parentheses that the sum would always remain non-negative.
The mountain range interpretation is that the mountains will never go below the horizon.

1.3 Diagonal-Avoiding Paths

In a grid ofn×n squares, how many paths are there of length2n that lead from the upper left corner
to the lower right corner that do not touch the diagonal dotted line from upper left to lower right? In
other words, how many paths stay on or above the main diagonal?

/\ /\/\

/ \/ \

Figure 1: Corresponding Path and Range

This is obviously the same question as in the example above, with the mountain ranges running
diagonally. In Figure 1 we can see how one such path corresponds to a mountain range.

Another equivalent statement for this problem is the following. Suppose two candidates for
election,A andB, each receiven votes. The votes are drawn out of the voting urn one after the
other. In how many ways can the votes be drawn such that candidateA is never behind candidate
B?

2

• Number of triangulations of polygons with n+ 2 sides
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1.4 Polygon Triangulation

If you count the number of ways to triangulate a regular polygon withn + 2 sides, you also obtain
the Catalan numbers. Figure 2 illustrates the triangulations for polygons having3, 4, 5 and6 sides.

Figure 2: Polygon Triangulations

As you can see, there are1, 2, 5, and14 ways to do this. The “2-sided polygon” can also be
triangulated in exactly1 way, so the case wheren = 0 also matches.

1.5 Hands Across a Table

If 2n people are seated around a circular table, in how many ways can all of them be simultaneously
shaking hands with another person at the table in such a way that none of the arms cross each other?
Figure 3 illustrates the arrangements for2, 4, 6 and8 people. Again, there are1, 2, 5 and14 ways
to do this.

Figure 3: Hands Across the Table

3

• Number of triangulations of polygons with n+ 2 sides
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• Non-crossing hand-shaking configurations of 2n people in a round table3. Critical Models 57

1.4 Polygon Triangulation

If you count the number of ways to triangulate a regular polygon withn + 2 sides, you also obtain
the Catalan numbers. Figure 2 illustrates the triangulations for polygons having3, 4, 5 and6 sides.

Figure 2: Polygon Triangulations

As you can see, there are1, 2, 5, and14 ways to do this. The “2-sided polygon” can also be
triangulated in exactly1 way, so the case wheren = 0 also matches.

1.5 Hands Across a Table

If 2n people are seated around a circular table, in how many ways can all of them be simultaneously
shaking hands with another person at the table in such a way that none of the arms cross each other?
Figure 3 illustrates the arrangements for2, 4, 6 and8 people. Again, there are1, 2, 5 and14 ways
to do this.

Figure 3: Hands Across the Table

3

• Many more! Stanley Enumerative Combinatorics 1999
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Normalization of the size distribution

• P{S = s} is normalized for p≤ 1/2 but not for p> 1/2

∞∑
s=1

P{S = s}=
q

p

∞∑
s=1

Csp
s
q
s

=
q

p
[h(pq)− 1]

with q= 1− p and introducing h(x) =
∑∞
s=0Csx

s. As h(x) = (1−√1− 4x)/(2x)

h(pq) =
1−√1− 4pq

2pq
=

1−
√

(1− 2p)2

2pq
=

1− |1− 2p|
2pq

=


2p
2pq = 1

q if 1≥ 2p

2(1−p)
2pq = 1

p if 1≤ 2p

Therefore

∞∑
s=1

P{S = s}=
q

p
[h(pq)− 1] =


q
p(1
q − 1) = 1 if p≤ 1/2

q
p(1
p − 1) = (q/p)2 if p≥ 1/2

which turns out into ∞∑
s=1

P{S = s}=Pextinction

But how does P{S = s} look like?

And what this has to do with power laws?
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• Summarizing, the size distribution

P{S = s}=Csp
s−1(1− p)s+1 =

1

s+ 1

(
2s
s

)
ps−1(1− p)s+1

for a branching process with binomial distribution and n= 2

• But what this has to do with power laws??
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Asymptotic total size of the population

• Using Stirling’s approximation, valid for s→∞ Christensen & Moloney 2005; A.C. & Font-Clos 2013

s!∼
√

2πs
(s
e

)s
the binomial coefficient turns out to be(

2s
s

)
=

(2s)!

s!s!
∼ 4πs

2πs

(2s)2s

s2s
∼ 4s√

πs

and the Catalan number, replacing s+ 1∼ s

Cs=
1

s+ 1

(
2s
s

)
∼ 4s√

π s3/2

essentially, an exponential increasing function of s
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• Introducing the factor ps−1qs+1 we get P{S = s}

P{S = s}∼ q√
πp

(4pq)s

s3/2

How does this function looks like for large s?

? If p(1− p)< 1/4⇒ p 6= 1/2⇒ decreasing exponential
? If p(1− p) = 1/4⇒ p= 1/2⇒ exponential dissapears ⇒ power law!

It becomes more transparent writting

(4pq)s= es ln[4p(1−p)] = e−s/ξ(p)

with the characteristic size defined as

ξ(p) =
−1

ln[4p(1− p)] =

(
ln

1

4p(1− p)

)−1
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and then

P (S = s)∼ q√
πp

e−s/ξ(p)

s3/2

Case p 6= 1/2

? For s large but s� ξ(p)⇒ power law with exponent 3/2
? For s large with s� ξ(p)⇒ exponential decay

Case p= 1/2

? Then, ξ→∞ and for large s we obtain a power law

The critical exponent for the size distribution is 3/2
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P
(S

=
s
)

s

p=0.35, exact
p=0.35, asymptotic
p=0.47, exact
p=0.47, asymptotic
p=0.50, exact
p=0.50, asymptotic
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Divergence of the characteristic size

• Another critical exponent arises for the divergence of ξ(p) at the critical point.

Introducing the deviation with respect to the critical point, ∆≡ p−pc= p−1/2

p(1− p) =

(
1

2
+ ∆

)(
1

2
−∆

)
=

1

4
−∆2

So, close to the critical point (for small ∆)

1

4p(1− p) =
1

1− 4∆2
' 1 + 4∆2 + . . .

(using the formula of the geometric series), then

ln
1

4p(1− p)' ln(1 + 4∆2)' 4∆2 + . . .
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(using the Taylor expansion of the logarithm at point 1), therefore

ξ(p) =

(
ln

1

4p(1− p)

)−1

' 1

4∆2
+ . . .

So, ξ(p) diverges at the critical point as a power law, with an exponent = 2

Then, for s large and ∆ small

P (S = s)∼ 1√
π

e−4(p−pc)2s

s3/2
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Expected value of the size

• We already know that for 〈K〉< 1 (i.e., p< 1/2, i.e., ∆< 0)

〈S〉= 〈N0〉+ 〈N1〉+ 〈N2〉+ . . . = 1 + 〈K〉+ 〈K〉2 + . . . =
1

1− 〈K〉= − 1

2∆

substituting 〈K〉= 2p and ∆ = p− 1/2 = deviation with respect criticality

This defines another critical exponent

• As ξ(p)'∆−2/4 close but below pc= 1/2 then

ξ(p)'〈S〉2

So, if the mean increases by 2, the extreme values given by ξ increase by 4
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Total size of the population: general case

• Let g(z) = fS(z) be the generating function of S=
∑∞
t=0Nt. Then

g(z) = zfK(g(z))

with fK(z) the p.g.f. of the number

of offsprings per element

• 1st demonstrated by Hawkins and Ulam
in 1944 for nuclear chain reactions
(as a part of the Manhattan project)

? A neutron may produce a fission reaction
? Each reaction releases neutrons
? Each neutron may trigger more reactions,

and so on.
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• Demonstration Hawkins & Ulam 1944; A.C. & Font-Clos, arXiv 2012

Consider the size from generation 1 to∞ (excluding the 0−th generation)

S
0̃

=S − 1 =
∞∑
t=1

Nt

with qs=P (S
0̃

= s) and a generating function g̃(z) =
∑
∀s qszs

A size s in generations from 1 to∞ can be decomposed into

? a size k in the first generation, with probability pk, and
? a size s− k in the remaining generations (from 2 to∞)

but starting with k elements; this has a probability q
(k)
s−k

(note that qs= q
(1)
s )

Using the law of total probability,

qs=
s∑

k=1

pkq
(k)
s−k,

except for s= 0, where q0 = p0

If we multiply by zs and sum for all s we will obtain the g.f. of S
0̃

g̃(z) = p0 +

∞∑
s=1

s∑
k=1

pkq
(k)
s−kz

s
= p0 +

∞∑
k=1

pk

 ∞∑
s=k

q
(k)
s−kz

s−k
 zk
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The term in [ ] is the g.f. of the size from 1 to∞ generations
but starting with k elements (N1 = k)

As these k parents are independent of each other
⇒ size will be the sum of k independent random variables each with g.f. g̃(z)

This yields [g̃(z)]k as the corresponding generating function,

[g̃(z)]
k

=
∞∑

s−k=0

q
(k)
s−kz

s−k
,

Substituting into the equation above

g̃(z) = p0 +
∞∑
k=1

pk[g̃(z)]
k
z
k

= fK(zg̃(z))

As S= 1 + S
0̃

we need to add an independent variable with g.f. = z

(as N0 takes the value 1 with probability 1) then, the g.f. of the size from generation 0 to∞ is the product zg̃, so

g(z) = zg̃(z) = zfK(zg̃(z)) = zfK(g(z))
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• Binomial case. Substituting fK(z) = (q + pz)2 then

g(z) = zfK(g(z)) = z(q + pg(z))
2 ⇒ g(z) =

1− 2pqz ±√1− 4pqz

2p2z

Using the Taylor expansion for the square root

√
1− 4pqz= 1− 2pqz −

∞∑
s=1

(2s− 1)!!2s+1

(s+ 1)!
(pqz)

s+1

where we do not need to compute the Catalan numbers Cs, so, taking “‘-”

g(z) =
q

p

∞∑
s=1

Cs(pqz)
s

From the coefficients we recover the probability distribution we knew

P{S = s}=Csp
s−1

q
s+1
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• Geometric case. “Success” probability p and q= 1− p and values k= 0, 1, 2 . . .∞

pk=P{K = k}= q
k
p ⇒ fK(z) =

∞∑
k=0

pkz
k

= p
∞∑
k=0

q
k
z
k

=
p

1− qz

using the geometric series. The generating function for the size is

g(z) = zfK(g(z)) =
pz

1− qg(z) ⇒ g(z) =
1−√1− 4pqz

2q
= pz +

∞∑
s=2

Cs−1q
s−1

p
s
z
s

where we have used the following, with Ci the i−th Catalan number

√
1− 4x= 1− 2x−

∞∑
i=1

2Cix
i+1



3. Critical Models 94

Therefore, the size distribution (without binary trees!)

