Technische Universität Dresden Faculty of Chemistry and Food Chemistry

Study Regulations for the Master's degree program in Biochemistry from winter semester 2021/2022

Consolidated version of the <u>official announcements</u> of TU Dresden of March 21, 2019 and the <u>First Amending Statute of the Study Regulations</u> of March 23, 2021.

This is valid for all students enrolled in the Master's degree program Biochemistry **before** the winter semester 2023/24.

Technische Universität Dresden Faculty of Chemistry and Food Chemistry

Study Regulations for the consecutive Master's degree program in Biochemistry

21 March 2019

The Technische Universität Dresden issues the following study regulations based upon Sec. 36 (1) of the Higher Education Freedom Act of Saxony as published on 15 January 2013 (SächsGVBl, p. 3).

Contents

- §1 Scope
- § 2 Objectives of the degree program
- § 3 Admission requirements
- § 4 Commencement and duration of studies
- § 5 Teaching and learning formats
- § 6 Structure and organisation of the degree program
- § 7 Content of the degree program
- § 8 Credit points
- § 9 Student counselling services
- § 10 Changes to module descriptions

Annex 1 Module descriptions

Annex 2 Study plan

§1 Scope

These study regulations are based upon the Higher Education Autonomy Act in Saxony and the examination regulations, and regulate the objectives, content, structure and organisation of the degree program for the consecutive Master's degree program in Biochemistry at TU Dresden.

§ 2 Objectives of the degree program

(1) Students will acquire the required breadth of specialist knowledge including key interdisciplinary skills as well as the associated practical competencies and abilities. They will be to identify the specialist relationships within biochemistry and deepen their knowledge, skills and abilities within their selected areas of the field. They will be able to undertake independent research and conduct experiments to acquire knowledge, critically scrutinise, present and discuss the results and findings of others. Students will be able to identify scientific problems as well as design and conduct experiments. They will be able to apply their knowledge, understanding and skills to finding solutions to problems in both new and unusual situations as well as be able to work as part of a team. They will be able to identify the importance of precise scientific documentation and the presentation of results and undertake to use good scientific practices. They will possess knowledge of legislation and regulations that apply to the field. They will be able to professionally assess the hazards associated with handling the materials commonly used in biochemistry, will have an awareness of the ethical issues that arise from the use of modern methods used in biochemistry, and be able to critically look at topics that are currently discussed within society. Students will have the ability to act responsibly and conscientiously.

(2) Graduates will acquire the specialist skills, methodical, personal and social competencies, as well as the practical skills and expertise, to enter a career in the field or qualify for a doctoral program. They will have the ability to tackle a wide range of problems within the field of biochemistry as well as continuously develop their professional skills.

§ 3 Admission requirements

To be admitted to the degree program, candidates must have completed a first vocational university degree recognised in Germany or obtained a qualification from a state or state-approved vocational academy in chemistry, biology, molecular biotechnology or similar field. Furthermore, this degree program requires English language proficiency at the advanced B2 level according to the Common European Framework of Reference for Languages. If the applicant does not have a certificate of general or subject-specific higher education entrance qualification with a basic or advanced course completed in English (or comparable levels), a higher education entrance qualification completed entirely in English or a certificate of a higher education degree completed entirely in English, then English ability must be demonstrated with an internationally recognised test (preferably IELTS: 6.5, TOEFL iBT: 79, UNIcert II).

§ 4 Commencement and duration of studies

(1) The degree program may be started in the winter semester.

(2) The normal period of study is four semesters and includes contact hours with teaching staff, self-study and the Master's examination.

§ 5 Teaching and learning formats

(1) The program content has a modular structure. Each modules delivers, consolidates and deepens learning content through lectures, seminars, practical sessions, practical work, tutorials, language courses and self-study.

(2) The teaching and learning formats according to Paragraph 1 are defined as follows:

- 1. Lectures introduce students to the particular area covered by a module, present the central topics and structures of the field and their relationships and provide an overview of the current state of research.
- 2. Seminars allow students to apply the material learned in example scenarios as well as to develop their methodical, analytical and communication skills. Students are guided in making use of specialist literature and other materials to independently learn about a chosen topic, present their results, discuss the topic with the group and/or present the topic in written form.
- 3. Practical sessions enable students to put into practice the material acquired in lectures.
- 4. Practical work is intended to allow students to put into practice what they have learned and gain additional practical skills, link theory with practice, and encompass special topics drawing on interdisciplinary problems.
- 5. Tutorials are intended to provide support to students. During tutorials, students reflect on the problems, approaches and results of their independent study with a tutor and receive personal feedback.
- 6. Language courses provide training and develop students' knowledge and skills in a foreign language. Students develop communicative and intercultural competencies within an academic and professional context as well as for everyday situations.
- 7. Self-study is intended for students to independently reinforce and deepen their knowledge of course content.

§ 6 Structure and organisation of the degree program

(1) The degree program has a modular structure. The courses offered are spread over three semesters. The fourth semester is reserved for completing the Master's dissertation and holding the colloquium. The third semester is organised in such that it is ideal for a temporary stay at another university (mobility window).

(2) The degree program consists of six core modules and electives for a total of 35 credit points. These electives allow the student to focus on particular areas of their choosing - technical biochemistry, chemistry of biological systems and general education modules. Modules worth between 10 and 25 credit points are to be chosen for technical biochemistry and the chemistry of biological systems, and for general modules a maximum of 10 credits points. The selection is binding. It is possible to change the selected modules; this requires the student to submit a written application to the Examinations Office stating the module they wish to drop and the new module they wish to join.

(3) Qualification objectives, content, teaching and learning formats used, requirements, applicability, frequency, amount of work and duration of individual modules are indicated in the module descriptions (Annex 1).

⁽⁴⁾ Courses take place in English or German according to the module description.

(5) The optimum distribution of modules across individual semesters such as to allow the degree program to be completed within the standard period of study, along with the type and scope of lectures contained therein and the number and standard progression of the required study and examination activities, can be found in the included study plan (Annex 2).

(6) The range of electives as well as the study plan may be changed by the Faculty Board at the request of the Academic Affairs Committee. The available range of electives is to be announced at the start of the semester via the normal faculty channels. The changed study plan applies to students who are informed of these changes at the start of the semester via normal faculty channels. Exceptions to Sentence 3 are decided by the Examination Board upon application by the student.

(7) Where participation in courses for a selectable core or elective module, or in a non-selectable elective is limited to a certain number of students according to the module description, then participants will be selected at random from those registered. In this case, students must register for the module to take part. The method and deadline for registration will be announced to students accordingly via normal faculty channels.

§ 7 Content of the degree program

(1) The Biochemistry Master's degree program is research-oriented.

(2) The content of the degree program is oriented around the recommendations of the Society for Biochemistry and Molecular Biology (GBM) and the Gesellschaft Deutsche Chemiker (GDCh) and the Verband der Chemischen Industrie. Key topics include protein and enzyme biochemistry and the chemistry of metabolic processes. A further key topic is cellular processes in prokaryotes and eukaryotes with a strong biological focus. Practical activities in these fields are a key component. The degree program also looks at environmental needs and regulations as well as guidelines of good scientific practice.

