Technische Universität Dresden Faculty of Physics

Study Regulations for the Organic and Molecular Electronics consecutive Master's degree programme

28 April 2019

The Technische Universität Dresden issues the following study regulations based upon Sec. 36 (1) of the Higher Education Freedom Act of Saxony as published on 15 January 2013 (SächsGVBI, p. 3).

Contents

- §1 Scope
- § 2 Objectives of the degree programme
- § 3 Admission requirements
- § 4 Commencement and duration of studies
- § 5 Teaching and learning formats
- § 6 Structure and organisation of the degree programme
- § 7 Content of the degree programme
- § 8 Credit points
- § 9 Student counselling services
- § 10 Changes to module descriptions
- § 11 Effective date, publication and transitional provisions
- Annex 1: Module descriptions
- Annex 2: Study plan

§ 1 Scope

These study regulations are based upon the Higher Education Autonomy Act of Saxony and the examination regulations, and regulate the objectives, content, structure and organisation of the degree programme for the consecutive Master's degree programme Organic and Molecular Electronics at Technische Universität Dresden.

§ 2

Objectives of the degree programme

(1) Students of the Organic and Molecular Electronics Master's degree programme will be able to use different scientific approaches for conducting independent research. Students will be able to take on complex problems and use scientific methods to find solutions even beyond the current limits of knowledge. Students will have specialist knowledge focussed around current research topics, about methodical and analytical expertise, and research methods and strategies. Students will be able to find scientific correlations, practice multidisciplinary communication and solve scientific problems.

(2) Students will become familiar with the methods, techniques and tools for producing organic and molecular electronics as well as their possibilities and their applications. They will be able to analyse problems in this field and use everything they have learned to develop effective solutions. They will be able to recognise the relationships and dependencies between these key areas and them to find solutions. Students will be familiar with current research and developments in these fields and be able to constructively contribute to the problem-solving process.

(3) Graduates will possess broad specialist knowledge and familiarity with the global research community in the areas of conceptual design, production, application and integration of organic electronics. This will further enable them, after sufficient orientation and based upon their chosen specialisation, to tackle a wide range of complex problems in the conceptual design, production, application and integration of organic electronics in their chosen occupation.

§ 3 Admission requirements

(1) To be admitted to the degree programme, candidates must have completed a first vocational university degree recognised in Germany or obtained a qualification from a state or state-approved vocational academy in the natural sciences or engineering. Also required is fundamental knowledge of classical physics, including mechanics, electrodynamics, optics, thermodynamics and quantum theory, as well as a good understanding of the structure of matter. Suitability determination processes according to the suitability determination regulations are used to demonstrate that these requirements are met.

(2) Furthermore, this degree programme requires English language proficiency at a minimum level of C1 according to the Common European Framework of Reference for Languages. Paragraph 1(3) applies accordingly.

§ 4 Commencement and duration of studies

(1) The degree programme may be started in the winter semester.

(2) The normal period of study is four semesters and includes contact hours with teaching staff, self-study, practical work and the Master's examination.

§ 5 Teaching and learning formats

(1) The programme content has a modular structure. Each modules delivers, consolidates and deepens learning content through lectures, practical sessions, seminars, practical work, language courses and self-study.

(2) The teaching and learning formats according to Paragraph 1(2) are defined as follows:

- 1. Lectures introduce the material covered by the module.
- 2. Practical sessions enable students to put the material acquired in lectures into practice in exemplary sub-areas.
- 3. Seminars provide a guided environment which allows students to make use of specialist literature and other materials to independently learn about a chosen topic, present their results, discuss the topic with the group and/or present the topic in written form.
- 4. Practical work is intended to allow students to put into practice what they have learned and gain practical skills in potential career areas. These use experiments to illustrate the theoretical content that has been taught, giving students their own experiences and skills working with devices, equipment and measurement tools.
- 5. Language courses provide training and develop students' knowledge and skills in a foreign language. Students develop communicative and intercultural competencies within an academic and professional context as well as for everyday situations.
- 6. Self-study is where students work on, consolidate and deepen their knowledge of the taught content as they see fit.

§ 6 Structure and organisation of the degree programme

(1) The degree programme has a modular structure. The courses offered are spread over three semesters. The fourth semester is reserved for completing the Master's dissertation and holding the colloquium. The cooperation agreement also provides, as part of the Erasmus Mundus Nanoscience and Nanotechnology programme, the option to undertake studies at the Katholieke Universiteit Leuven (Belgium) for the first year, and then continue and complete studies at Technische Universität Dresden.