P{S = s}=Cs−1q
s−1

p
s ∼ 1

4
√
πq

(4pq)s

s3/2
for s→∞

so we again obtain a critical exponent = 3/2 (and also the others)

• Cs also counts number of (non-necessarily-binary) trees with s edges
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Therefore, the size distribution (without binary trees!)

P{S = s}=Cs−1q
s−1ps

• The Catalan numbers also count number of (non-binary) trees with s− 1 edges

1.6 Binary Trees

The Catalan numbers also count the number of rooted binary trees withn internal nodes. Illustrated
in Figure 4 are the trees corresponding to0 ≤ n ≤ 3. There are1, 1, 2, and5 of them. Try to draw
the14 trees withn = 4 internal nodes.

A rooted binary tree is an arrangement of points (nodes) and lines connecting them where there
is a special node (the root) and as you descend from the root, there are either two lines going down
or zero. Internal nodes are the ones that connect to two nodesbelow.
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1.7 Plane Rooted Trees

A plane rooted tree is just like the binary tree above, exceptthat a node can have any number of
sub-nodes; not just two.

Figure 5 shows a list of the plane rooted trees withn edges, for0 ≤ n ≤ 3. Try to draw the14
trees withn = 4 edges.
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1.8 Skew Polyominos

A polyomino is a set of squares connected by their edges. A skew polyomino is a polyomino such
that every vertical and horizontal line hits a connected setof squares and such that the successive
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• Normalization of the size distribution in the geometric case

∞∑
s=1

P{S = s}=Cs−1q
s−1

p
s

=

{
1 if q≤ 1/2
p/q if q≥ 1/2

which corresponds to the probability of extinction in the geometric case

Note that 〈K〉= q/p, so pc= qc= 1/2
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• Another offspring distribution

? 0 offsprings with probability q= 1− p
? 2 offsprings with probability p

Then fK(z) = q + pz2. The generating function for the size is

g(z) = zfK(g(z)) = z(q + pg(z)
2
) ⇒ g(z) =

1±
√

1− 4pqz2

2pz
=
∞∑
i=0

Cip
i
q
i+1

z
2i+1

Therefore

P{S = s}=Cs−1
2

p
s−1

2 q
s+1

2 for s= 1, 3, 5 . . .

So, Ci counts the number of rooted binary trees of size s= 2i+ 1

Asymptotically we do not scape from the exponent 3/2

P{S = s}∼
√

2q

πp

(4pq)s/2

s3/2
for s→∞
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Ci counts the number of rooted binary trees of size s= 2i+ 1

3
.
C
ri
ti
ca

l
M
o
d
el
s

9
3

C
i
co
u
n
ts

th
e
n
u
m
b
er

of
ro
ot
ed

b
in
ar
y
tr
ee
s
of

si
ze

s
=
2i

+
1

o
r
ze
ro
.
In
te
rn
al
n
o
d
es
ar
e
th
e
o
n
es
th
at
co
n
n
ec
t
to
tw
o
n
o
d
es
b
el
o
w
.

 

 

 
 

 

 
 

 
 

 

 

 
 

 

 

 
 

 
 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 
  

F
ig
u
re
4
:
B
in
ar
y
T
re
es

 

  

   

 

 
 

    

 

  

 

 

 
  

  

 
 

 

 
 

 

D
av
is
20
10

Davis 2010



3. Critical Models 98

Finite size effects in branching processes Garcia-Millan, Font-Clos & A. C. Phys Rev E 2015

• Let us consider a limitation in the number of generations: t= 0, 1, . . . L
(this plays the role of boundaries)

The probability of extinction, with f(z)≡ fK(z), will be

Pext(L) = fL(0) < P∞= lim
t→∞

f t(0)

• Consider a very large number of generations, n

⇒ fn(0) will be close to f∞(0) =P∞

Let us Taylor expand f(fn(0)) around the fixed point P∞

fn+1(0) = f(fn(0)) =P∞ + f ′(P∞) (fn(0)− P∞) + . . .
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• Taking up to 2nd-order terms and arranging, the inverse of the distance is1

cn+1≡
1

P∞ − fn+1(0)
=
cn
M

+
C

M2

with M = f ′(P∞) and C = f ′′(P∞)/2. Iterating

cn+`=
cn
M `

+
C(1−M `)

M `+1(1−M)

In the subcritical case, P∞= 1, then M = 〈K〉 and 2C =σ2 + 〈K〉(〈K〉− 1), so

cn+`=
cn
〈K〉` +

σ2(1− 〈K〉`)
2〈K〉`+1(1− 〈K〉) −

1− 〈K〉`
2〈K〉`

1do not confuse distance to the fixed point with distance to the critical point
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• Let us introduce a rescaled distance to the critical point y= `(〈K〉 − 1), so

cn+`=
σ2(1− 〈K〉`)

2〈K〉`+1(1− 〈K〉) + . . . = − σ
2
c(1− ey)`

2eyy

with 〈K〉= 1 + y/` and 〈K〉`= ey and with ` large (then 〈K〉 is close to 1)

For L= `+ n�n, we have that the probability of non-extinction will be

ρ(L) = 1− Pext(L) = 1− fL(0) =
1

cL
=

2eyy

σ2
c(e

y − 1)L
,

with L' `. So, a scaling law is fulfilled, with scaling function G(y)

ρ(L) =
1

Lσ2
c

G(L(〈K〉 − 1)) with G(y) =
2yey

ey − 1

valid also for the supercritical case.This is called finite-size scaling
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• Let us repeat

ρ(L) =
1

Lσ2
c

G(L(〈K〉 − 1)) with G(y) =
2yey

ey − 1
 

 

 

 

 

Phase transitions only exist in the infinite-system limit (thermodynamic limit)



3. Critical Models 102

G(y) =
2yey

ey − 1
→

 0 when y→ −∞
2 when y→ 0

2y when y→∞
So, for L→∞

ρ(L) =
1

Lσ2
c

G(L(〈K〉 − 1)) →

 0 for 〈K〉< 1
2σ−2

c L−1 for 〈K〉= 1
2(〈K〉 − 1)/σ2

c for 〈K〉> 1
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Simulation of a branching process

• Initialize t= 0 and N0 = 1 (one single ancestor)

• Loop for t

? Simulate Nt values of Ki

? Compute Nt+1 =
∑Nt
i=1Ki

? If Nt+1 = 0 ⇒ stop
? t= t+ 1

• For the twins-or-nothing example

K =

{
2 if u≤ p
0 otherwise

with u a uniform random number between 0 and 1
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As the mean of the number of offsprings is 〈K〉= 2p, then, pc= 1/2

Plot of P{S = s} (with 〈n〉= 〈K〉)
Conclusions 76
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As the mean of the number of offsprings is 〈K〉= 2p, then, pc= 1/2

Plot of P{S = s} (with 〈n〉= 〈K〉)
Conclusions 77
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As the mean of the number of offsprings is 〈K〉= 2p, then, pc= 1/2

Plot of P{S = s} (with 〈n〉= 〈K〉)
Conclusions 78
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Earthquakes and branching processes

• Gutenberg-Richter power law holds only for 〈K〉= 1
Critical branching process ⇒ Fine tuning of mean number of offsprings
⇒ Very difficult to get in practice!

• Agreement only qualitative, not quantitative

1 +
2b

3
' 1.67 6= 3

2

• Model too simple, still

• Kagan: Gutenberg-Richter exponent should be 3/2 (i.e., b−value = 0.75)

Instrumental artifacts makes the exponent increase Kagan, Tectonophys 2010
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Consequences for predictability

• Consider 〈Nt+1|Nt〉 with Nt known, then

〈Nt+1|Nt〉= 〈K〉Nt

using Nt+1 =
∑Nt
i=1Ki

For critical branching processes 〈K〉= 1 and then

〈Nt+1|Nt〉=Nt

Note that it is not only that the outcome of the next step is random

It is much worst: the earthquake is in the limit of attenuation and intensification

• But what makes earthquakes critical?
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Summary

Conclusions 50
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• The size (energy) of earthquakes
(and other natural hazards)
follows a power-law distribution

• A power law signals the absence of a characteristic scale

• (Decreasing) power-law densities, with β≤ 2 have an infinite mean value

• Galton-Watson branching process can be
a model of earthquakes

? Continuous phase transition at 〈K〉= 1
? Size distribution is only power law

at the critical point

2. Critical Models 49
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Self-Organized Branching Process Zapperi et al. Phys Rev Lett 1995

VOLUME 75, NUMBER 22 PHYSICAL REVIEW LETTERS 27 NovEMBER 1995

an infinite avalanche is nonzero, while for p ( p, all
avalanches are finite. Thus, p = p, corresponds to the
critical case, where avalanches are power law distributed.

In the above description, however, the boundary con-
ditions are not taken into account —even though they are
crucial for the self-organization process. %'e can intro-
duce boundary conditions in the problem in a natural
way, by allowing for no more than n generations for each
avalanche. Schematically, we can view the evolution of
a single avalanche of size s as taking place on a tree of
size N = 2"+' —1 (see Fig. 1). If the avalanche reaches
the boundary of the tree, we count the number of active
sites cr„(which in the sandpile language corresponds to
the energy leaving the system), and we expect that p de-
creases for the next avalanche. If, on the other hand, the
avalanche stops before reaching the boundary, then p will
slightly increase. Note that we are not studying the model
on a Bethe lattice, i.e., the branching structure we are dis-
cussing is not directly related to the geometry of the sys-
tem. The number of generations n can, nevertheless, be
thought of as some measure of the linear dimension of the
system.