§ 8 Credit points

(1) ECTS credit points document the average workload on students and their individual progress through their studies. One credit point equates to a workload of 30 hours. In general, 60 credit points are awarded per academic year, i.e. 30 points per semester. The total workload for the degree program is 120 credit points and comprises teaching and learning formats of the type and scope indicated in the module description, study activities and examinations, as well as the Master's dissertation and colloquium.

(2) The number of credit points earned by completing a module are indicated in the module description. Credit points are earned upon successful completion of the module. Sec. 25 of the examination regulations remains unaffected.

§ 9 Student counselling services

(1) General student counselling services are provided via the Central Student Information and Counselling Service of TU Dresden. They offer advice on issues relating to study options, ways of enrolment and other general matters affecting students. Academic advice regarding studies is responsibility of the student counselling service in the Faculty of Chemistry and Food Chemistry. In

particular, academic advisers provide support to students with issues relating to the organisation of their studies.

(2) At the start of the third semester, any student who has not yet completed any part of their studies at all is required to attend an academic advice session.

§ 10 Changes to module descriptions

(1) A simplified procedure exists for making changes to module descriptions in order to optimise the organisation of studies where conditions have changed. Fields that are excluded from this procedure are "Module name", "Objectives", "Content", "Teaching and learning formats", "Requirements for awarding of credit points" as well as "Credit points and grades".

(2) According to this simplified procedure, the Faculty Board enacts the change to the module description at the request of the Academic Affairs Committee. Changes are to be announced via the normal channels within the faculty.

Annex 1 Module descriptions

Module number	Module name	Lecturer responsible	
Chem-Ma-BC01	Fundamentals of Biological	Prof. Tobias Gulder	
	Chemistry and Molecular Cell	(tobias.gulder@tu-dresden.de)	
	Biology		
		Other lecturers:	
		Prof. Nils Kröger	
		(nils.kroeger@tu-dresden.de)	
Objectives	Students will be able to apply in-c	lepth theoretical knowledge of the	
	chemistry of enzyme catalysed read	tions and the reaction mechanisms	
	of selected enzymes in primary m	etabolic pathwaysto other enzyme	
	reactions. Students will also gain in	-depth knowledge of the structures,	
	the molecular structure and th	e function of the sub- cellular	
	compartments of eukaryotic cell	ls. Students will understand the	
	relevance of biochemical findings for	or society.	
Content	This module covers the chemistry	of enzyme reactions and enzyme	
	reaction mechanisms, e.g. glycol	lysis, citric acid cycle, fatty acid	
	decomposition and synthesis, res	piratory chain, etc. The properties	
	and functions of biomembranes	and functions of biomembranes, cell nuclei, mitochondria, the	
	endoplasmic reticulum, Golgi complex, and the cytoskeleton. It also		
	looks at examples of the influence of biochemical findings on society.		
Teaching and	Lectures (4 hrs/wk) and self-study.		
learning formats			
Participation	Foundational knowledge of bioch	nemistry and cell biology at the	
requirements	Bachelor's level is required. The te	xtbook "Principles of Biochemistry"	
	by D. L. Nelson, M. M. Cox (Worth Publ. Inc.) is recommended as		
	preparatory material for this module.		
Applicability	This module is a core module for the Biochemistry Master's degree		
	program. It is a prerequisite for the modules Enzymes in Processes and		
	Research Lab Class.		
Requirements for the	Credit points are earned upon suc	ccessful completion of the module.	
award of credit	This module is examined with on	e end-of-semester exam lasting 90	
points	minutes.	-	
Credit points and		is module. The module grade is the	
grades	grade achieved in the written exam		
Frequency of the	This module runs once per year in t	the winter semester.	
module			
Workload	The total workload for this module	is 150 hours.	
Module duration	The module lasts for one semester.		