(2) The degree programme consists of eleven core modules and an elective that allows the student to focus on a particular area of interest. The selection is binding. It is possible to change the selected modules just once; this requires the student to submit a written application to the Examinations Office stating the module they wish to drop and the new module they wish to join.

(3) Qualification objectives, content, teaching and learning formats used, requirements, applicability, frequency, amount of work and duration of individual modules are indicated in the module descriptions (Annex 1).

(4) Lectures are held in English. If a module leads to a qualification in the use of the foreign language, such as the Deutsch als Fremdsprache module, then lectures may also be held in the target language depending on the content and aims to be achieved.

(5) The optimum distribution of modules across individual semesters such as to allow the degree programme to be completed within the standard period of study, along with the type and scope of lectures contained therein and the number and standard progression of the required study and examination activities, can be found in the included study plan (Annex 2).

§ 7 Content of the degree programme

(1) The Organic and Molecular Electronics Master's degree programme is researchoriented.

(2) This degree programme covers topics in semi-conductor technology, molecular electronics, organic semi-conductors, analytics and measurement technology as well as

processing technology. It further comprises, depending on the focus area chosen by the student, fundamental chemistry and physics, topics in materials and materials processing (e.g. production, structuring, characterisation and surface chemistry), topics on photophysics, optical electronics, application of organic and molecular electronics (e.g. as components in circuit integration, memory technology and microsystem technology), topics in business administration and economics as well as German as a foreign language and methods in scientific work.

§ 8 Credit points

(1) ECTS credit points document the average workload on students and their individual progress through their studies. One credit point equates to a workload of 30 hours. In general, 60 credit points are awarded per academic year, i.e. 30 points per semester. The total workload for the degree programme is 120 credit points and comprises teaching and learning formats of the type and scope indicated in the module description, study activities and examinations, as well as the Master's dissertation and colloquium.

(2) The number of credit points earned by completing a module are indicated in the module description. Credit points are earned upon successful completion of the module. Sec. 26 of the examination regulations remains unaffected.

§ 9

Student counselling services

(1) General student counselling services are provided via the Central Student Information and Counselling Service of TU Dresden. They offer advice on issues relating to study options, ways of enrolment and other general matters affecting students. Academic advice regarding studies is the responsibility of the student counselling service in the Faculty of Physics. In particular, academic advisers provide support to students with issues relating to the organisation of their studies.

(2) At the start of the third semester, any student who has not yet completed any part of their studies is required to attend an academic advice session.

§ 10 Changes to module descriptions

(1) A simplified procedure exists for making changes to module descriptions in order to optimise the organisation of studies where conditions have changed. Fields that are excluded from this procedure are "Module name", "Objectives", "Content", "Teaching and learning formats", "Requirements for the award of credit points" as well as "Credit points and grades".

(2) According to this simplified procedure, the Faculty Board enacts the change to the module description at the request of the Academic Affairs Committee. Changes are to be announced via the normal channels within the faculty.

§ 11

Effective date, publication and transitional provisions

(1) These study regulations come into force on the day after the day of publication in the official announcements of Technische Universität Dresden.

(2) They apply for all new students enrolling in the Organic and Molecular Electronics consecutive Master's degree programme for the winter semester 2019/2020 or later.

(3) The respective previous study regulations for the Organic and Molecular Electronics consecutive Master's degree programme continue to apply for students who enrolled before the winter semester 2019/2020.

(4) These study regulations apply from the winter semester 2020/2021 for all students enrolled in the Organic and Molecular Electronics Master's degree programme.

Issued following the decision of the Faculty Board of the Faculty of Physics dated 17 October 2018 and the approval by the Central University Administration dated 27 November 2018.