The scenario discussed above is described by the
following dynamical equation for p(t):

p(t + 1) = p(t) + 1 —o.„(p, t)
N

Here o„, the size of an avalanche reaching the boundary,
fIuctuates in time and hence acts as a stochastic driving
force. If cr„= 0, then p increases (because some energy
has been put into the system without any output), whereas
if o., ) 0 then p decreases (due to energy leaving the
system). Equation (1) describes the global dynamics of
the SOBP, as opposed to the local dynamics which is
given by the branching process. We can study the model
for a fixed value of n, and then take the limit n ~

In this way, we perform the long-time limit before

0
0

~ }a,(p, t)

0
0

0
0

FIG. 1. Schematic drawing of an avalanche in a system with
a maximum of n = 3 avalanche generations corresponding
to X = 2 +' —1 = 15 sites. Each black site relaxes with
probability p to two new black sites and with probability 1 —p
to two white sites. The black sites are part of an avalanche
of size s = 7, whereas the active sites at the boundary yield
(T3(p, t) = 2. Note that s in the SOBP model must he an odd
integer while o, will be even.

the "thermodynamic" limit, which corresponds exactly to
what is done in sandpile simulations.

The SOBP model can be exactly mapped to SOC models
in the limit d oo, i.e., it provides a mean-field theory of
self-organized critical systems. To show this, we consider
for simplicity the two-state sandpile model [14]: When
a particle is added to a site g;, the site will relax if
g; = 1. In the limit d ~ oo, the avalanche will never
visit the same site more than once. Accordingly, each
site in the avalanche will relax with the same probability
p = P(z = 1). Eventually, the avalanche will stop, and
cr ~ 0 particles will leave the system. Thus, the total
number of particles M(t) evolves according to

M(t + 1) = M(t) + 1 —o. . (2)

Here p~ =—p, —a/N, A~ = b/N, with a = 0.69 ~
0.02 and b = 0.26 ~ 0.01. In the limit N ~ ~ the
distribution P(p) therefore approaches a delta function,
~(p —p. ).

The dynamical equation (1) for the SOBP model is recov-
ered by noting that M(t) = NP{z = 1) = Np For other.
SOC systems, mean-field descriptions similar to the SOBP
model can be derived.

Before investigating the SOBP model analytically, we
present some preliminary considerations together with nu-
merical results. For a fixed value of p, the average
value of cr„ is (a.„(p, t)) = (2p)" [10]. We can write
o.„(p, t) = (2p)" + rj(p, t), where the "noise" g de-
scribes the fluctuations around the average. Inserting this
expression in Eq. (1) and taking the continuum time limit,
we obtain

dp 1 —{2p)" q(p, t)
dt N N

Without the last term, Eq. (3) has a fixed point (dp/dt =
0) for p = p, = 1/2. On linearizing Eq. (3), we see that
the fixed point is attractive, which demonstrates the self-
organization of the SOBP model since the noise g/N
will have a vanishingly small effect in the thermody-
namic limit. To confirm our statement, we have studied
the SOBP model by carrying out simulations for differ-
ent system sizes, and averaging over typically 5 X 10
realization s.

In Fig. 2 we show the value of p as a function of time.
Independent of the initial conditions, we find that after a
transient p(t) reaches the self-organized state described
by the critical value p, = 1/2 and Iluctuates around it
with short-range correlations (of the order of one time
unit). By computing the variance of p(t), we find that
the fluctuations around the critical value decrease with the
system size as 1/N. Moreover, by analyzing the higher
moments, we find that the fluctuations for N » 1 can be
very well described by a Gaussian distribution,

(p —p~)'&

4072

• Consider: 0 offsprings with prob 1− p
2 offsprings with prob p

Limit the maximum number of generations
⇒ analogous to introduce a boundary at t=L

Change p from one realization T to the next as

p(T + 1) = p(T ) +
1−NL(T )

M

where NL is the population in the last generation ( = 2 in Fig.)

and M is a big number (explained later)

Note that there are 2 times scales

? t= fast time scale, counts generations ,from t= 0 to L
? T = slow time scale, counts realizations



4. Self-organization towards criticality 111

VOLUME 75, NUMBER 22 PHYSICAL REVIEW LETTERS 27 NovEMBER 1995

an infinite avalanche is nonzero, while for p ( p, all
avalanches are finite. Thus, p = p, corresponds to the
critical case, where avalanches are power law distributed.

In the above description, however, the boundary con-
ditions are not taken into account —even though they are
crucial for the self-organization process. %'e can intro-
duce boundary conditions in the problem in a natural
way, by allowing for no more than n generations for each
avalanche. Schematically, we can view the evolution of
a single avalanche of size s as taking place on a tree of
size N = 2"+' —1 (see Fig. 1). If the avalanche reaches
the boundary of the tree, we count the number of active
sites cr„(which in the sandpile language corresponds to
the energy leaving the system), and we expect that p de-
creases for the next avalanche. If, on the other hand, the
avalanche stops before reaching the boundary, then p will
slightly increase. Note that we are not studying the model
on a Bethe lattice, i.e., the branching structure we are dis-
cussing is not directly related to the geometry of the sys-
tem. The number of generations n can, nevertheless, be
thought of as some measure of the linear dimension of the
system.

The scenario discussed above is described by the
following dynamical equation for p(t):

p(t + 1) = p(t) + 1 —o.„(p, t)
N

Here o„, the size of an avalanche reaching the boundary,
fIuctuates in time and hence acts as a stochastic driving
force. If cr„= 0, then p increases (because some energy
has been put into the system without any output), whereas
if o., ) 0 then p decreases (due to energy leaving the
system). Equation (1) describes the global dynamics of
the SOBP, as opposed to the local dynamics which is
given by the branching process. We can study the model
for a fixed value of n, and then take the limit n ~

In this way, we perform the long-time limit before
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FIG. 1. Schematic drawing of an avalanche in a system with
a maximum of n = 3 avalanche generations corresponding
to X = 2 +' —1 = 15 sites. Each black site relaxes with
probability p to two new black sites and with probability 1 —p
to two white sites. The black sites are part of an avalanche
of size s = 7, whereas the active sites at the boundary yield
(T3(p, t) = 2. Note that s in the SOBP model must he an odd
integer while o, will be even.

the "thermodynamic" limit, which corresponds exactly to
what is done in sandpile simulations.

The SOBP model can be exactly mapped to SOC models
in the limit d oo, i.e., it provides a mean-field theory of
self-organized critical systems. To show this, we consider
for simplicity the two-state sandpile model [14]: When
a particle is added to a site g;, the site will relax if
g; = 1. In the limit d ~ oo, the avalanche will never
visit the same site more than once. Accordingly, each
site in the avalanche will relax with the same probability
p = P(z = 1). Eventually, the avalanche will stop, and
cr ~ 0 particles will leave the system. Thus, the total
number of particles M(t) evolves according to

M(t + 1) = M(t) + 1 —o. . (2)

Here p~ =—p, —a/N, A~ = b/N, with a = 0.69 ~
0.02 and b = 0.26 ~ 0.01. In the limit N ~ ~ the
distribution P(p) therefore approaches a delta function,
~(p —p. ).

The dynamical equation (1) for the SOBP model is recov-
ered by noting that M(t) = NP{z = 1) = Np For other.
SOC systems, mean-field descriptions similar to the SOBP
model can be derived.

Before investigating the SOBP model analytically, we
present some preliminary considerations together with nu-
merical results. For a fixed value of p, the average
value of cr„ is (a.„(p, t)) = (2p)" [10]. We can write
o.„(p, t) = (2p)" + rj(p, t), where the "noise" g de-
scribes the fluctuations around the average. Inserting this
expression in Eq. (1) and taking the continuum time limit,
we obtain

dp 1 —{2p)" q(p, t)
dt N N

Without the last term, Eq. (3) has a fixed point (dp/dt =
0) for p = p, = 1/2. On linearizing Eq. (3), we see that
the fixed point is attractive, which demonstrates the self-
organization of the SOBP model since the noise g/N
will have a vanishingly small effect in the thermody-
namic limit. To confirm our statement, we have studied
the SOBP model by carrying out simulations for differ-
ent system sizes, and averaging over typically 5 X 10
realization s.

In Fig. 2 we show the value of p as a function of time.
Independent of the initial conditions, we find that after a
transient p(t) reaches the self-organized state described
by the critical value p, = 1/2 and Iluctuates around it
with short-range correlations (of the order of one time
unit). By computing the variance of p(t), we find that
the fluctuations around the critical value decrease with the
system size as 1/N. Moreover, by analyzing the higher
moments, we find that the fluctuations for N » 1 can be
very well described by a Gaussian distribution,

(p —p~)'&

4072

p(T + 1) = p(T ) +
1−NL(T )

M

• Dynamics

? If p is low ⇒ small size ⇒ NL= 0 ⇒ p increases
? If p is high ⇒ large size ⇒ NL> 1 ⇒ p decreases

• Indeed, we know that 〈NL〉= 〈K〉L= (2p)L

So, we can write, NL= (2p)L + η, with 〈η〉= 0

Considering the deterministic equation (removing η)

p(T + 1) =F (p(T )) = p(T ) +
1− (2p(T ))L

M

Therefore, the deterministic equation has a fixed point p∗= 1/2 = pc
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• Moreover, if M is big enough then |F ′(p∗)|< 1 and the fixed point is attractive,so

p(T )→ p∗= pc

As the noise is small, it only adds small perturbations to p∗

Then, p tends, or self-organizes, to its critical value, on average

• Note:
Self-organization is the spontaneous emergence of structures or global order
(here we do not have any structure yet, but wait...)