Module number	Module name	Lecturer responsible
Chem-Ma-BC07	Enzyme Purification and	Prof. Tobias Gulder
	Characterization	(tobias.gulder@tu-dresden.de)
Objectives	Students will gain deeper theoretical and practical knowledge of the	
	physical, chemical and biochemical properties of proteins and enzymes	
	and use this knowledge to derive protein purification methods. They	
	will be aware of the possibilities and	d limitation of separating processes,
	be able to select appropriate metho	ods, and assess errors. Students will
	also understand the theory and pr	actice of biochemical methods for
	characterising enzymes and their f	unctions <i>in vitro</i> and <i>in vivo</i> as well
	as the determination of kinetic enz	yme data.
Content	This module covers fundamental	principles of protein purification
	based on the physical, chemical	, biochemical and immunological
	properties of proteins while mainta	ining their enzymatic and biological
	function. The module also look	s at selected issues of protein
	purification using a wide range of p	reparation and analytical methods.
	The module further examines spe	ctroscopic methods for identifying
	co-factors, exploring reaction mech	anisms as well as characterising and
	interpreting kinetic data from enzyme catalyzed reactions.	
Teaching and	Lectures (2 hrs/wk), seminars (1 h	r/wk), practical work (6 hrs/wk) and
learning formats	self-study.	
Participation	Foundational knowledge of biochemistry at the bachelor's level is	
requirements	required. The textbook "Principles of Biochemistry" by D. L. Nelson, M.	
	M. Cox (Worth Publ. Inc.) is recommended as preparatory material for	
	this module.	
Applicability	This module is a core module for the Biochemistry Master's degree program. It is a prerequisite for the module Research Lab Class.	
Requirements for the	Credit points are earned upon successful completion of the module.	
award of credit	This module is examined with one end-of-semester exam lasting 90	
points	minutes and a portfolio.	
Credit points and	10 credit points are awarded for this module. The module grade is	
grades	calculated from the weighted average of grades from the assessed	
	work and examination. The exami	nation is double-weighted and the
	portfolio report single-weighted.	
Frequency of the	This module runs once per year in t	the winter semester.
module		
Workload	The total workload for this module is 300 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
Chem-Ma-BC03	Gene Expression and	Prof. Nils Kröger
	Manipulation	(nils.kroeger@tu-dresden.de)
Objectives	Based on their knowledge of primary molecular genetic cell processes,	
	students will be able to identify the regulation mechanisms for the	
	expression of prokaryotic and eukaryotic genes and use genetic	
	engineering methods to both analyse and manipulate them. Students	
	will be familiar with the socie	tal advantages and disadvantages
	related to gene manipulation.	
Content	This module covers the prima	ary molecular genetic processes
	(replication, transcription, translat	ion) in prokaryotic and eukaryotic
	organisms, the organisation and mo	blecular structure of prokaryotic and
	eukaryotic genes, the principles gov	verning gene express in prokaryotic
	and eukaryotic organisms, the bas	ic principles and steps involved in
	recombination and cloning, structu	ural and functional investigation of
	genes (such as sequencing, gene	e localisation, regulation of gene
	expression, polymerase chain re-	action (PCR), restriction fragment
	length polymorphism) as well as techniques for manipulating	
	eukaryotic genomes and their importance, and regulatory issues for	
	molecular genetic work.	
Teaching and	Lectures (2 hrs/wk), seminars (1 hr/	wk), practical work (6 hrs/wk) and
learning formats	self-study.	
Participation	•	mistry and molecular biology at the
requirements	•	xtbook "Principles of Biochemistry"
	by D. L. Nelson, M. M. Cox (Worth Publ. Inc.) is recommended as	
	preparatory material for this module.	
Applicability	This module is a core module for the Biochemistry Master's degree program. It is a prerequisite for the module Research Lab Class.	
Requirements for the		ccessful completion of the module.
award of credit		practical report and one end-of-
points	semester exam lasting 90 minutes.	
Credit points and		this module. The module grade is
grades	5	rage of grades from the assessed
		nation is double-weighted and the
	practical report single-weighted.	
Frequency of the	This module runs once per year in t	the winter semester.
module		1. 200 h
Workload	The total workload for this module	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
Chem-Ma-BC04	Biochemistry of the Cell	Prof. Nils Kröger
		(nils.kroeger@tu-dresden.de)
Objectives	Students will be able to identify	the biochemical mechanisms of
	fundamental intercellular and	transcellular organisational and
	transport processes in eukaryotic	c cells and present the biological
	mechanisms for regulating these p	rocesses.
Content	This module covers intracellular cor	ntrol of proteins, intracellular vesicle
	transport, intracellular organisation	and transport via the cytoskeleton,
	the cell cycle, intracellular signal ti	ransduction as well as cell-cell and
	cell-matrix interactions.	
Teaching and	Lectures (4 hrs/wk) and self-study.	
learning forms		
Participation	Foundational knowledge of biochemistry and cell biology at the	
requirements	Bachelor's level is required. The textbook "Principles of Biochemistry"	
	by D. L. Nelson, M. M. Cox (Wor	th Publ. Inc.) is recommended as
	preparatory material for this module.	
Applicability	This module is a core module for the Biochemistry Master's degree program. It is a prerequisite for the module Research Lab Class.	
Requirements for the	Credit points are earned upon successful completion of the module.	
award of credit		e end-of-semester exam lasting 90
points	minutes.	
Credit points and	5 credit points are awarded for this module. The module grade is the	
grades	grade achieved in the written exam.	
Frequency of the	This module runs once per year in the summer semester.	
module		
Workload	The total workload for this module is 150 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
Chem-Ma-BC05	Bioanalytics	Prof. Brunner
		(eike.brunner@chemie.tu-dres-
		den.de)
		Other lecturers:
		Prof. Schlierf
		(michael.schlierf@tu-
		dresden.de)
Objectives		methods of bioanalytics. They will
	•	nodern bioanalytics and will be able
		solving bioanalytical problems. They
	- · ·	the application of bioanalytical
	•	s the value and applicability of these
	methods in the context of bioar	nalytic questions and be able to
	appropriately plan and conduct and	alytical investigations.
Content	This module covers the theory and	d practice of bioanalytical methods
		atography/electrophoresis, nuclear
	magnetic resonance spectrometry	(NMR), vibrational spectrometry,
		roscopy, and scanning electron
	microscopy.	
Teaching and	Lectures (2 hrs/wk), seminars (2 hrs/wk), practical work (6 hrs/wk) and	
learning formats	self-study.	
Participation	Foundational knowledge of biochemistry and bioanalytics at the	
requirements	Bachelor's level is required. The textbook "Principles of Biochemistry"	
-	by D. L. Nelson, M. M. Cox (Worth Publ. Inc.) is recommended as	
	preparatory material for this module.	
Applicability	This module is a core module for	the Biochemistry Master's degree
	program. It is a prerequisite for the module Research Lab Class.	
Requirements for the	Credit points are earned upon successful completion of the module. This module is examined with one end-of-semester exam lasting 90	
award of credit points		-
	minutes and a practical experience report.	
Credit points and	10 credit points are awarded for this module. The module grade is	
grades	-	rage of grades from the assessed
		nation is double-weighted and the
Fuences	practical report single-weighted.	
Frequency of the	This module runs once per year in the summer semester.	
module Workload	The total workload for this module is 200 hours	
workidau	The total workload for this module is 300 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
Chem-Ma-BC06	Research Lab Class	Prof. Tobias Gulder
		(tobias.gulder@chemie.tu-dres-
		den.de)
Objectives	Students will possess in-depth	practical skills for planning new
	experiments and for working with	complex research topics. They will
	therefore gain the ability to make ju	dgements and act on issues that are
	of great consequence to society. Th	ney will also gain team working skills
	and experience in scientific and in	terdisciplinary communication and
	discussions regarding research find	lings within a research group.
Content	The module covers closely related,	relevant and new research topics in
	biochemistry according to the focu	s area of the individual student and
	a look at recent findings with these	areas.
Teaching and	Seminar (1 hr/wk), practical work (15 hrs/wk) and self-study.	
learning formats		
Participation	Prerequisite modules are: Fundamentals of Biological Chemistry and	
requirements	Molecular Cell Biology, Enzyme Purification and Characterization, Gene	
	Expression and Manipulation, Biochemistry of the Cell, and	
	Bioanalytics.	
Applicability	This module is a core module for	r the Biochemistry Master's degree
	program.	
Requirements for the		ccessful completion of the module.
award of credit points	This module is examined with a paper requiring 10 hours of work, an	
	ungraded practical report and an in	ndividual oral examination lasting 30
	minutes.	
Credit points and	15 credit points are awarded for this module. The module grade is	
grades	calculated from the unweighted average of grades from the assessed	
	work according to Sec. 10(1)(5) of the examination regulations.	
Frequency of the	This module runs once per year in the winter semester.	
module		
Workload	The total workload for this module is 450 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
Chem-Ma-TB09	Concepts of Natural Product	Prof. Tobias Gulder
	Biosynthesis	(tobias.gulder@tu-dresden.de)
Objectives	•	nt classes of natural materials and
		y those of biomedically relevant
		tides) and be able to identify the
	individual biosynthetic elements in	
		edictions about resultant product
	structures based on the organisatio	n of biosynthetic pathways and also
	suggest possible biosynthetic pathw	ays for given structures.
Content	This module covers fundamental p	rinciples of enzyme catalysis as well
	as metabolic crossover points of pri	mary and secondary metabolism. It
	_	of the biosynthetic pathways of
	medically important classes of natu	ral products as well as methods for
	understanding biosynthetic pathw	ays and initial basic principles for
	manipulating biosynthetic processes <i>in vivo</i> and <i>in vitro</i> .	
Teaching and	Lectures (4 hrs/wk) and self-study.	
learning formats		
Participation	Foundational knowledge of biochemistry at the bachelor's level is	
requirements	required. The textbook "Principles of Biochemistry" by D. L. Nelson, M.	
	M. Cox (Worth Publ. Inc.) is recommended as preparatory material for	
	this module.	
Applicability	This module is one of eight electives in the Technical Biochemistry focus	
	area in the Biochemistry Master's degree program, from which	
	students must select modules with a total of 10 to 25 credit points.	
Requirements for the	Credit points are earned upon successful completion of the module.	
award of credit	This module is examined with one	e end-of-semester exam lasting 90
points	minutes.	
Credit points and		s module. The module grade is the
grades	grade achieved in the examination.	
Frequency of the	This module runs once per year in the summer semester.	
module		
Workload	The total workload for this module is 150 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
Chem-Ma-TB10	Practical Concepts of Natural	Prof. Tobias Gulder
	Product Biosynthesis	(tobias.gulder@tu-dresden.de)
Objectives	Students will learn about important classes of natural materials and biosynthetic pathways, particularly those of biomedically relevant compounds (e.g. polyketides, peptides) and be able to identify the individual biosynthetic elements in the structures of natural materials. Students will be able to make predictions about resultant product structures based on the organisation of biosynthetic pathways and also suggest possible biosynthetic pathways for given structures. They will be able to identify how the biosynthetic pathways for natural materials can be modified to create new non-natural materials.	
Content	This module includes mechanistic analyses of the biosynthetic pathways of medically important classes of natural products as well as methods for understanding biosynthetic pathways and initial basic principles for manipulating biosynthetic processes <i>in vivo</i> and <i>in vitro</i> . Alongside current examples from literature on the biosynthesis of natural materials, practical implementation of selected aspects are included, particularly the aspects of production and application of natural materials and biosynthetic enzymes or the recombinant production of natural material molecules.	
Teaching and learning formats	Practical work (6 hrs/wk) and self-study.	
Participation	Foundational knowledge of bioch	emistry at the bachelor's level is
requirements	required. The textbook "Principles of Biochemistry" by D. L. Nelson, M. M. Cox (Worth Publ. Inc.) is recommended as preparatory material for this module.	
Applicability	This module is one of eight electives in the Technical Biochemistry focus area in the Biochemistry Master's degree program, from which students must select modules with a total of 10 to 25 credit points.	
Requirements for the	Credit points are earned upon successful completion of the module.	
award of credit	This module is examined with a po	-
points		
Credit points and	5 credit points are awarded for thi	s module. The module grade is the
grades	grade achieved in the examination.	
Frequency of the	This module runs every semester.	
module		
Workload	The total workload for this module is 150 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible	
Chem-Ma-TB02	Enzymes in Processes	Prof. Weigand	
		(jan.weigand@tu-dresden.de)	
		Other lecturers:	
		Prof. Henle	
		(thomas.henle@tu-dresden.de);	
		Prof. Ansorge-Schumacher	
		(marion.ansorge@tu-	
		dresden.de)	
Objectives	Students will be familiar with en	zyme technology reaction techniques	
	and process control using exa	mples of industrial application and	
	current areas of research. Stude	nts will possess an in-depth overview	
	of modern enzyme technology	processes and the current state of	
	research. Students will be able t	o independently work on a research	
	topics of their choosing, both in	theory and in practice, and document	
	and present their findings.		
Content	This module focuses on enzyma	atic functionalisation, biocatalysis and	
	immobilisation of enzymes.		
	This module looks at the followin	ng topics:	
	Enzyme technology		
	Biocatalysis for the production		
	well as for the production of foodstuffs and ingredients		
	 Immobilisation of enzymes 		
	Enzymatic functionalisation of milk proteins		
	Brewing technology		
	Enzymatic process technolog	V	
	Industrial applications	-	
	Implementation in process te	echnology	
	 Enzymes in technical catalysis 		
Teaching and		hr/wk), practical work (3 hrs/wk) and	
learning forms	self-study. Participation in the	practical element of this module is	
	limited to 10 students according	to Sec. 6(7) of the study regulations.	
Participation	Alongside Bachelor's level knowl	edge in biochemistry, food chemistry	
requirements	and food and biotechnology, the skills gained from the module		
-	Fundamentals of Biological Cher	mistry and Molecular Cell Biology are	
	required.		
	Recommend preparatory literatu	ire:	
	H. Bisswanger, Enzyme Kinetics	- Principles and Methods, Wiley- VCFI,	
	2008, ISBN: 978-3-527-31957-2		
		R.J. Whitehurst, Enzymes in Food Technology, Wiley-VCFI, 2010,	
	ISBN: 978-31-4051-8366-6		
Applicability		ves in the Technical Biochemistry focus	
	-	ster's degree program, from which	
	students must select modules wi	th a total of 10 to 25 credit points.	