Dresden, 28 April 2019

The Dean of TU Dresden

Prof. Dr.-Ing. habil. DEng/Auckland Elans Müller-Steinhagen

Annex 1: Module descriptions

Module descriptions Module number	Module name	Lecturer responsible	
OME-1.1	Concepts of Molecular	Prof. Cuniberti	
	Modelling	FIOI. Culliberti	
Objectives	`	mentals of molecular dynamics	
Objectives		cribing material properties at nano	
	-	knowledge of classical mechanics	
	-	d modelling interatomic forces	
		nical). They will be familiar with	
		aces, stable and metastable points	
		nt observables. Students will learn	
	mathematical approaches and	will be able to quantitatively	
		s as well as model these using	
	computer programs.		
Content	The module comprises the to	ppics of simulation methods for	
	molecular dynamics and the us	se of stochastic methods (Monte	
	Carlo simulations).		
Teaching and learning	Lectures (2 hrs/wk), practical se	essions (2 hrs/wk), practical work	
formats	(2hrs/wk) and self-study.		
Participation	•	athematics (analysis and linear	
requirements	algebra) and physics (classical mechanics) is required. Literature:		
	Mathematical Methods for Physics and Engineering: A Com-		
	-	M. P. Hobson, S.J. Bence (2006);	
		duate Lecture Notes in Physics),	
A	Matthew J.J. Benacquista, Jose		
Applicability		e for the Organic and Molecular	
Dequirements for the	Electronics Master's degree prog		
Requirements for the		ccessful completion of the module.	
award of credit points	This module is examined via a project assignment lasting 4 weeks		
	and, if there are more than 10 students registered for the module,		
	Ū.	a written test lasting 90 minutes. If there are no more than 10 students registered for the written test, this will be replaced by an	
	C C	• • •	
	-	oral examination lasting 20 minutes; the exact type of examination will be announced to the registered students at the end of the	
	C C	annels within the faculty. Passing	
	the module requires that the written test or oral examination is		
	awarded a minimum grade of "sufficient" (4.0).		
Credit points and		10 credit points are awarded for this module. The module grade is	
grades	calculated from the unweighted average of grades from the two		
	examinations.		
Frequency of the	This module runs once per year	in the winter semester.	
module			
Workload	The total workload for this module is 300 hours.		
Module duration	The module lasts for one semes	tor	

Module number	Module name	Lecturer responsible
OME-1.2	Semiconductor Technology	Prof. Bartha
Objectives	Students will possess the ability to describe how individual	
	technologies employed in the p	production of microtechnology and
	nanotechnology components fu	nction, work with the fundamental
	principles of production and m	niniaturisation of components and
		al technologies to create complex
	processes, and explain their inter	
Content		ogical foundations of the production
	•	as well as the production concepts
	of integrated circuits.	
Teaching and learning	Lectures (6 hrs/wk), practical we	ork (1 hr/wk) and self-study.
formats		
Participation	• • •	chemistry at Bachelor's level is
requirements	-	ntals of Physics ISBN-13: 978-
	0470469088; Fundamentals of Chemistry ISBN-10: 0536418829.	
Applicability		e for the Organic and Molecular
	Electronics Master's degree pro	•
Requirements for the	Credit points are earned upon successful completion of the	
award of credit points	module. If more than 20 students are registered, this module is	
	examined with one end-of-semester exam lasting 120 minutes. If	
	there are no more than 20 students registered, this will be replaced	
		g 30 minutes; the exact type of
		to the registered students at the
		via normal channels within the
	faculty.	
Credit points and	10 credit points are awarded for this module. The module grade is	
grades	the grade achieved in the examination.	
Frequency of the	This module runs once per year	, beginning in the winter semester.
module		
Workload	The total workload for this modu	
Module duration	This module lasts for two semes	sters.

Module number	Module name	Lecturer responsible
OME-1.3	Organic Semiconductors	Dean of Studies
Objectives	Students will possess fundamental and advanced understanding of the relationships between the structure and properties of organic semiconductors and be able to apply this knowledge. They will also gain an overview of current research topics in this and related fields.	
Content	 This module covers: a) Fundamental properties: Compounds and hybridisation b) Optical properties c) Electronic properties d) Transport processes e) Doping f) Comparison with traditional semiconductors g) Component concepts 	
Teaching and learning	Seminars (2 hrs/wk), lectures (2	hrs/wk) and self-study.
formats		
Participation	Basic knowledge of solid-state physics is required. Literature:	
requirements	Kittel, Charles, Introduction to solid state physics, New York: Wiley, 2005.	
Applicability	This module is a core module for the Organic and Molecular Electronics Master's degree programme.	
Requirements for the	Credit points are earned upon successful completion of the	
award of credit points	module. This module is examined with one end-of-semester exam lasting 90 minutes and an ungraded presentation lasting 30 minutes.	
Credit points and grades	is calculated from the un	this module. The module grade weighted average of grades from Sec. 11(1)(5) of the examination
Frequency of the module	3	beginning in the winter semester.
Workload	The total workload for this module is 150 hours.	
Module duration	This module lasts for two semesters.	