Examples:
convection patterns in fluids, chemical oscillations, self-regulations of markets

• Nevertheless, the global condition (on p) is very difficult to justify, in practice
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Cellular automaton Manna model2

• Let us consider a lattice in d dimensions

? Each site can store only 1 particle (or 0) Bak 1996, after Grassberger

? If extra particles arrive at a site:
⇒ 2 of them are transferred to 2 randomly chosen sites among its neighbors

(this may generate an avalanche)
? Particles leave the system through the (open) boundary
? If there is no activity (all sites with 1 particle or less):
⇒ Add 1 particle to a random site

In a formula, with nn(j) denoting 2 random neighbors of j

if zj≥ 2 ⇒
{
zj → zj − 2
znn(j) → znn(j) + 1

if zk< 2 ∀k ⇒ zn→ zn + 1 with n= rand
2Cellular automaton = dynamical system with discrete time, space, and variable (field)
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• The Manna model defines a complex system:

System composed of many interacting parts, such that the collective behavior
of those parts together is more than the sum of their individual behaviors

Other examples, more complex: the cell, the brain, ecosystems, the economy,
the Earth’s crust... Newman, Am J Phys 2011

• Let us go back to the Manna model in the limit of infinite dimensions, d→∞
Then, the propagation of the activity will show no loops ' mean field
(a neighbor will not be selected twice to get a grain ⇒ no overlap)

So, there will be no spatial correlations, and all sites are equivalent
(the boundary conditions need to be readjusted)

Each site will become active (z≥ 2) with the same probability

p= fraction of sites with one particle =P [z = 1]
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• Then, the activity propagates through the system as a branching process

• The offspring distribution will be binomial, with n= 2 and parameter p

But note that there is no pre-existing tree

• The total number of particles will evolve as

mass(T + 1) = mass(T ) + 1− out(T )

(one particle added before the avalanche, “out” particles lost at the boundaries)

Dividing by the total number of sites M , with p=P [z = 1] = mass/M

p(T + 1) = p(T ) +
1− out(T )

M

which corresponds to the self-organized branching process Christensen & Moloney 2005

The evolution and adjustment of p is implemented in a natural way
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Self-Organized Criticality (SOC) Bak et al. Phys Rev Lett 1987

• The dynamics arises from the sandpile metaphor

? If there are few grains (flat pile)
⇒ small avalanches, pile grows

? If there are many grains (steep pile)
⇒ large avalanches, pile decreases

(through boundary dissipation)

This mechanism makes the slope
of the pile fluctuate around the
critical state

⇒ Bak-Tang-Wiesenfeld (BTW)
model
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• BTW model: one-dimensional lattice, d= 1, with j= 1 . . . L

Modification: no random selection of neighbors

if zj≥ 2 ⇒
{
zj → zj − 2 for j 6=L
zj±1 → zj±1 + 1

if zk< 2 ∀k ⇒ zn→ zn + 1 with n= rand

The “particles” are in fact elements of slope in a 2−d sandpile

height at j=hj =hj+1 + zj ⇒ zj =hj − hj+1

with hL+1 = 0 ⇒ zL=hL ⇒ zL→ zL − 1 (conserved BC)

if hj − hj+1≥ 2 ⇒
{
hj → hj − 1
hj+1 → hj+1 + 1

if hk − hk+1< 2 ∀k ⇒ hm→hm + 1 for m≤n with n= rand
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• Height h picture (grains) versus slope z picture (repelling particles)

(a) 
r-

(b) 

Fig.3.2 A realisation of an avalanche of size s = 2 in the ane-dimensional BTW model 
Christensen & Moloney 2005
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Relation with interface depinning Paczuski & Boettcher, Phys Rev Lett 1996

• Define Hj as the total number of topplins in a sandpile

When:

? the initial condition is empty (hj = 0 for all j and for T = 0) and
? the addition takes place at j= 1

then, H defines an advancing interface, whose gradient gives the pile height

hj =Hj−1 −Hj

with H0 giving the total number of grains added
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Retrospective of models

• Domino (Otsuka) model of fracture

• Galton-Watson branching process

• Self-organized branching model

• Cellular automaton Manna (bureaucrats) model

• Bak et al. sandpile model

• Interface depinning model

• These models serve as metaphors for earthquakes

14
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• Inspiration: Critical Points of Thermodynamic Phase Transitions

Magnetic material: atom = spin with 2 states

There exists a critical temperature Tc

? Above Tc: no magnetization, small clusters
? Below Tc: magnetization, one very large cluster
? At the precise value T =Tc ⇒ clusters of all sizes ⇒ power law!

1. Collective Properties of Earthquakes 17

Fractals in physics: critical points of phase transitions

• Magnetic material: atom = spin with 2 states

March 31, 2004 23:1 WSPC/Book Trim Size for 9in x 6in ws-book9x6

178 Complexity and Criticality

t < 0 t = 0 t > 0

Rb

Rb

Fig. 2.29 Real-space renormalisation of the Ising model on a two-dimensional square
lattice. The panels are windows of size ` = 80 inside larger lattices. The three panels
in the top row correspond to lattices in zero external field with reduced temperatures
t < 0, t = 0, t > 0 from left to right. In each of the three columns, the renormalisa-
tion transformation Rb is carried out twice from top to bottom, revealing large scale
behaviour. Coarsening is achieved by employing the majority rule with b = 3.

The real-space renormalisation reduces all lengths, including the corre-

lation length, by a factor b. If the system is not at the critical point, the

correlation length is finite and becomes shorter with each application of the

renormalisation transformation. The reduction in the correlation length is

associated with a flow away from the critical point. In terms of the reduced

T < Tc T = Tc T > Tc
Christensen & Moloney, Complexity and Criticality 2005
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Burridge-Knopoff spring-block models Bull Seism Soc Am 1967

• Earthquakes take place in “pre-existing” faults

⇒ Alternative: modeling friction in a fault

? Experiment: spring-block system pulled from one end

MODEL AND THEORETICAL SEISMICITY 345  

In  the quiet interval between shocks, the only variable tha t  changes is x0, the coor- 
dinate of the point of contact of the thread and the first spring. If the rate of motion 
of the thread due to the driving motor is constant, then x0 is proportional to time. 
The potential energy is expressed above as an operation upon the coordinates of 
the system and not upon the time; by using x0 instead of real time as the abscissa, 
the potential energy can be plotted as a function of the time for a hypothetical sys- 
tern in which the strain rate applied to the system from the motor is assumed to be 
constant. This fact al]ows us to stop the system immediately after each shock, to 
note the coordinates of all masses. In this way the coordinates of all the masses 
immediately prior to the next shock are also known, since all masses are stationary 
in the interval between shocks. On the other hand the coordinate x0 is effectively 
constant during the shock. 

III. MODEL RESULTS 

We report here observations on two sequences of experiments that have been 
made. In the first of these, all the spring constants are equal. In the second experi- 
ment all of the spring constants are graduated; the spring with smallest constant is 

ROUGH 

////I///////////I///////////////////~]V 
FIG. 3. Schematic diagram of the laboratory model. 

closest to the driving motor. In the latter case the spring constants are adjusted by 
cutting the springs to appropriate lengths so that  each spring constant is propor- 
tional to the sum of all of the masses between the spring and the free end. In the 
experiment all the masses are 142 grams. All the springs are cut from coil spring 
stock with constant (force per unit strain) of 2.0 X 105 dynes. In the first experi- 
ment all the springs were three centimeters in length; in the second they varied from 
1.5 centimeters to 12 centimeters in length. Several hundred shocks of varying sizes 
were usually observed in the space of an hour with a motor drive of about 2 centime- 
ters per minute, for the type of friction used. 

In  Figure 4 we show the charging cycle for the system. We have plotted potential 
energy as a function of time in the equivalent constant strain-rate system. The initial 
conditions for this experiment were those for which the springs were more or less 
unstretched. Hence we see a rather long initial charging cycle in which potential 
energy is loaded into the system through a succession of a large number of small 
shocks. After a considerable length of time, measured in units of x0, shocks of in- 
termediate size occur interspersed with small shocks. Finally beginning at x0 = 120 
cm and thereafter, large shocks occur in which all eight masses move. I t  is interesting 
to note that  the mean slope of the curves between the large shocks are more or less 
the same. This means that  the rate of putt ing energy into the mass-spring system 
between large shocks is more or less uniform. This rate is, of course, less than the 

35~  :BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 

The  infinite ve loc i ty  a t  ~ = ~ implies  t h a t  the  dr iv ing  block is much  more  mass ive  
t h a n  the  par t ic les  in the  chain  and,  for finite elast ic  cons tan t s  h, the  ent i re  chain  
could, fo r tu i tous ly  b r e a k  into  seismic m o t i o n  at  all poin ts  s imul taneous ly .  Neve r the -  
less, we require  a s t a n d a r d  of ve loc i ty  for reference. W e  t ake  as our  reference the  
infini te  wave leng th  ve loc i ty  in the  l imi t  of the  decoupled  chain,  k = 0, i.e. c = 
a(~/m) ~/2. As can  be  seen f rom F igure  14, this  is a reasonable  va lue  of phase  ve loc i ty  
for all  b u t  a na r row b a n d  of the  lowest  frequencies for smal l  coupl ing ra t ios  such 
as  )~/g = 0.01. T h e  p r o p a g a t i o n  of sound down the  chain  will  be  the  fas tes t  process  
of those  assoc ia ted  wi th  the  p roduc t ion  of quakes.  

As can be seen f rom Figures  11-13, the  q u a n t i t y  B is the  measure  of the  s t a t i c  
f r ic t ion to  be overcome before a shock t akes  place. I f  al l  the  local  stresses were re- 
l ieved  fol lowing a shock, t hen  the  stresses would  bu i ld  up  to the  va lue  B in the  t ime  
B/kV. This  n u m b e r  thus  places an  uppe r  b o u n d  on the  t ime  in t e rva l  be tween  
quakes.  