Requirements for the	Credit points are earned upon successful completion of the module.	
award of credit	This module is examined with one end-of-semester exam lasting 90	
points	minutes and an ungraded report requiring 10 hours of work.	
Credit points and	5 credit points are awarded for this module. The module grade is	
grades	calculated from the weighted average of grades from the assessed	
	work according to Sec. 10(1)(5) of the examination regulations. In this	
	case, the examination is single-weighted and the report is double-	
	weighted.	
Frequency of the	This module runs once per year in the summer semester.	
module		
Workload	The total workload for this module is 150 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
Chem-Ma-TB03	Bioinformatics	Prof. Schroeder
		(michael.schroeder@tu-dres-
		den.de)
Objectives	Students will possess knowled	lge of the basic principles of
	bioinformatics, particularly in the area of sequence comparison and	
	current topics in bioinformatics.	Students will have knowledge of
	algorithms for comparing sequer	nces using dynamic programming,
	substitution matrices as well as mu	Iltiple sequence alignments.
Content		parison, substitution matrices, local
	and global alignment, assessment s	schemes and progressive alignment.
Teaching and	Lectures (2 hrs/wk), practical sessio	ons (2 hrs/wk) and self-study.
learning forms		
Participation	Basic skills in computer programming in a language such as Python are	
requirements	required for this module. Books such as "Learning Python" by M. Lutz	
	(O'Reilly) are suitable preparatory r	naterials for this module.
Applicability	This module is one of eight electives	s in the Technical Biochemistry focus
	area in the Biochemistry Maste	r's degree program, from which
	students must select modules with a total of 10 to 25 credit points.	
Requirements for the	Credit points are earned upon successful completion of the module.	
award of credit	This module is examined with a test lasting 45 minutes.	
points		
Credit points and	5 credit points are awarded for this module. The module grade is the	
grades	grade achieved in the examination.	
Frequency of the	This module runs once per year in the summer semester.	
module		
Workload	The total workload for this module is 150 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
Chem-Ma-TB04	Protein Biochemistry and	Prof. S. Alberti
	Proteomics	(Simon.Alberti@tu-dresden.de)
Objectives	Students will understand the principles of protein folding and protein-	
	protein interactions in the context of protein complex formation and	
	supramolecular structures. They will have substantial theoretical	
	knowledge of protein biochemistry and protein biotechnology as well as	
	a good understanding of instrume	ntal protein analytics underpinned
	by practical experience in experime	entation.
Content	The module covers the fundame	ntals of protein biochemistry and
	provides an overview of diseases t	hat are a result of errors in protein
	folding and proteins that do not f	unction correctly. Also covered are
	methods for analysing proteins suc	h as protein mass spectrometry, the
	characterisation of protein-protein	interactions and the use of protein
	databases. The module also inclu	udes the fundamentals of protein
	biotechnology as well as the produ	uction of recombinant proteins and
	their analysis (affinity clean	ing, protein binding assays,
	immunoprecipitation, protein electrophoresis and immunoblotting).	
Teaching and	Lectures (3 hrs/wk), practical work (5 hrs/wk) and self-study.
learning formats		
Participation	Bachelor's level knowledge of molecular biology, biochemistry and cell	
requirements	biology is required. Recommend preparatory literature:	
	• Alberts, Johnson, Lewis, Morgan, Raff, Roberts, Walter. Molecular	
	Biology of the Cell, Garland Science Press,	
	 Berg, Tymoczko, Gatto, Stryer. Biochemistry, Palgrave Macmillan. Introduction to Proteomics (D.C. Leibier, Humana Press). 	
Applicability		
Applicability	This module is one of eight electives in the Technical Biochemistry focus area in the Biochemistry Master's degree program, from which	
	students must select modules with	0 1 0 1
Dequirements for the		'
Requirements for the award of credit		ccessful completion of the module.
		practical report and one end-of-
points	semester exam lasting 120 minutes. 10 credit points are awarded for this module. The module grade is	
Credit points and		_
grades	U	rage of grades from the assessed
		al report is single-weighted andthe
Fraguanayoftha	written examination is double-weig	
Frequency of the module	This module runs once per year in t	ine winter semester.
Workload	The total workload for this module	is 300 bours
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible	
Chem-Ma-TB05	Genome Engineering, Genomes	Prof. A. F. Stewart	
	and Evolution	(Francis.Stewart@tu-	
		dresden.de)	
Objectives	Students will possess knowledge of the eukaryotic and prokaryotic		
	genomes of organisms and genom	es particularly important to genome	
	engineering and understand the ce	ell life cycle. They will be able to apply	
	the tools and techniques of genom	ne engineering. Students will be able	
	to understand the nature of t	he genotype, its architecture, its	
	characteristics and mutability on a	a new integrative level. They will be	
	able to draw conclusions about the	he architecture of the genome, the	
	content as well as the mechanisms	of mutation through evolution. They	
	will understand how the integrity	of the genome is maintained based	
	on the molecular mechanisms of D	NA replication and repair as well as	
	recombination. They will be able	to see that these processes both	
	stabilise and modify the genome.	They will be able to understand the	
	structure of both prokaryotic nu	structure of both prokaryotic nucleoids and eukaryotic chromatins.	
	Students will also gain foundation	Students will also gain foundational knowledge of genetic engineering.	
	Students will have a comprehensiv	Students will have a comprehensive understanding of the genome and genome engineering. This will complement their knowledge of tissue	
	genome engineering. This will cor		
	engineering, bioinformatics and cellular machines. Students will possess an overview of the different techniques used in the various areas of genomics (e.g. DNA recombination in bacteria, site-specific and other types of recombination, recombineering, restriction enzymes, southern blotting method and gel electrophoresis.		
Content	•	ryotic and eukaryotic genomes in	
	relation to the evolution of life as well as the tools and techniques of		
	genome engineering in theory and in practice.		
Teaching and	Lectures (3 hrs/wk), practical work	(5 hrs/wk) and self-study.	
learning formats			
Participation	Bachelor's level knowledge of the composition of DNA, the double helix		
requirements	structure of DNA, nucleic acid metabolism as well as knowledge of cell		
		biology. Recommend preparatory literature:	
	• Berg, Tymoczko, Gatto, Stryer Biochemistry (9 th edition) Palgrave		
	Macmillan.		
		• Lewin B,, Genes VIII, Pearson 2004, ISBN 0-13-123924-4	
	• Alberts, Johnson, Lewis, Morgan, Raff, Roberts, Walter (6 th edition)		
	Molecular Biology of the Cell Garland Science Press ISBN 4978-0- 8153-4524-4		
Applicability		s in the Technical Biochemistry focus	
	C C	•	
	area in the Biochemistry Master's degree program, from which students must select modules with a total of 10 to 25 credit points.		
Doguiromonto for the			
Requirements for the award of credit	Credit points are earned upon successful completion of the module. This module is examined with a practical report and one end-of-		
points	semester examined with a practical report and one end-or-		
Polits	6		