Module number	Module name	Lecturer responsible
OME-1.4	Basics - Solid State Science	Dean of Studies
Objectives	Students will gain fundamental knowledge of the fields of quantum	
	physics, solid state physics and semiconductor physics or general	
	and preparative organic chemist	try or the fundamentals of circuit
	switching technology.	
Content	This modules focusses on topics	s chosen by the student from the
	following:	
	a) Quantum, solid state and ser	miconductor physics
	b) General and preparative orga	anic chemistry
	c) Fundamentals of switching te	echnology.
Teaching and learning	Lectures (6 hrs/wk), practical se	ssions (2 hrs/wk), practical work
formats	(2hrs/wk) and self-study. Course	es are chosen from the "Basics"
	module catalogue for the Org	anic and Molecular Electronics
		ese will be announced along with
	coursework requirements for ea	ach module at the start of the
	semester through the normal faculty channels.	
Participation	None.	
requirements		
Applicability		for the Organic and Molecular
	•	programme. This module is a
	prerequisite for modules: Optoelectronics, Work Experience	
	Project, Major and Minor.	
Requirements for the	Credit points are earned upon successful completion of the	
award of credit points	module. This module is examined with one oral examination lasting	
		rsework specified in the "Basics"
	catalogue must be completed for this module.	
Credit points and	-	this module. The module grade is
grades	the grade achieved in the examination.	
Frequency of the	This module runs once per year i	in the winter semester.
module		
Workload	The total workload for this modul	
Module duration	The module lasts for one semest	er.

Module number	Module name	Lecturer responsible
OME-2.2	Optoelectronics	Dean of Studies
Objectives	Students will gain and understanding of the fundamental principles	
	of optoelectronics and be able to	o apply these to the designing of
	components.	
Content	The module covers the principles	s of optoelectronics; this includes:
	a) interactions between electron	nagnetic waves and solid bodies
	b) the propagation of EM waves	s in layered structures
	c) the optical properties of solid	bodies
	d) waveguides	
	e) the creation of charge carrier	
Teaching and learning	Lectures (4 hrs/wk) and self-stud	у.
formats		
Participation	The knowledge and skills from module "Basics - Solid State	
requirements	Science" are required for this module.	
Applicability	This module is a core module for the Organic and Molecular	
	Electronics Master's degree prog	gramme.
Requirements for the	Credit points are earned upon successful completion of the	
award of credit points	module. This module is examined with one oral examination lasting	
	30 minutes.	
Credit points and	5 credit points are awarded for this module. The module grade is	
grades	the grade achieved in the examination.	
Frequency of the	This module runs once per year in the summer semester.	
module		
Workload	The total workload for this module is 150 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
OME-3.1	Molecular Electronics	Prof. Cuniberti
Objectives	Students will learn the principles of molecular electronics, focussing on: experimental methods, physical effects and theoretical tools, e.g. single molecule electronics, raster testing and break-junction techniques, nanoscale transport mechanisms, molecular components (diodes, transistors, sensors) and molecular architectures. Students will learn about the most important experimental and theoretical methods for investigating the transportation of charge at the molecular scale.	
Content	This module covers the application as the theoretical principles nanostructures. The module a characterisation of single molecule electrical circuits.	of charge transportation in also covers the experimental
Teaching and learning	Lectures (2 hrs/wk), practical sessions (2 hrs/wk) and self-study.	
formats		
Participation	None.	
requirements		
Applicability	This module is a core module for the Organic and Molecular Electronics Master's degree programme.	
Requirements for the award of credit points	Credit points are earned upon successful completion of the module. If more than 10 students are registered, this module is examined with one end-of-semester exam lasting 90 minutes. If there are no more than 10 students registered, this will be replaced by an oral examination lasting 20 minutes; the exact type of examination will be announced to the registered students at the end of the registration period via normal channels within the faculty.	
Credit points and	5 credit points are awarded for this module. The module grade is	
grades	the grade achieved in the examination	
Frequency of the module	This module runs once per year ir	the winter semester.
Workload	The total workload for this module	e is 150 hours.
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible	
OME-3.2	Materials for Nanoelectronics	Prof. Richter	
	and Printing Technology		
Objectives	Students will possess knowledge	e about the structure, properties,	
	production and structural formation	on of materials. They will be able	
		ypes of small-scale structures to	
	•	challenges associated with	
	nanoelectronic material syste		
	• • •	echniques to assess possibilities	
		explain why a particular process is	
	suitable for various different purp		
Content	-	ciples for nanoelectronics as well	
—	as the principles of printing techr		
Teaching and learning	Lectures (4 hrs/wk), practical wo	rk (2 hrs/wk) and self-study.	
formats			
Participation	Knowledge of the principles of assessing electrical DC networks		
requirements	as well as the physical fundamental principles of electronic		
	components and microtechnologies is required. Literature: K. Lunze, Einführung in die Elektrotechnik, Verlag Technik Berlin. B.		
	Hoppe, Mikroelektronik, 2 Bände [2 volumes], Vogel Fachbuch,		
	1997.	1997.	
Applicability	This module is a core module	for the Organic and Molecular	
	Electronics Master's degree programme.		
Requirements for the	Credit points are earned upon successful completion of the		
award of credit points	module. This module is examined with two written exams lasting		
	90 minutes.		
Credit points and	10 credit points are awarded for this module. The module grade is		
grades	calculated from the unweighted average of grades from the two		
	examinations.		
Frequency of the	This module runs once per year starting in the winter semester.		
module			
Workload	The total workload for this module is 300 hours.		
Module duration	This module lasts for two semesters.		