F in a l l y  we can me n t i on  the  influence of the  v iscos i ty  coefficient B/H. The  t ime  
cons tan t  for v iscous  r e l axa t ion  processes is B/Hg. W e  t a k e  this  t ime  cons t an t  to be 
large for e lements  t h a t  move  a b r u p t l y  in quakes  and  t a k e  the  t ime  cons tan t  to  be  

| Ii ; DRIVING BLOCK / 

l --J ; ,  41 51, ; 7( 8; 91 
I I I 

A - F A U L T  ' VISCOUS ' P - F A U L T  I I I REGION [ 
t 

FIG. 15. Schematic diagram of the numerical model. 

cons iderab ly  smal ler  for e lements  t h a t  move  b y  viscous s l ipping r a the r  t h a n  b y  
fracture .  

V I I .  NUMERICAL RESULTS 

As a pa r t i cu l a r  example ,  a chain  of t en  par t ic les  connec ted  as shown in F igure  15 
was considered.  T h e  fol lowing tab le  indica tes  the  numer ica l  va lues  se lec ted  for the  

pa rame te r s :  
TABLE 1 

PA_RAMETERS :FOR THE 1NTUMERICAL ]~XPERIMENT 

P a r t i c l e  Number m B t t  B / H  A E V X ,~ a 

1 1 5 10 -9 5 X 109 10 1 10 s 1 
100 O. 1 2 1 5 10 _9 5 X 109 10 1 10 -s 1 
100 0 .1  3 1 5 10 -9 5 X 109 10 1 10 -8 1 
100 0-1 

4 1 109 100 107 10 1 10 -s 1 
100 0.1 5 1 109 100 107 10 1 10 -8 1 
100 0.1 

6 1 15 10 -9 1.5 X 101° 10 1 10 -s 1 
100 0.1 7 1 10 10 9 1010 10 1 10 -8 1 
100 0 .1  8 1 10 10 -9 101° 10 1 10 -8 1 
100 O. 1 9 1 10 10 -9 101° 10 1 10 -s 1 
100 O. 1 

10 1 10 10 -° 10 ~° 10 1 1~ s 1 

? Computer simulations:
All blocks connected by flat springs to a moving plate
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• stick-slip dynamics: slow driving (pull) + fast avalanches (shocks)

? The force on the block(s) increases (linearly) very slowly
? At some time (for some block) the force exceeds the static frictional force
? Then, that block moves fast, changing the force over the neighbor blocks

and so on

“Size” of the earthquake ' number of sliding blocks
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Coupled-map lattice model

5. Actividad investigadora: Sincronización de osciladores y modelo... 40

El modelo de bloques y muelles para una falla fue un hito en la sismoloǵıa (1967)

fixed plate

K

K K

L

moving plate

• Olami-Feder-Christensen (OFC) model, Phys Rev Lett 1992

Two-dimensional version of Burridge-Knopoff model

? Coil (helical) springs connecting blocks in the direction of motion of the plate
? Flat (leaf) springs connecting blocks in the perpendicular direction

(making the force then in the direction of motion also)
? In both cases the value of the elastic constants is K
? Flat springs connecting blocks with the upper moving plate

with constants KL 6=K
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• Let us define

? Fi,j = Force on block i, j
? xi,j = Displacement in the direction of motion

of i, j relative to the upper flat spring

Also, the zero force between each pair corresponds to
the lattice of upper springs. By Hooke’s law Fi,j =

=−K(xi,j−xi−1,j)−K(xi,j−xi+1,j)−K(xi,j−xi,j−1)−K(xi,j−xi,j+1)−KLxi,j

=K

 ∑
nn(i,j)

xnn(i,j) − 4xi,j

−KLxi,j

If the upper plate moves with constant (small) velocity v then

dFk,l
dt

= −KL
dxk,l
dt

=KLv for all k, l
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• When the force on some block i, j reaches the frictional threshold force Fth
⇒ block i, j slips instantaneously to the position with of zero force, so

Fi,j→ 0 (assumption of the model)

Then, if we denote the new position of i, j as x′i,j

0 =K

 ∑
nn(i,j)

xnn(i,j) − 4x′i,j

−KLx
′
i,j

where nn(i, j) denotes the nearest neighbors of i, j. Substracting,

Fi,j − 0 = − (4K +KL)(xi,j − x′i,j)
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• Therefore, the force on the i+ 1, j neighbor (for instance)

Fi+1,j =K

 ∑
nn(i+1,j)

xnn(i+1,j) − 4xi+1,j

−KLxi+1,j

So, as Fi,j = − (4K +KL)(xi,j − x′i,j) then Fi+1,j changes to

Fi+1,j→Fi+1,j +K(x′i,j − xi,j) =Fi+1,j +
K

4K +KL
Fi,j

and the model is non-conservative, as α=K/(4K +KL)< 0.25
except if KL→ 0
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Summary of the rules of the OFC model

if Fi,j<Fth for all i, j ⇒ dFi,j/dt=KLv with v very small

if Fi,j≥Fth for some i, j ⇒
{
Fnn(i,j) → Fnn(i,j) + αFi,j
Fi,j → 0

The boundary conditions are disregarded

Note that there are 2 times scales:
The slow one is continuous, but the fast one is discrete

In practice, in simulations, don’t use dFi,j/dt=KLv. Why?

Then, the slow time scale turns into discontinuous

⇒ coupled map lattice model3

3Coupled map lattice = dynamical system on a lattice with continuous variables and discrete time
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Earthquakes can be a SOC phenomenon

• Ingredients for SOC (and fulfillment in earthquakes) Pruessner, private comm.

? Time scale separation (⇒ OK)
? Thresholds, interaction (⇒ OK)
? Avalanche dynamics (⇒ OK)
? Power-law distributions (⇒ OK)

(with finite-size scaling)

5. Actividad investigadora: Sincronización de osciladores y modelo... 40

El modelo de bloques y muelles para una falla fue un hito en la sismoloǵıa (1967)

fixed plate

K

K K

L

moving plate

? Underlying 2nd-order phase transition,
reached by self-organization (⇒ ??)

Think in the critical temperature of Fe, Tc= 770◦C
or in the critical point of water, at Tc= 374◦C and 218 atm Andrews 1869 (for CO2)
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Other candidates for SOC

• For rain, Peters and Neelin have shown: Nature Phys 2006, Neelin et al. Phil Trans R Soc A 2008

1. Existence in the atmosphere of a non-equilibrium stability-instability transition25

for these composite profiles, and there is no obvious relationship between CIN and
the precipitation pickup. The three highest CAPE values have average levels of
neutral buoyancy (which would theoretically correspond to cloud-top heights)
approximately 150 hPa instead of below the 450 hPa level for the other bins
(although these values are rather sensitive to choices of mixing profiles and
adiabatic processes). Column water vapour w, which is readily available from
satellites, therefore acts as more than a proxy for conditions conducive to deep
convection; it is associated with both ABL and free-tropospheric contributions to
buoyancy due to entrainment. As figure 4b illustrates,w also has significantly higher
temporal autocorrelations than cloud water and precipitation (as seen in ARM
microwave radiometer (MWR) and optical gauge data), suggesting that it can be
thought of as a relatively slowly varying environmental control variable on which to
compute statistics of sporadically occurring precipitation. Column water is also
potentially useful for convective scheme transition probabilities (or trigger
functions). The ARM MWR data in figure 4a show that probabilities of
precipitation for the next hour, given no current precipitation, increase dramatically
at high values of w.

4. Characteristics of the transition to strong convection

Examining the transition to strong convection at high time resolution, Peters &
Neelin (2006) noted that the statistical properties of precipitating convection
conform to those observed near continuous phase transitions, known as critical
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Figure 5. (a) Pickup of ensemble-average precipitation hP i in each 0.3 mm bin of column water
vapour w for 1 K bins of the vertically averaged tropospheric temperature T̂ . Western Pacific
hPðw;T̂Þi as a function of w for T̂Z269–274 K; lines show power-law fits above criticality of the
form (4.1). (b) The critical value of column water vapour wc at which the onset of strong convection
occurs, as a function of vertically averaged tropospheric temperature T̂ ; dots give the values
determined as in (a), here combined from the tropical west Pacific, east Pacific and Atlantic. The
vertically integrated saturation value of water vapour is also shown. Schematic elements indicate
the pickup in precipitation and the band of high precipitation variance near criticality.

2591Rethinking convective quasi-equilibrium

Phil. Trans. R. Soc. A (2008)

 

 

Stanley, Rev Mod Phys 1999
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• Finite size effects

Finite size scaling: 〈P 〉=L−0.2/νH[(w − wc)L1/ν] (L system size)

H(x)∝
{
|x|−γ for x→ −∞
x0.2 for x→ +∞ ⇒

L→∞
〈P 〉∝

{
0 for w<wc
(w − wc)0.2 for w>wc

With critical point wc' 63 mm
if T = 271 K, and so on

Phase transitions (abrupt changes)
only exist in the limit L→∞

25

for these composite profiles, and there is no obvious relationship between CIN and
the precipitation pickup. The three highest CAPE values have average levels of
neutral buoyancy (which would theoretically correspond to cloud-top heights)
approximately 150 hPa instead of below the 450 hPa level for the other bins
(although these values are rather sensitive to choices of mixing profiles and
adiabatic processes). Column water vapour w, which is readily available from
satellites, therefore acts as more than a proxy for conditions conducive to deep
convection; it is associated with both ABL and free-tropospheric contributions to
buoyancy due to entrainment. As figure 4b illustrates,w also has significantly higher
temporal autocorrelations than cloud water and precipitation (as seen in ARM
microwave radiometer (MWR) and optical gauge data), suggesting that it can be
thought of as a relatively slowly varying environmental control variable on which to
compute statistics of sporadically occurring precipitation. Column water is also
potentially useful for convective scheme transition probabilities (or trigger
functions). The ARM MWR data in figure 4a show that probabilities of
precipitation for the next hour, given no current precipitation, increase dramatically
at high values of w.