Credit points and	10 credit points are awarded for this module. The module grade is
grades	calculated from the weighted average of grades from the assessed work and examination. The examination is triple-weighted and the practical report single-weighted.
Frequency of the	This module runs once per year in the winter semester.
module	
Workload	The total workload for this module is 300 hours.
Module duration	The module lasts for one semester.

Module number	Module name	Lecturer responsible	
Chem-Ma-TB06	Drug Discovery	Prof. Yixin Zhang	
		(yixin.zangl @tu-dresden.de)	
Objectives	Students will know about the various options for discovering active		
	substances, including screening methods, the targets of active		
	substances and their developm	nent. They will understand the	
	advantages and disadvantages of d	advantages and disadvantages of different active substances. Students	
	will have a good understanding	of the key concepts in medicinal	
	chemistry and pharmacology such	as pharmacokinetics.	
Content	This module looks at the fundame	ntal chemistry and the processes of	
	discovering active substances start	ing with the validation of biological	
	models and target proteins to the	he various methods of substance	
	screening and other related discove	ery concepts, through to pre-clinical	
	and clinical trials. This module look	s at the following topics:	
	Overview of active substance	e classification based upon their	
	molecular structure or effect,	or based upon the illness they are	
	intended to treat		
	• Some important examples from the history of active substance		
	discovery		
	• Current concepts and developments in cell-based therapy		
	• Signal pathways in relation to cancer and autoimmune diseases		
	Various methods for improving pharmacokinetics.		
Teaching and	Lectures (2 hrs/wk), tutorials (2 hrs/wk) and self-study.		
learning formats			
Participation	Foundational knowledge of biochemistry at the bachelor's level is		
requirements	required. The textbook "Principles of Biochemistry" by D. L. Nelson, M.		
	M. Cox (Worth Publ. Inc.) is recom	mended as preparatory material for	
	this module.		
Applicability	This module is one of eight electives	s in the Technical Biochemistry focus	
	area in the Biochemistry Maste	r's degree program, from which	
	students must select modules with a total of 10 to 25 credit points.		
Requirements for the	Credit points are earned upon successful completion of the module.		
award of credit	This module is examined with one end-of-semester exam lasting 90		
points	minutes.		
Credit points and	5 credit points are awarded for this module. The module grade is the		
grades	grade achieved in the written exam.		
Frequency of the	This module runs once per year in	the winter semester.	
module	The total workload for this west it.	is 150 hours	
Workload Modulo duration	The total workload for this module is 150 hours.		
Module duration	The module lasts for one semester.		

Module number	Module name	Lecturer responsible	
Chem-Ma-TB07	Medical Biochemistry	Dr. Matura	
		(anke.matura@chemie.tu-dres-	
		den.de)	
		Other lecturers:	
		Prof. Jens Pietzsch	
		(j.pietzsch@hzdr.de)	
Objectives	Students will learn the basic princip	les of medicinal biochemistry and the	
	importance of the subject as a fo	undation for clinical diagnosis. They	
	will learn the fundamental princi	ples of biochemistry and regulation	
	relationships in the genesis, diagr	osis and treatment of diseases and	
	gain knowledge of the principles	of biotransformation, the effects of	
		diagnostics. They will know about	
		ed intracellular and extracellular	
	e e e e e e e e e e e e e e e e e e e	lerstand the relationships between	
	-	nifestation and progression of certain	
		evance in healthcare policy. Students	
		tical and diagnostic methods used in	
	-	icularly about methods of molecular	
	imaging.		
Content		alist field of clinical biochemistry	
content		This module looks at the specialist field of clinical biochemistry.	
	Alongside learning the defined concepts of medicinal biochemistry and		
	pathobiochemistry, the module covers areas of application, methods and model organisms, biochemical changes in humans as well as new		
	findings in biochemistry and biomedicine concerning the genesis,		
	manifestation and progression of certain diseases that are highly		
Teeshing and	relevant in healthcare policy.	Lestures and held in Courses	
Teaching and	Lectures (4 hrs/wk) and self-study. Lectures are held in German.		
learning formats	Knowledge of his shereistry at the	Dechalaria laval is required	
Participation	Knowledge of biochemistry at the Bachelor's level is required.		
requirements	Recommended preparatory literature: "Löffler/Petrides - Biochemie und Pathobiochemie" (ed. Heinrich, Müller, Graeve) Springer.		
Applicability	This module is one of eight elective	s in the Technical Biochemistry focus	
	-	legree program, from which students	
	must select modules with a total of 10 to 25 credit points.		
Requirements for the	Credit points are earned upon su	ccessful completion of the module.	
award of credit		ndividual oral examination lasting 50	
points	minutes.		
Credit points and	5 credit points are awarded for this module. The module grade is the		
grades	grade achieved in the examination.		
Frequency of the	This module runs once per year in	the winter semester.	
module			
Workload	The total workload for this module	e is 150 hours.	
Module duration	The module lasts for one semester		
-			