Module number	Module name	Lecturer responsible	
OME-3.3	Physical Characterization of	Prof. Dr. Ehrenfried Zschech	
	Organic and Organic-Inorganic		
	Thin Films		
Objectives	Students will become familiar	with different techniques for	
	characterizing organic and organic	nic-inorganic thin films. They will	
	learn both the theoretical prin	learn both the theoretical principles of methods of physical	
	analysis and their application	in characterizing organic and	
	inorganic thin films and layer	red systems as well as their	
	boundaries. Students will be	able to experimentally apply	
	selected methods of thin film and	d boundary analytics.	
Content	This module looks at current a	and future methods of physical	
	analysis of semiconductors, m	netals and glasses as well as	
	organic and hybrid materials, wit	h a focus on organic electronics.	
	-	of material and process	
		ality, performance and reliability	
	of organic electronics. The	•	
		materials and physical analytics	
	are also studied.		
Teaching and learning	Lectures (2 hrs/wk), practical work (2 hrs/wk, as a block during		
formats	the lecture-free period) and self-study.		
Participation	Knowledge of physics, particularly classical and solid state		
requirements	physics. Literature: Giovanni, Organic Semiconductor Materials		
	and Device Characterization, Sc		
Applicability		for the Organic and Molecular	
	Electronics Master's degree prog	-	
Requirements for the		n successful completion of the	
award of credit points	module. This module is examined with one exam lasting 90		
	minutes and a practical report re		
Credit points and	-	his module. The module grade is	
grades	_	average of grades from the	
		on. The examination is triple-	
	.	ort single-weighted. Passing the	
	-	test is passed with a minimum	
	grade of "sufficient" (4.0).	in the winter constant	
Frequency of the	This module runs once per year	in the winter semester.	
module			
Workload	The total workload for this modu		
Module duration	The module lasts for one semes	ter.	

Module number	Module name	Lecturer responsible
OME-E1	Work Experience Project	Dean of Studies
Objectives	Students will possess expertise	in working on complex practical
	scientific problems and will be ab	le to document and present their
	results. They will possess socia	l competencies for professional
	communication as well as project	and product management skills.
Content	This module covers the topi	cs of research, development,
	modelling, assessing and projec	t planning in the field of organic
	electronics and related fields.	
Teaching and learning	Practical work (8 hrs/wk) includir	ng self-study.
formats		
Participation	The knowledge and skills from module "Basics - Solid State	
requirements	Science" are required for this module.	
Applicability	This module is a core module for the Organic and Molecular	
	Electronics Master's degree programme.	
Requirements for the	Credit points are earned upon successful completion of the	
award of credit points	module. This module is examined with a project lasting one week	
	(30 hours).	
Credit points and	5 credit points are awarded for this module. The module grade is	
grades	the grade achieved in the examination.	
Frequency of the	This module runs once per year in the winter semester.	
module		
Workload	The total workload for this module is 150 hours.	
Module duration	The module lasts for one semester.	