4. Characteristics of the transition to strong convection

Examining the transition to strong convection at high time resolution, Peters &
Neelin (2006) noted that the statistical properties of precipitating convection
conform to those observed near continuous phase transitions, known as critical
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Figure 5. (a) Pickup of ensemble-average precipitation hP i in each 0.3 mm bin of column water
vapour w for 1 K bins of the vertically averaged tropospheric temperature T̂ . Western Pacific
hPðw;T̂Þi as a function of w for T̂Z269–274 K; lines show power-law fits above criticality of the
form (4.1). (b) The critical value of column water vapour wc at which the onset of strong convection
occurs, as a function of vertically averaged tropospheric temperature T̂ ; dots give the values
determined as in (a), here combined from the tropical west Pacific, east Pacific and Atlantic. The
vertically integrated saturation value of water vapour is also shown. Schematic elements indicate
the pickup in precipitation and the band of high precipitation variance near criticality.

2591Rethinking convective quasi-equilibrium

Phil. Trans. R. Soc. A (2008)
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• Peters and Neelin have also shown: Nature Phys 2006, Neelin et al. Phil Trans R Soc A 2008

2. The atmosphere is attracted towards the critical point of the transition5858

observed at Nauru, figure 6b, as well as those in the mid-latitudes (Peters et al.
2002). In figure 7b we show the avalanche-size distribution along with its known
exponent; in the thermodynamic limit of infinite system size, the distribution
would follow a power law over an infinite range. The analogy with atmospheric
event-size distributions suggests they can occur even for fixed, slow forcing—in
other words, a scale-free range of precipitation events is associated with the
organization towards the critical point in QE.

(b ) Implications of the exponential tails

In figure 6a it was shown that the distribution of the atmospheric tuning
parameter (the water vapour) has strongly non-Gaussian tails. There is a
Gaussian-like core, but the tails are much better described by exponentials. One
effect of these exponential tails is that we are able to observe the underlying
phase transition. In the Manna model, the distribution is highly Gaussian, with
the result that occurrences drop very rapidly above the critical point in the self
organizing case. To observe the behaviour above criticality, we needed to
introduce periodic boundaries. The question remains how it is possible that the
atmosphere ever fluctuates as far from criticality, or QE, as it does.

A possible answer is provided by tracer dispersion in forced advection–diffusion
problems, in which the tracer probability density distribution can have a Gaussian
core with exponential tails (e.g. Gollub et al. 1991; Majda 1993; Shraiman & Siggia
1994). This can occur, for instance, in the two-dimensional case

vtqCv$VqK k0V
2q Z f ; ð5:1Þ
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Figure 6. (a) Western Pacific observed characteristics from TMI data as a function of column water
vapour normalized by the critical value wc for each value of T̂ : probability density function of w for
precipitating points (four upper curves), precipitation variance conditioned on w (four middle
curves) and precipitation pickup curve (non-dimensionalized by amplitude a from (4.1) for each T̂).
(b) The precipitation event-size distribution for the Nauru ARM site time series.

J. D. Neelin et al.2594

Phil. Trans. R. Soc. A (2008)
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Continuous, non-upper-truncated power-law distributions

• Given by a probability density D(x) with x real (continuous)

D(x) =
B

xγ
for a≤x<∞

with a> 0. Then,
∫∞
a
D(x)dx= 1 with γ > 1 implies

B= (γ − 1)aγ−1

• In order to decide between competing explanations, universality classes, etc.,
it is important not only to determine if power laws hold,
but also the precise value of the exponent γ
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Fitting power-law distributions

• Most common method to fit power laws has been linear regression in log-log
(needs to estimate first the empirical density ⇒ delicate)

• Some authors have pointed out the
superiority of maximum-likelihood
(ML) estimation

Goldstein et al. Eur Phys J B 2004
Bauke, Eur Phys J B 2007
White et al. Ecol 2008
Clauset et al. SIAM Rev 2009

• ML estimators are: asymptotically unbiased
and with lowest variance

Invariant under re-parameterizations

The results for other combinations of parameters are
qualitatively similar. We also evaluated the influence of

sample size on the various estimation techniques, and
for binning-based approaches we evaluated the effect of

bin width on the analysis.

GENERAL RULES

Uncorrected simple logarithmic binning gives the wrong

exponent.—Non-normalized logarithmic binning does

not estimate k; it estimates k þ 1 (Han and Straskraba

1998, Bonnet et al. 2001, Sims et al. 2007). Therefore if

simple logarithmic binning is used, and an estimate of k
is the desired result, then it is necessary to subtract 1

from the slope of the logarithmically binned data. Not

doing so will give the wrong value for the exponent.

Binning-based approaches perform poorly.—Linear

binning performs poorly by practically any measure.

In most cases it produces biased estimates of the

exponent and its estimates are highly variable (Figs. 1

and 2). In addition, the estimated exponent is highly

dependent on the choice of bin width, and this

dependency varies as a function of sample size (Fig. 3).

While normalized logarithmic binning performs better

than linear binning, its estimates are also dependent on

the choice of bin width and are more variable than

alternate approaches. Our results are based on recom-

mended practices in binning analyses (following Picker-

ing et al. 1995). Many alternative approaches to

constructing bins and performing regressions on binned

data are conceivable, and it is possible that some of these

may improve the performance of the estimates. Howev-

er, this highlights the fact that binning-based methods

are sensitive to a variety of decisions, and it appears that

no amount of tweaking will be able to produce a

consistent binning-based method for estimating the

exponent. In general, binning results in a loss of

information about the distributions of points within a

bin and is thus expected to perform poorly (Clauset et al.

2007, Edwards et al. 2007). Therefore, while binning is

useful for visualizing the frequency distribution, and

normalized logarithmic binning performs well at this

task, binning-based approaches should be avoided for

parameter estimation (Clauset et al. 2007).

Maximum likelihood estimation performs best.—While

fitting the cumulative distribution function (CDF)

generally produces good results, estimates of k using

the CDF approach are often biased at small sample sizes

and are consistently more variable than those using

maximum likelihood estimation (MLE; Fig. 2; Clark et

al. 1999, Newman 2005). This probably results because

the logarithmic transformation used in fitting the CDF

weights a small number of points more heavily, and

because the points in the CDF are not independent thus

violating regression assumptions (see Clauset et al.

[2007] for other issues with regression-based approach-

es). While alternative approaches to fitting the CDF

(e.g., nonlinear regression) could improve the perfor-

mance of this estimator, MLE has been shown

mathematically to be the single best approach for

estimating power-law exponents (i.e., it is the minimum

variance unbiased estimator; Johnson et al. 1994, Clark

et al. 1999, Newman 2005). In addition, MLE produces

valid confidence intervals for the estimated exponent

FIG. 1. Example of Monte Carlo results for the different
methods of fitting the power-law exponent. (a) A single Monte
Carlo sample from a Pareto distribution plotted as 1 minus the
cumulative distribution, F(x). Data are plotted as gray open
circles along with the fits to the data using the four different
methods: linear binning (red; linear), normalized logarithmic
binning (blue; Nlog), maximum likelihood estimation (green;
MLE), and cumulative distribution function fitting (black;
CDF). (b) Kernel density estimates of the distribution of
exponents from 10 000 Monte Carlo runs. Line colors are the
same as for (a), and the value of k used to generate the data is
indicated by the dashed line. Parameter values: n¼ 500 random
points in each simulation; k¼�2; 1 � x , ‘; linear bin width¼
3; logarithmic bin width ¼ 0.3. The binning analyses used the
minimum value of x and excluded the last bin and bins
containing �1 individual. Exclusion of the last bin is not
necessary, but it improves the performance of binning-based
approaches and is thus conservative in the context of our
conclusions. The single sample for (a) was chosen to illustrate
the general results shown in (b). Binning methods generate
biased estimates of the exponent and result in more variable
estimates than approaches based on MLE and CDF.
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Maximum likelihood (ML) estimation

• Given a dataset of size N , x1, x2, . . . xN , the likelihood is the joint distribution

L(γ) =D(x1, x2, . . . xN ; γ) =

N∏
i=1

D(xi; γ)

(assuming independence). For a power law, D(x) =B/xγ, the log-likelihood is

`(γ) =
lnL(γ)

N
=

1

N

N∑
i=1

lnD(xi; γ) = lnB − γ

N

N∑
i=1

lnxi= lnB − γ lnG

with G the geometric mean of the data and B= (γ− 1)aγ−1 (continuous case).
Maximizing

d`

dγ
= 0 ⇒ γ= 1 +

1

ln G
a
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• Note that the ML solution depends only on the geometric mean G

γ= 1 +

(
ln
G

a

)−1

So, any data, from any distribution, with the same G yields the same γ

Then, maximum likelihood should be called minimum unlikelihood

⇒ A goodness-of-fit test is necessary
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Goodness-of-fit test

• In order to test the goodness of the (ML) fit let us consider Kolmogorov-Smirnov
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between empirical S(x) and
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d= max{Semp(x)− Sth(x)}
with S(x) =

∫∞
x
D(x)dx

Care with p−value:
Monte Carlo simulations

• The problem of power-law fitting
is not in fitting the power law

It is in the selection of a= minimum value of x
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Clauset’s et al. recipe Clauset, Shalizi & Newman SIAM Rev 2009

• ? Take an arbitrary value of a ( = minimum x for which the power law holds)
? Calculate fit by ML estimation ⇒ yields exponent γ
? Calculate Kolmogorov-Smirnov distance between empirical distribution and fit

(no goodness-of-fit yet)

• ? Select the value of a which minimizes Kolmogorov-Smirnov distance d= demp
So, we come out with a fit given by aemp and γemp

• ? Calculate p−value of the fit by simulating Nsim synthetic samples:
∗ Simulating a power law with exponent γemp for x≥ aemp
∗ Bootstrap of the empirical distribution for x<aemp

? Proceed with synthetic samples in exactly the same way as with the empirical

⇒ Each synthetic sample yields a value of dsim

⇒ Calculate p−value as p'{number of dsim > demp}/Nsim
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• Justification of the minimization of d