Module number	Module name	Lecturer responsible
Chem-Ma-BS01	Microbiology of Anaerobic	Prof. Michael Rother
	Systems	(michael.rother@tu-dresden.de)
Objectives	Students will understand the role	e of anaerobic microorganisms in
	global material cycles and have an u	inderstanding of their adaptation to
	this form of existence. Students will	be able to describe the activities of
	anaerobic microorganisms base	ed upon their structural and
	physiological properties. They wi	ll be able to critically assess the
	possibilities and limitations of anae	robic microbiology.
Content	This modules covers the classifica	tion of anaerobic microorganisms
	with the context of geological histo	ry and phylogenetics as well as the
	description of various systems of e	energy conservation. It includes an
	overview of the metabolic	diversity found in anaerobic
	microorganisms, their metabolic p	erformance and their influence on
	the global materials cycle. The m	odule further looks at the unique
	structural and physiological properties, isolation, characterization and	
	description of anaerobic microorganisms.	
Teaching and	Lectures (3 hrs/wk) and self-study. The language of teaching for lectures	
learning formats	can be either German or English an	d will be determined by the lecturer
	at the start of the semester and ann	ounced via normal faculty channels.
Participation	Knowledge of microbial physiology	at the Bachelor's level is required.
requirements	Recommended preparatory literati	ure includes: "Brock Mikrobiologie"
	by Madigan, M.T. and Martinko, J. M H. (ed.) (Pearson Studium).	
Applicability	This module is one of six electives in the Chemistry of Biological	
	Systems focus area of the Biochemistry Master's degree program from	
	which students must select modules of 10 to 25 credit points.	
Requirements for the	Credit points are earned upon successful completion of the module.	
award of credit	This module is examined with one end-of-semester exam lasting 90	
points	minutes.	
Credit points and	5 credit points are awarded for this module. The module grade is the	
grades	grade achieved in the written exam.	
Frequency of the	This module runs once per year starting in the summer semester.	
module Workload	The total workload for this module is 150 hours.	
Module duration		
	This module lasts for two semesters.	

Module number	Module name	Lecturer responsible
Chem-Ma-BS02	Physiology of Anaerobic	Prof. Michael Rother
	Microorganisms (michael.rother@tu-dresden.de)	
Objectives	Students will be able to apply	methods for the cultivation and
	physiological characterisation of ar	naerobic microorganisms. They will
	know about the equipment necess	ary to do this. Students will gain an
	understanding of the molecular ar	nd biochemical processes that take
	place within anaerobic microorgani	sms and learn about the biotic and
	abiotic processes in thresho	ld aerobic/anaerobic microbial
	environments.	
Content	This module looks at the metho	odical principles of working with
	anaerobic microorganisms, the isol	ation of anaerobic microorganisms
	from environmental samples as	well as taxonomically relevant
	physiological and microscopic anal	yses. The module also looks at the
	physiological properties that allow	v microorganisms to change from
	aerobic to anaerobic metabolism in facultative microorganisms.	
Teaching and	Seminar (1 hr/wk), practical work (4 hrs/wk) and self-study. The	
learning forms	language of teaching for the seminar and practical work can be either	
	German or English and will be determined by the lecturer at the start	
	of the semester and announced via normal faculty channels.	
Participation	Knowledge of microbial physiology at the Bachelor's level is required.	
requirements	Recommended preparatory literature includes: "Brock Mikrobiologie"	
	by Madigan, M.T. and Martinko, J. M H. (ed.) (Pearson Studium).	
Applicability	This module is one of six electives in the Chemistry of Biological	
	Systems focus area of the Biochemistry Master's degree program from	
	which students must select modules of 10 to 25 credit points.	
Requirements for the	Credit points are earned upon succe	essful completion of the module. This
award of credit	module is examined with one individual oral examination lasting 20	
points	minutes and an ungraded practical report.	
Credit points and	5 credit points are awarded for this module. The module grade is	
grades	calculated from the unweighted average of grades from the assessed	
	work according to Sec. 10(1)(5) of the examination regulations.	
Frequency of the	This module runs once per year in the summer semester.	
module		
Workload	The total workload for this module is 150 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
Chem-Ma-BS03	Cellular Signaling	Prof. Yixin Zhang
	(yixin.zhangl @tu-dresden.de)	
Objectives	Students will have knowledge of the chemical principles of cellular signalling as an important foundation of modern cell biology and understand the entire interdisciplinary context.	
Content	 This module looks at different topics in cell signalling as a communication process that guides basic cell activities and coordinates all cell actions. This module looks at the following topics: The concept of cellular signal transduction Overview of different posttranslational modifications Relationships between enzyme catalysed posttranslational modifications and the resulting change in the structure and function of the protein Proteolysis by different proteases, phosphorylations and dephosphorylations by different kinases and phosphatases Important examples of cell-cell signalling in relation to disease, particularly cancer and autoimmune diseases Mechanisms of cell signalling Kinetic and thermodynamic aspects of posttranslational modifications. 	
Teaching and learning formats	Lectures (2 hrs/wk), seminars (2 hrs/wk) and self-study.	
Participation	Foundational knowledge of bioche	mistry and molecular biology of the
requirements	literature includes: Biochemistry. Stryer L. New York: W Fl Freeman;	uired. Recommended preparatory 5th edition, Berg JM, Tymoczko JL, 2002 und Molecular Biology of the A, Lewis J, et al. New York: Garland
Applicability	This module is one of six electives in the Chemistry of Biological Systems focus area of the Biochemistry Master's degree program from which students must select modules of 10 to 25 credit points.	
Requirements for the	Credit points are earned upon successful completion of the module.	
award of credit	This module is examined with one end-of-semester exam lasting 90	
points	minutes.	
Credit points and grades	5 credit points are awarded for this module. The module grade is the grade achieved in the examination.	
Frequency of the module	This module runs once per year in the summer semester.	
Workload	The total workload for this module is 150 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible	
Chem-Ma-BS04	Cellular Machines	Prof. Stefan Diez	
	(stefan.diez@tu-dresden.de)		
Objectives	Students will be able to bring together the knowledge they have		
	acquired in molecular cell biology, b	iochemistry, proteomics, biophysics	
	and bionanotechnology and unde	erstand the concepts of functional	
	biomolecular units as machines for	or use in complex technological or	
	medicinal processes as nanoscale fu	unctional components. Students will	
	have interdisciplinary research and	development skills that will qualify	
	them to work in both science and re	esearch and development in biotech	
	companies.		
Content	This module looks at the structure	e and function of lipid membranes	
	together with membrane proteins,	, energytransformation, interaction	
	and folding of protein structures, D	DNA and associated proteins, signal	
	transduction and protein degrada	tion, classification and function of	
	viruses, filament systems of the cy	toskeleton, motor proteins in the	
	cytoskeleton, intracellular tran	sport, cellular movement and	
	biomolecular sensor systems.		
Teaching and	Lectures (4 hrs/wk), seminars (4 hrs	/wk) and self-study.	
learning formats			
Participation	Bachelor's level knowledge of molecular biology, biochemistry, physics		
requirements	and knowledge of the chemical imp	portance of single molecule aspects.	
	Recommended preparatory literatu	re includes: Molecular Biology of the	
	Cell. 6th edition. Alberts B, Johnson	A, Lewis J, et al. New York: Garland	
	Science; 2014 and Mechanics of M	lotor Proteins and the Cytoskeleto.	
	Jonathon Floward: Sinauer; 2005.		
Applicability	This module is one of six electives in the Chemistry of Biological Systems		
	focus area of the Biochemistry Ma	aster's degree program from which	
	students must select modules of 10 to 25 credit points.		
Requirements for the	Credit points are earned upon succe	essful completion of the module. This	
award of credit	module is examined with a paper	module is examined with a paper requiring 15 hours of work and an	
points	individual oral examination lasting 20 minutes.		
Credit points and	10 credit points are awarded for this module. The module grade is		
grades	calculated from the weighted average of grades from the assessed work		
	and examination. The oral examination is 7x weighted and the practical		
	report triple-weighted.		
Frequency of the	This module runs once per year sta	rting in the summer semester.	
module			
Workload	The total workload for this module is 300 hours.		
Module duration	This module lasts for two semesters.		