Module number	Module name	Lecturer responsible
OME-M1	Major	Dean of Studies
Objectives	chosen specialist field and be fan within that field. The fields of cho or Electronic Systems. They wil	mselves within a relatively large niliar with the latest developments sice are Photophysics of Organics I possess in-depth knowledge of velopments in the chosen area of s.
Content	This content of this module is chosen by the student from one of the two following specialist areas: a) Physics b) Electronics.	
Teaching and learning	This module includes lectures, p	ractical work and potentially also
formats	practical sessions totalling 8 hrs/wk as well as self-study. The required courses are chosen from the "Major/Minor" module catalogue for the Organic and Molecular Electronics Master's degree programme; these will be announced along with coursework/examination requirements for each module at the start of the semester through the normal faculty channels.	
Participation	Knowledge and skills in chemistry, physics and circuit technology	
requirements	from module "Basics - Solid State Science" are required for this module.	
Applicability	This module is a core module Electronics Master's degree prog	for the Organic and Molecular gramme.
Requirements for the	Credit points are earned upor	n successful completion of the
award of credit points	module. This module is examined as specified in the Major/Minor catalogue for the Organic and Molecular Electronics Master's degree programme.	
Credit points and	10 credit points are awarded for	r this module. The module grade
grades	is calculated from the unweighted average of grades from the assessed work according to Sec. 11(1)(5) of the examination regulations.	
Frequency of the module		starting in the summer semester.
Workload	The total workload for this modul	e is 300 hours.
Module duration	This module lasts for two semest	ters.

Module number	Module name	Lecturer responsible
OME-M2	Minor	Dean of Studies
Objectives	Students will be able to reliably orient themselves within an additional chosen specialist field and be familiar with the latest developments within that field. The fields of choice are Organic Materials or Complex Nanomaterials. Students will possess indepth knowledge of current issues and the latest developments in the chosen area of organic and molecular electronics.	
Content	This content of this module is chosen by the student from one of the two following specialist areas:a) Chemistryb) Nanotechnology.	
Teaching and learning formats	This module includes lectures, practical sessions totalling 4 hrs/wk as well as self-study. The required courses are chosen from the "Major/Minor" module catalogue for the Organic and Molecular Electronics Master's degree programme; these will be announced along with coursework/examination requirements for each module at the start of the semester through the normal faculty channels.	
Participation requirements	Knowledge and skills in chemistry, physics and circuit technology from module "Basics - Solid State Science" are required for this module.	
Applicability	This module is a core module for the Organic and Molecular Electronics Master's degree programme.	
Requirements for the award of credit points	Credit points are earned upon successful completion of the module. This module is examined as specified in the Major/Minor catalogue for the Organic and Molecular Electronics Master's degree programme.	
Credit points and grades	5 credit points are awarded for chosen field, the module grade awarded for assessed work or individual grades from the assess	e is calculated from the grade as an unweighted average of
Frequency of the module	This module runs once per year in	
Workload	The total workload for this module	
Module duration	The module lasts for one semeste	er.

Module number	Module name	Lecturer responsible	
OME-E3	Deutsch als Fremdsprache	Dr. Antonella Wermke	
Objectives	Students will gain written and spoken skills in everyday use of the		
	German language at level A1, A2 or B1 according to the Common		
	European Framework of Referen	ce for Languages (CEFR)	
Content	The module covers language use	eful for use on campus as well as	
	reading and listening strategies	with geographical and cultural	
	relevance. The foreign languag	e skills acquired in the module	
	depend on the level the student st	tudies - A1, A2 or B1 of the CEFR.	
Teaching and learning	Language courses (4 hrs/wk) and	d self-study.	
formats			
Participation		ne Abitur (beginner's course) level	
requirements	are required to take levels A2 ar	nd B1. Students whose language	
		on requirements can opt to take a	
	"reactivation course" and undertake (media-supported) self-study		
	- with guidance provided if necessary.		
Applicability		This module is one of 5 electives in the Organic and Molecular	
	Electronics Master's degree programme, from which one module		
	must be chosen.		
Requirements for the	Credit points are earned upon successful completion of the		
award of credit points	module. This module is examined with one end-of-semester exam		
	lasting 90 minutes and an oral examination lasting 15 minutes.		
Credit points and	5 credit points are awarded for this module. The module grade is		
grades	C C	average of grades from the two	
	examinations.		
Frequency of the	This module runs once per year i	in the winter semester.	
module			
Workload	The total workload for this module is 150 hours.		
Module duration	The module lasts for one semester.		