Under the null hypothesis, Kolmogorov-Smirnov distance goes as

d∝ 1√
N

So, under the null hypothesis, the smaller a, the larger N and the smaller d

But as soon as the null hypothesis fails, the fit deviates and d increases

A sort of balance between the two effects is implicit

Nevertheless, there is no reason why this deviation should compensate and
overcome the reduction in d

(it would depend on the shape of the distribution for x<a)
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Problems of Clauset et al.’s recipe

• The method performs bad when generalized to truncated power laws

D(x)∝ 1

xγ
for a≤x≤ b

This is common in complex systems, due to finite-size effects
67
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More problems of Clauset et al.’s recipe A.C., Font & Camacho Phys Rev E 2011

• Consider nuclear half-lives: from below 10−16 s to 1023 yr ∼ 1031 s for 128Te

Clauset et al.’s recipe yields
aemp= 30 s and γemp= 1.16
but p= 0

ÁLVARO CORRAL, FRANCESC FONT, AND JUAN CAMACHO PHYSICAL REVIEW E 83, 066103 (2011)

FIG. 1. (Color online) Empirical probability density of the half-
lives (t) of the 3002 radionuclides available (19 values below 10−10 s
are not shown). The straight lines are three of the power-law fits
explained in the text, covering the fitting range obtained by the
minimization of the KS distance. The exponents are τ = 0.67, 1.19,
and 1.09 (from left to right). Note that extreme caution should be
present when estimating a probability density using large bins; see
Ref. [10].

the empirical one). This is simply done by a kind of bootstrap
method [7], where the synthetic values of t are taken randomly,
with replacement, from the empirical data in that range (i.e.,
t < a). Details of the fitting and the goodness-of-fit testing are
explained in an appendix. Noticeably, the whole fitting and
testing procedure does not use that D(t) should be a straight
line in a log-log scale.

The results of this method applied to the nuclear half-lives
yield the values a = 29.85 s and τ = 1.16 with a KS distance
dm = 0.036 but with p = 0 (from 1000 simulations, that is,
in no case a KS distance larger than the empirical 0.036 was
found). So, the direct application of the Clauset et al.’s method
leads to the rejection of the power-law hypothesis. However,
Fig. 2(a) shows that this result is not convincing. We plot
there, as a function of the cutoff a, the KS distance and the
p value corresponding to the case in which a were fixed or

known (we denote the p value for this case as q, in order to
distinguish it from the p value when a is optimized). It is clear
that the power-law fit must be rejected for any value of a below
107 s (as q = 0), but above this value q takes nonzero values,
fluctuating between zero and 1, as it would correspond to true
power-law distributed data.

So, although the Clauset et al.’s method fails when applied
to the whole data set, we try to apply it now to a restricted
data set, considering a range of variation of the parameter
a above 1000 s (to avoid the misleading minimum of the
KS distance at around 30 s). This leads to a new minimum
at a = 8.8 × 107 s (close to 3 years) and an exponent τ =
1.09 ± 0.01 with dm = 0.052 and p = 33%± 5%. This is an
acceptable result, which means in fact that we cannot reject
the power-law hypothesis. Given that the maximum half-life
is larger than 1031 s (for 128Te), this power law spans more
than 23 orders of magnitude. However, one can realize that
there are only 128 nuclides in the power-law range, which
makes its relevance as a characterization of nuclear properties
rather limited. In any case, we have found a power-law
tail for the distribution of nuclear half-lives, together with
the conclusion that the blind application of Clauset et al.’s
method is not reliable. The condition a > 1000 s is not
determinant, as other values lead to very similar results; see
Table I.

In order to confirm the failure of Clauset et al.’s method
we apply the absolute minimization of the KS distance to
simulated data, with a power-law distribution with τ = 1.09
above a = 8.8 × 107 s and bootstrapping the empirical data
below that value [7]; the KS distance corresponding to two of
them is shown in Fig. 2(b). In 80% of the simulations the p

value turns out to be zero, leading to the rejection of the power-
law hypothesis when the data have, by construction, a true
power-law range. Note that in this case, as the null hypothesis
is true, the p value should be uniformly distributed between
0 and 1. Therefore, we have come across a counterexample
that invalidates the general applicability of the Clauset et al.’s
method. There is nothing surprising here, as, after all, these

(a) (b)

FIG. 2. (Color online) (a) Kolmogorov-Smirnov distance d for different values of the lower cutoff a in a power-law fit of the radionuclide
half-life distribution, together with the associated “q value”, which would be identical to the p value if the parameter a were not optimized.
As a is also variable in the fit, the q value overestimates the true p value. It is clear that the absolute minimum of d yields q = 0 and therefore
p = 0, but for a > 107 s the q value becomes nonzero. (b) Comparison of the empirical KS distance in (a) with that from simulations of a
power law with exponent τ = 1.09 for t > 8.8 × 107 s (and with random values taken from the empirical distribution below that value, as
explained in the text). Only the simulations with the smallest (dm = 0.028, best) and largest KS distances (0.073, worst) out of 100 simulations
are shown. The fraction of minimum distances above the empirical value 0.052 defines the p value.

066103-2

• Simulate power law for x≥ 108 s and
bootstrap original data for x< 108 s

In 80 % of the cases p= 0

So, the recipe leads to the usual
rejection of the power-law hypothesis
when it is true!

(p should be uniformly distributed between 0 and 1 under the null hypothesis)
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FIG. 1. (Color online) Empirical probability density of the half-
lives (t) of the 3002 radionuclides available (19 values below 10−10 s
are not shown). The straight lines are three of the power-law fits
explained in the text, covering the fitting range obtained by the
minimization of the KS distance. The exponents are τ = 0.67, 1.19,
and 1.09 (from left to right). Note that extreme caution should be
present when estimating a probability density using large bins; see
Ref. [10].

the empirical one). This is simply done by a kind of bootstrap
method [7], where the synthetic values of t are taken randomly,
with replacement, from the empirical data in that range (i.e.,
t < a). Details of the fitting and the goodness-of-fit testing are
explained in an appendix. Noticeably, the whole fitting and
testing procedure does not use that D(t) should be a straight
line in a log-log scale.

The results of this method applied to the nuclear half-lives
yield the values a = 29.85 s and τ = 1.16 with a KS distance
dm = 0.036 but with p = 0 (from 1000 simulations, that is,
in no case a KS distance larger than the empirical 0.036 was
found). So, the direct application of the Clauset et al.’s method
leads to the rejection of the power-law hypothesis. However,
Fig. 2(a) shows that this result is not convincing. We plot
there, as a function of the cutoff a, the KS distance and the
p value corresponding to the case in which a were fixed or

known (we denote the p value for this case as q, in order to
distinguish it from the p value when a is optimized). It is clear
that the power-law fit must be rejected for any value of a below
107 s (as q = 0), but above this value q takes nonzero values,
fluctuating between zero and 1, as it would correspond to true
power-law distributed data.

So, although the Clauset et al.’s method fails when applied
to the whole data set, we try to apply it now to a restricted
data set, considering a range of variation of the parameter
a above 1000 s (to avoid the misleading minimum of the
KS distance at around 30 s). This leads to a new minimum
at a = 8.8 × 107 s (close to 3 years) and an exponent τ =
1.09 ± 0.01 with dm = 0.052 and p = 33%± 5%. This is an
acceptable result, which means in fact that we cannot reject
the power-law hypothesis. Given that the maximum half-life
is larger than 1031 s (for 128Te), this power law spans more
than 23 orders of magnitude. However, one can realize that
there are only 128 nuclides in the power-law range, which
makes its relevance as a characterization of nuclear properties
rather limited. In any case, we have found a power-law
tail for the distribution of nuclear half-lives, together with
the conclusion that the blind application of Clauset et al.’s
method is not reliable. The condition a > 1000 s is not
determinant, as other values lead to very similar results; see
Table I.

In order to confirm the failure of Clauset et al.’s method
we apply the absolute minimization of the KS distance to
simulated data, with a power-law distribution with τ = 1.09
above a = 8.8 × 107 s and bootstrapping the empirical data
below that value [7]; the KS distance corresponding to two of
them is shown in Fig. 2(b). In 80% of the simulations the p

value turns out to be zero, leading to the rejection of the power-
law hypothesis when the data have, by construction, a true
power-law range. Note that in this case, as the null hypothesis
is true, the p value should be uniformly distributed between
0 and 1. Therefore, we have come across a counterexample
that invalidates the general applicability of the Clauset et al.’s
method. There is nothing surprising here, as, after all, these

(a) (b)

FIG. 2. (Color online) (a) Kolmogorov-Smirnov distance d for different values of the lower cutoff a in a power-law fit of the radionuclide
half-life distribution, together with the associated “q value”, which would be identical to the p value if the parameter a were not optimized.
As a is also variable in the fit, the q value overestimates the true p value. It is clear that the absolute minimum of d yields q = 0 and therefore
p = 0, but for a > 107 s the q value becomes nonzero. (b) Comparison of the empirical KS distance in (a) with that from simulations of a
power law with exponent τ = 1.09 for t > 8.8 × 107 s (and with random values taken from the empirical distribution below that value, as
explained in the text). Only the simulations with the smallest (dm = 0.028, best) and largest KS distances (0.073, worst) out of 100 simulations
are shown. The fraction of minimum distances above the empirical value 0.052 defines the p value.
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⇒ Failure of the Clauset’s et al. recipe
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Alternative recipe Peters et al. J Stat Mech 2010; Deluca & A.C. Acta Geophys 2013

• ? Take an arbitrary value of a ( = minimum x for which the power law holds)
? Calculate fit by ML estimation ⇒ yields exponent γ
? Calculate KS distance d between empirical distribution and fit

(no difference with Clauset et al. yet)

• ? Calculate a p−value for fixed a
∗ Simulate Nsim power-law synthetic samples with γ for x≥ a

? Proceed with synthetic samples in exactly the same way as with the empirical

⇒ Each synthetic sample yields a value of dsim

? Calculate p as

p' number of dsim > d

Nsim

• Select the smallest value of a provided that p> 0.20 (e.g.)
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Performance

• Consider again nuclear half-lives: d and p( = q) versus a

ÁLVARO CORRAL, FRANCESC FONT, AND JUAN CAMACHO PHYSICAL REVIEW E 83, 066103 (2011)

FIG. 1. (Color online) Empirical probability density of the half-
lives (t) of the 3002 radionuclides available (19 values below 10−10 s
are not shown). The straight lines are three of the power-law fits
explained in the text, covering the fitting range obtained by the
minimization of the KS distance. The exponents are τ = 0.67, 1.19,
and 1.09 (from left to right). Note that extreme caution should be
present when estimating a probability density using large bins; see
Ref. [10].

the empirical one). This is simply done by a kind of bootstrap
method [7], where the synthetic values of t are taken randomly,
with replacement, from the empirical data in that range (i.e.,
t < a). Details of the fitting and the goodness-of-fit testing are
explained in an appendix. Noticeably, the whole fitting and
testing procedure does not use that D(t) should be a straight
line in a log-log scale.