Module number	Module name	Lecturer responsible	
Chem-Ma-BS05	Metabolism of Natural Products	Prof. Jutta Ludwig-Müller	
	and Natural Product	(Jutta.ludwig-mueller@tu-dres-	
	Biosynthesis	den.de)	
		Other lecturers:	
		Prof. Tobias Gulder	
		(tobias.gulder@tu-dresden.de)	
Objectives	Students will gain an insight into th	ne central topic areas, fields of work	
	and fields of applications of the mo	plecular biology of natural materials	
	in plants, be familiar with key s	specialist terms and describe the	
	interdisciplinary context. Students	will know about the most important	
	biosynthetic pathways for second	ary metabolites in microorganisms	
	and the possibilities for manipul	ating these. They will also gain a	
	understanding of the effects that	t natural materials have on other	
	organisms. They will have str	rengthened their communication	
	competencies through discussion r	ounds in working groups.	
Content	This module covers the functions	of natural plant materials and their	
content		ooks at the occurrence, biosynthesis	
		-	
		and analysis of selected plant and microbial natural products, the	
	possibilities for their biotech production and their function in plants		
	during development and in interaction with other organisms. The		
	module further looks at the effect of natural plant materials on humans in relation to interactions with cellular components, metabolism and		
		toxicity, the effect on physiological processes, nutritional physiological	
	and medicinal aspects as well as bioinformatic methods for the		
	prediction of microbial natural pro	ducts.	
Teaching and	Lectures (4 hrs/wk) and self-study.		
learning formats			
Participation	Knowledge of plant physiology and biochemistry at bachelor level is		
requirements	required. A foundational textbook on phytology or plant physiology is		
	recommended, e.g.: Lüttge, Kluge: Botanik, Wiley.		
Applicability	This module is one of six electives in the Chemistry of Biological		
		istry Master's degree program from	
	which students must select modules of 10 to 25 credit points.		
Requirements for the	Credit points are earned upon su	ccessful completion of the module.	
award of credit		e end-of-semester exam lasting 90	
points	minutes.		
Credit points and		5 credit points are awarded for this module. The module grade is the	
grades	grade achieved in the written exam		
Frequency of the	This module runs once per year in	the winter semester.	
module			
Workload	The total workload for this module		
Module duration	The module lasts for one semester		

Module number	Module name	Lecturer responsible
Chem-Ma-BS06	Biological Materials	Prof. Nils Kröger
	(nils.kroeger@tu-dresden.de)	
Objectives	Students will be able to identify the structures and properties of	
	biominerals and bioadhesives, par	ticularly regarding the relationship
	between scale-independent structu	ire and function. Students will also
	be familiar with the fundame	ental biochemical and physical
	mechanisms of the biosynthesis of	these biological materials.
Content	This module looks at the physical pr	roperties, biochemical composition,
	biogenesis and biological function	of biominerals and bioadhesives.
	The module also covers fundamenta	al physical and chemical theories on
	crystallisation and adhesion, i	methods of (bio)chemical and
	(bio)physical analysis of the compos	sition and properties of biominerals
	and bioadhesives as well as the mechanisms of their biogenesis.	
Teaching and	Lectures (2 hrs/wk), seminars (2 hrs	s/wk), practical work (6 hrs/wk) and
learning formats	self-study. Participation in the pr	actical element of this module is
	limited to 6 students according to Sec. 6(7) of the study regulations.	
Participation	Bachelor's level knowledge in the	e areas of organic and inorganic
requirements	chemistry, biochemistry and cell biology is required. Recommended	
	preparatory literature includes: "Biomineralization" by Stephan Mann	
	and "Bioadhesion and Biomimetics" by Bianco-Peled and Davidovich-	
	Pinhas.	
Applicability	This module is one of six electiv	es in the Chemistry of Biological
	Systems focus area of the Biochemistry Master's degree program from	
	which students must select modules of 10 to 25 credit points.	
Requirements for the	Credit points are earned upon successful completion of the module.	
award of credit	This module is examined with an ungraded practical report and an	
points	individual oral examination lasting 30 minutes.	
Credit points and	10 credit points are awarded for this module. The module grade is	
grades	calculated from the weighted average of grades from the assessed	
	work according to Sec. 10(1)(5) of the examination regulations.The oral	
	examination is double-weighted and the practical report single-	
	weighted.	
Frequency of the	This module runs once per year in t	he winter semester.
module		
Workload	The total workload for this module is 300 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
Chem-Ma-AM01	General Studies	Dean of Studies
		(studiendekan_bc@chemie.tu-
		dresden.de)
Objectives	Students will further improve the	ir English language skills using topics
	relevant to society and taking a cri	itical look at these fields. They will use
	their linguistic, social and persona	al skills and competencies to focus in
	particular on intercultural dis	scourse and making responsible
	judgements and taking responsib	le actions in society.
Content	This module deals, in English, wi	th interdisciplinary issues chosen by
	the student that relate to living in	a pluralistic society The development
	and application of scientific findir	ngs and methods in international and
	in intercultural fields of work are	also considered.
Teaching and	This module includes lectures or	seminars totalling 4 hrs/wk as well as
learning formats	self-study. The required number o	of courses are to be selected from the
		Biochemistry Master's degree course.
	This catalogue will be announced along with coursework and	
	-	e start of the semester through the
	normal faculty channels.	C C
Participation	None.	
requirements		
Applicability	This module is one of three electiv	ves in the General Education Modules
	focus area of the Biochemistry Master's degree program, from which	
	students must select modules worth a maximum of 10 credit points.	
Requirements for the	Credit points are earned upon successful completion of the module.	
award of credit		in ungraded piece of coursework or
points	examination as stated in the "General Studies" catalogue.	
Credit points and	5 credit points are awarded for this module. The module will only be	
grades	graded as "passed" or "not passed".	
Frequency of the	This module runs every semester.	
module		
Workload	The total workload for this module is 150 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
Chem-Ma-AM02	Profile Course: Advanced	Antonella Wermke
	Professional English	(antonella.wermke@tu-dres-
		den.de)
Objectives	Students will possess advanced	communication and intercultural
	competencies in the English langu	age at level C1/C2 of the Common
	European Framework of References	s for languages. Students will be able
	to flexibly and competently use the	ese skills while studying abroad and
	in their careers.	
Content	The content of this module is based	upon the choice of the students and
	looks at different aspects of spoke	n communication in the workplace,
	international negotiations, profes	sional writing as well as project
	development and management.	
Teaching and	Language courses (4 hrs/wk) and self-study. The required courses are	
learning formats	chosen from the "Profile Courses" catalogue for languages at TU	
	Dresden; these will be announced along with coursework/examination	
	requirements for each module at the start of the semester through the	
	normal faculty channels.	
Participation		iency in English at level B2 of the
requirements	Common European Framework of F	Reference for languages.
Applicability	This module is one of three elective	es in the General Education Modules
	focus area of the Biochemistry Master's degree program, from which	
	students must select modules worth a maximum of 10 credit points.	
Requirements for the	Credit points are earned upon successful completion of the module. This	
award of credit		n the Profile Courses catalogue for
points	languages at TU Dresden.	
Credit points and	5 credit points are awarded for this module. The module grade is	
grades	calculated from the unweighted average of individual grades from the	
	assessed work.	
Frequency of the	This module runs every semester.	
module		
Workload	The total workload for this module is 150 hours.	
Module duration	This module lasts for two semesters.	