Module number	Module name	Lecturer responsible			
M_ESS 2.4 (OME-E4)	Investing in a Sustainable	Frau Prof. Günther			
	Future	edeltraud.guenther@tu-dresden.de			
Objectives	Students will understand sustainability assessment and policy as a				
	scientific and societal area	of research. Students will be able to			
	independently research ar	nd make use of relevant academic			
	literature. Students will be a	ble to use the theoretical framework to			
	classify information abou	t case studies and analyse this			
	information on five different	levels (strategic, financial, ecological,			
	social and accessibility analy	yses). They will be familiar with the use			
	of English in science.				
Content	This module looks at sustainability assessments and policy as a				
	scientific and societal area of research.				
Teaching and	Lectures (2 hrs/wk) and self-study.				
learning formats					
Participation	None.				
requirements					
Applicability	This module is one of 29 electives from which students in the				
	-	er's degree programme must select			
	according to Sec. 27(3) of the examination regulations. This				
	module is also one of 5 electives in the Organic and Molecular				
	Electronics Master's degree programme, from which one module				
	must be chosen.				
Requirements for the	-	upon successful completion of the			
award of credit	module. This module is examined with one end-of-semester exam				
points	lasting 90 minutes.				
Credit points and	-	for this module. The module grade is			
grades	the grade achieved in the ex				
Frequency of the	This module runs once per year in the summer semester.				
module					
Workload		odule is 150 hours. Of these, 30 hours			
	are allocated for lectures and teaching activities and 120 hours for				
	self-study, including exam preparation and the examination itself.				
Module duration	The module lasts for one semester.				

Module number	Module name	Lecturer responsible			
OME-E5	Current Topics in Materials	Prof. G. Cuniberti			
	Science				
Objectives	Students will learn about the various aspects of current research				
	in materials science. Studer	nts will also possess relevant key			
	competencies such as pres	sentation techniques, patent law,			
	technology transfer and leadership skills.				
Content	The module covers modern ex	perimental and theoretical methods			
	for discovering, characterizing	and applying new materials with a			
	focus on topic areas such as:				
	a) Statistical and data-intensi	ve approaches; use of Big Data in			
	materials science				
	b) Modern materials for electr	onics and sensors			
	c) The use of novel materials	in medical and health technology			
	d) Materials for energy managed	gement			
	e) Scalable integration of nove	el materials			
	f) Technology transfer				
Teaching and learning	Lectures (1 hr/wk), practical sessions (1 hr/wk), seminars (1 hr/wk)				
formats	and self-study.				
Participation	None.				
requirements					
Applicability	This module is one of 5 electives in the Organic and Molecular				
	Electronics Master's degree programme, from which one module				
	must be chosen.				
Requirements for the		pon successful completion of the			
award of credit points		ined with one written task requiring			
	20 hours' work and a presenta				
Credit points and	5 credit points are awarded for this module. The module grade is				
grades	-	ed average of grades from the two			
	examinations.				
Frequency of the	This module runs once per year	ar in the winter semester.			
module					
Workload	The total workload for this mo				
Module duration	The module lasts for one semester.				

Module number	Module name	Lecturer responsible				
OME-E6	Academic and Scientific Work	Dean of Studies				
Objectives	Upon completion of this module, students will possess key					
	competencies required for academic and scientific work. They will					
	be able to make critical use of	scientific texts, pass knowledge on				
	to others as well as support the	learning process for other people.				
Content		iding the key content of scientific				
		nin the current research context,				
	critical reflection of societal, ec	onomic and cultural effects as well				
	as the presentation of this inform					
Teaching and learning		practical sessions, practical work				
formats	3	as well as self-study. The required				
		selected from the Academic and				
	-	catalogue will be announced along				
		equirements for each module at the				
	start of the semester through th	e normal faculty channels.				
Participation	None.					
requirements						
Applicability	This module is one of 5 electives in the Organic and Molecular					
	Electronics Master's degree programme, from which one module					
	must be chosen.					
Requirements for the		on successful completion of the				
award of credit points	module. This module is examined as specified in the Academic and					
	Scientific Work catalogue.					
Credit points and	5 credit points are awarded for this module. Depending on the					
grades	chosen courses, the module grade is calculated from the grade					
	awarded for assessed work or as an unweighted average of					
	individual grades from the assessed work.					
Frequency of the	This module runs every semester.					
module						
Workload	The total workload for this mode					
Module duration	The module lasts for one semester.					