The results of this method applied to the nuclear half-lives
yield the values a = 29.85 s and τ = 1.16 with a KS distance
dm = 0.036 but with p = 0 (from 1000 simulations, that is,
in no case a KS distance larger than the empirical 0.036 was
found). So, the direct application of the Clauset et al.’s method
leads to the rejection of the power-law hypothesis. However,
Fig. 2(a) shows that this result is not convincing. We plot
there, as a function of the cutoff a, the KS distance and the
p value corresponding to the case in which a were fixed or

known (we denote the p value for this case as q, in order to
distinguish it from the p value when a is optimized). It is clear
that the power-law fit must be rejected for any value of a below
107 s (as q = 0), but above this value q takes nonzero values,
fluctuating between zero and 1, as it would correspond to true
power-law distributed data.

So, although the Clauset et al.’s method fails when applied
to the whole data set, we try to apply it now to a restricted
data set, considering a range of variation of the parameter
a above 1000 s (to avoid the misleading minimum of the
KS distance at around 30 s). This leads to a new minimum
at a = 8.8 × 107 s (close to 3 years) and an exponent τ =
1.09 ± 0.01 with dm = 0.052 and p = 33%± 5%. This is an
acceptable result, which means in fact that we cannot reject
the power-law hypothesis. Given that the maximum half-life
is larger than 1031 s (for 128Te), this power law spans more
than 23 orders of magnitude. However, one can realize that
there are only 128 nuclides in the power-law range, which
makes its relevance as a characterization of nuclear properties
rather limited. In any case, we have found a power-law
tail for the distribution of nuclear half-lives, together with
the conclusion that the blind application of Clauset et al.’s
method is not reliable. The condition a > 1000 s is not
determinant, as other values lead to very similar results; see
Table I.

In order to confirm the failure of Clauset et al.’s method
we apply the absolute minimization of the KS distance to
simulated data, with a power-law distribution with τ = 1.09
above a = 8.8 × 107 s and bootstrapping the empirical data
below that value [7]; the KS distance corresponding to two of
them is shown in Fig. 2(b). In 80% of the simulations the p

value turns out to be zero, leading to the rejection of the power-
law hypothesis when the data have, by construction, a true
power-law range. Note that in this case, as the null hypothesis
is true, the p value should be uniformly distributed between
0 and 1. Therefore, we have come across a counterexample
that invalidates the general applicability of the Clauset et al.’s
method. There is nothing surprising here, as, after all, these

(a) (b)

FIG. 2. (Color online) (a) Kolmogorov-Smirnov distance d for different values of the lower cutoff a in a power-law fit of the radionuclide
half-life distribution, together with the associated “q value”, which would be identical to the p value if the parameter a were not optimized.
As a is also variable in the fit, the q value overestimates the true p value. It is clear that the absolute minimum of d yields q = 0 and therefore
p = 0, but for a > 107 s the q value becomes nonzero. (b) Comparison of the empirical KS distance in (a) with that from simulations of a
power law with exponent τ = 1.09 for t > 8.8 × 107 s (and with random values taken from the empirical distribution below that value, as
explained in the text). Only the simulations with the smallest (dm = 0.028, best) and largest KS distances (0.073, worst) out of 100 simulations
are shown. The fraction of minimum distances above the empirical value 0.052 defines the p value.
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We obtain aemp= 3× 107 s (∼ 1 yr) and γemp= 1.09 (with p> 0.20)
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• Comparison between Clauset et al.’s solution (red) (power-law rejected) and
alternative (green) (for the (complementary) cumulative distribution)ÁLVARO CORRAL, FRANCESC FONT, AND JUAN CAMACHO PHYSICAL REVIEW E 83, 066103 (2011)

(a) (b)

FIG. 3. (Color online) (a) Procedure for calculating the KS distance, exemplified with two data sets. In each case, both the empirical and
the fitted cumulative distribution functions are shown. The KS distance dm is the maximum vertical difference between both curves, and the
value of the half-life corresponding to this maximum is shown as a vertical line. Two additional curves, given by S(t) ± dm, are also shown for
clarity sake. The first data set, on the left, is for the half-lives with t � a = 29.85 s, corresponding to the Clauset et al.’s solution, which yields
a bad fit, with p = 0. The second data set, on the right, is for t � 8.8 × 107 s, and although it yields a larger KS distance (0.052 versus 0.036),
leads to a much better power-law fit, as it is more clearly seen on (b) on a doubly logarithmic scale.

then

S(t) =
(a

t

)τ−1
,

while Semp(t) = n(t)/Na , with n(t) the number of data at or
above t (and not below a). In this way, large values of d

denote bad fits, whereas small values correspond to good fits,
the boundary between large and small will be made more
precise below. Figure 3 illustrates the computation of the KS
distance for the nuclear half-lives with two special values of
a, taken from Table I.

The key of the Clauset et al.’s recipe is to consider the cutoff
a not as a fixed quantity but as a parameter that needs to be
estimated from data as well. The previous procedure (fitting
of τ and calculation of KS distance) is then repeated for all
possible a values, and the selected one corresponds to the one
that minimizes the KS distance, i.e., dm = min∀a d. This leads
automatically to one value of a and τ .

In order to quantify the goodness of fit we need to compare
dm with the results for true power-law distributed data. We
simulate synthetic data sets, power law distributed for t � a,
using

t = a

(1 − u)1/(τ−1)
,

with probability Na/N and u a uniform random number
between 0 and 1, and bootstraping the empirical data set for
t < a, with probability Na/N (and N is the total number of
data, ∀t). Then, we apply exactly the same ML estimation
of the exponent and calculation of the KS distance to each
synthetic data set. We stress that the KS distance is computed

between the simulated distribution and its ML fit (not the fit
of the empirical distribution, which provides the parameters
for the simulation). In this way we end with a distribution
of values of dm, which allows one to compute the p value
of the fit, as the ratio between the number of simulations
with dm above the empirical one and the total number of
simulations.

If we generalize the method to an upper truncated power-
law distribution,

D(t) = τ − 1

1 − rτ−1

aτ−1

t τ

defined in [a,b), with r = a/b, then the previous formulas
need to be replaced by

1

τ − 1
+ rτ−1 ln r

1 − rτ−1
− ln

Gab

a
= 0,

√
Nab ε =

[
1

(τ − 1)2
− rτ−1 ln2 r

(1 − rτ−1)2

]−1/2

,

S(t) = 1

1 − rτ−1

[(a

t

)τ−1
− rτ−1

]
,

t = a

[1 − (1 − rτ−1)u]1/(τ−1)
,

for the ML estimation of τ , its asymptotic standard devia-
tion (taken from Ref. [29]), the complementary cumulative
distribution, and the simulated values of the variable in the
power-law region, a � t < b (taken with probability Nab/N),
respectively.
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• Global earthquakes revisited: power law cannot be rejectedConclusions 50
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But other fits are possible! ⇒ LRT, or AIC, or BIC... Main et al. Nature Geosci 2008
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(Upper) Truncated power laws

• Deviations from a power law arise for large x, due to finite size effects. So,

D(x) =
B

xγ
with a≤x≤ b and B=

(γ − 1)aγ−1

1− (a/b)γ−1

Be careful: b is not b−value. The log-likelihood is now

`(γ) = lnB − γ lnG= − γ ln
G

a
− ln a+ ln

γ − 1

1− (a/b)γ−1

with G the geometric mean of data between a and b.

The log-likelihood needs to be maximized numerically

But the rest of the method is the same, swapping both a and b
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Tropical cyclones

• (hurricanes, typhoons)

http://cimss.ssec.wisc.edu

Energy'
∫ ∫

CDρ|v(r, t)|3d2rdt Bister & Emanuel, Met Atm Phys 1998
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• Typhoons in the North Western Pacific (only the largest ones)

100˚

100˚

120˚

120˚

140˚

140˚

160˚

160˚

180˚

180˚

-160˚

-160˚

-140˚

-140˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

100˚

100˚

120˚

120˚

140˚

140˚

160˚

160˚

180˚

180˚

-160˚

-160˚

-140˚

-140˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚



5. Fitting and goodness-of-fit testing of power-law distributions 150

• Tropical cyclones (hurricanes, typhoons), A.C., Ossó, Llebot, Nature Phys 201067

∝ 1/PDI
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• Rainfall Peters et al. Stat Mech 2010
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Discrete power laws A. C., A. Deluca, & R. Ferrer-i-Cancho, ArXiv 2012

• The probability function is given by

f(n) =
B

xγ
with x= a, a+ 1, . . . , and γ > 1 and B=

1

ζ(γ, a)

where ζ(γ, a) is the Hurwitz theta function (ζ(γ, 1) is the Riemann function)

The log-likelihood is
`(γ) = − ln ζ(γ, a)− γ lnG

which is more difficult to maximize

Care with the cumulative distribution function (for the KS test)

The simulation of the discrete distribution is more involving also
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