Module number	Module name	Lecturer responsible				
Chem-Ma-AM03	Current Topics in Materials	Prof. G. Cuniberti				
	Science	(gianaurelio.cuniberti@tu-dres-				
		den.de)				
Objectives	Students will learn about the various aspects of current resea materials science. They will gain relevant key competencies					
	foundation of scientific presentation, patent law, technology trai					
Content The module covers modern experimental and theoretical r						
	 discovering, characterizing, applying and marketing new materials a focus on changing topic areas such as: technology transfer: from the lab to the market 					
	Intelligent materials for application in energy technology, in health					
	care and information technology					
	Innovative materials for energy technologies: from ideas to market					
	solutions					
	• Nano in Macro: Integrating molecular components into functional					
	macroscopic systems					
	Presentation, publication a	and securing funding: Talks,				
	dissertations/publications/pate	nts and research applications				
Teaching and	Lectures (1 hr/wk), practical sessions (1 hr/wk), practical work (1 hr/wk)					
learning formats	and self-study.					
Participation	None.					
requirements						
Applicability		es in the General Education Modules				
	-	ster's degree program, from which				
	students must select modules wort	h a maximum of 10 credit points.				
Requirements for the	Credit points are earned upon suc	ccessful completion of the module.				
award of credit	This module is examined with a rep	port requiring 10 hours of work.				
points						
Credit points and	5 credit points are awarded for this module. The module grade is the					
grades	grade achieved for the report.					
Frequency of the	This module runs once per year in the winter semester.					
module						
Workload	The total workload for this module is 150 hours.					
Module duration	The module lasts for one semester.					

Annex 2

Study plan

with type and scope of courses given in hrs/week

as well as required work, the type, scope and format of which can be found in the module descriptions

Module		1st Semester	2nd Semester	3rd Semester (M)	4th Semester	CD			
no.	Module name	L/E/S/P/LC	L/E/S/P/LC	L/S/P/T		СР			
Core modules									
Chem- Ma- BC01	Fundamentals of Biological Chemistry and Molecular Cell Biology	4/0/0/0/0 1x Ex				5			
Chem- Ma-BC07	Enzyme Purification and Characterization	2/0/1/6/0 2x Ex				10			
Chem- Ma-BC03	Gene Expression and Manipulation	2/0/1/6/0 2x Ex				10			
Chem- Ma-BC04	Biochemistry of the Cell		4/0/0/0/0 1x Ex			5			
Chem- Ma-BC05	Bioanalytics		2/0/2/6/0 2x Ex			10			
Chem- Ma-BC06	Research Lab Class			0/1/15/0 3x Ex		15			
					Master's dissertation, Colloquium	29 1			
		Elective							
	N	Iodules on Technica	al Biochemistry ²	1					
Chem- Ma-TB09	Concepts of Natural Product Biosynthesis		4/0/0/0/0 1x Ex			5			
Chem- Ma-TB10	Practical Concepts of Natural Product Biosynthesis		0/0/0/6/0 1x Ex			5			
Chem- Ma-TB02	Enzymes in Processes		2/0/1/3/0 2x Ex			5			
Chem- Ma-TB03	Bioinformatics		2/2/0/0/0 1x Ex			5			

Module	Module name	1st Semester	2nd Semester	3rd Semester (M)	4th Semester	СР
no.	Module name	L/E/S/P/LC	L/E/S/P/LC	L/S/P/T		
Chem- Ma-TB04	Protein Biochemistry and Proteomics			3/0/5/0 2x Ex		10
Chem- Ma-TB05	Genome Engineering, Genomes and Evolution			3/0/5/0 2x Ex		10
Chem- Ma-TB06	Drug Discovery			2/0/0/2 1x Ex		5
Chem- Ma-TB07	Medical Biochemistry			4/0/0/0 1x Ex		5
	Modu	les on Chemistry of	Biological Systems	5 ²		
Chem- Ma-BS01	Microbiology of Anaerobic Systems		2/0/0/0/0	1/0/0/0 1x Ex		5
Chem- Ma-BS02	Physiology of Anaerobic Microorganisms		0/0/1/4/0 2x Ex			5
Chem- Ma-BS03	Cellular Signaling		2/0/2/0/0 1x Ex			5
Chem- Ma-BS04	Cellular Machines		2/0/2/0/0	2/2/0/0 2x Ex		10
Chem- Ma-BS05	Metabolism of Natural Products and Natural Product Biosynthesis			4/0/0/0 1x Ex		5
Chem- Ma-BS06	Biological Materials			2/2/6/0 2x Ex		10
	·	Modules or	n General Studies ³			
Chem- Ma-AM01	General Studies	4 hrs/wk ⁴ Ex*				5
Chem- Ma-AM02	Profile Course: Advanced Professional English	0/0/0/0/2 1x Ex	0/0/0/0/2 1x Ex			5
Chem- Ma-AM03	Current Topics in Materials Science	1/1/0/1/0 1x Ex				5
	СР		30	30	30	120

- 1 Modules totalling 35 credit points must be chosen.
- 2 Modules totalling 10 to 25 credit points must be chosen.
- 3 Modules totalling a maximum of 10 credit points can be chosen.
- 4 This module includes lectures or seminars totalling 4 hrs/wk as chosen by the student.
- * depending on choice made by the student
- M Mobility window according to Sec. 6(1)(4)
- CP Credit points
- L Lecture
- E Practical session/exercises
- S Seminar
- P Practical work/placement
- T Tutorial
- LC Language course
- Ex Examination(s)