Module number	Module name	Lecturer responsible				
OME-E7	Semiconductor Industry	Prof. Dr. Ehrenfried Zschech				
	Challenges: Market Dynamics,					
	Technology Innovations, Yield					
	and Reliability Engineering					
Objectives		aspects of the semiconductor				
	industry with regard to market and its changing conditions for					
	development and production as well as in conjunction with					
	technological advancement. They will be able to illustrate the					
		nt design, technology, materials				
		assess the importance of the				
		ty management for products and				
	the series consistency of micro a					
Content		I and engineering methods used				
		for increasing yield in volume				
		he required degree of product				
		ated theoretical principles. The				
	-	s when introducing new products				
	is also covered.	ů i				
Teaching and learning	Lectures (3 hrs/wk) and self-stud	dy.				
formats		2				
Participation	Knowledge of electrical engineer	ering, materials science, physics				
requirements		or engineers and scientists is				
•	required. Literature:	5				
	G.S. May, C.J. Spanos, Fundamentals of Semiconductor					
	Manufacturing and Process Control, John Wiley & Sons,					
	Hoboken, New Jersey 2006.					
	J.W. McPherson, Reliability Phy	sics and Engineering, Springer				
	Cham 2013.					
Applicability	This module is one of 5 electives in the Organic and Molecular					
	Electronics Master's degree programme, from which one module					
	must be chosen.					
Requirements for the	Credit points are earned upor	n successful completion of the				
award of credit points	module. This module is examine	ed via a report requiring 16 hours				
	of work and, if there are more th	an 20 students registered for the				
	module, a written test of 90 minu	ites. If there are no more than 20				
	students registered for the writte	en test, this will be replaced by a				
		45 minutes; the exact type of				
		to the registered students at the				
		via normal channels within the				
	faculty.					
Credit points and	-	his module. The module grade is				
grades	•	average of grades from the				
		n. The report is single-weighted				
	and the written examination/oral	examination is double-weighted.				
Fraguanay of the						
Frequency of the module	This module runs once per year semester.	starting in the summer				

Workload	The total workload for this module is 150 hours.	
Module duration	This module lasts for two semesters.	

Annex 2:

Study plan

with type and scope of courses given in hrs/week as well as required work, the type, scope and format of which can be found in the module descriptions

Module	Module	Module name	1st Semester	2nd Semester	3rd Semester	4th Semester	СР
types	number		L/E/S/P/LC	L/E/S/P/LC	L/E/S/P/LC	L/E/S/P/LC	
	OME-1.1	Concepts of Molecular Modelling			2/2/0/2/0 2 Ex		10
	OME-1.2	Semiconductor Technology	4/0/0/0/0	2/0/0/1/0 1 Ex			10
	OME-1.3	Organic Semiconductors	0/0/2/0/0 1 Ex	2/0/0/0/0 1 Ex			5
	OME-1.4	Basics - Solid State Science	6*/2*/0/2*/0 CW*1 Ex				15
es	OME-2.2	Optoelectronics		4/0/0/0/0 1 Ex			5
Inpou	OME-3.1	Molecular Electronics			2/2/0/0/0 1 Ex		5
Core modules	OME-3.2	Materials for Nanoelectronics and Printing Technology	2/0/0/0/0 1 Ex	2/0/0/2/0 1 Ex			10
	OME-3.3	Physical Characterization of Organic and Organic-Inorganic Thin Films			2/0/0/2/0 2 Ex		5
	OME-E1	Work Experience Project			0/0/0/8/0 1 Ex		5
	OME-M1 ¹	Major		*/*/0/*/0 Ex*	*/*/0/*/0 Ex*		10
	OME-M2 ²	Minor		*/*/0/0/0 Ex*			5

СР			32	28	30	30	120
						Colloquium	1
						Master's Dissertation	29
		Challenges: Market Dynamics, Technology Innovations, Yield and Reliability Engineering			2 Ex		5
Ξ	OME-E7	Semiconductor Industry		Ex* 1/0/0/0/0	2/0/0/0/0		5
ec	OME-E6 ⁴	Academic and Scientific Work		*/*/*/0			_
ţi			2 Ex				5
Electives ³	OME-E5	Current Topics in Materials Science	1/1/1/0/0				_
	E4)						Ŭ
	2.4 (OME-			1 Ex			5
	M_ESS	Investing in a Sustainable Future		2/0/0/0/0			
			2 Ex				5
	OME-E3	Deutsch als Fremdsprache	0/0/0/0/4				_

This module includes lectures, practical work and potentially also practical sessions totalling 8 hrs/wk.
 ² This module includes lectures and practical sessions totalling 4 hrs/wk.

*

Alternative (1 out of 5). 3

⁴ This module includes lectures, practical sessions, seminars and practical work totalling 3 hrs/wk.

CP Credit points

Practical sessions Е

Ex Examination(s)

S Seminars Ρ Practical work

- CW Coursework
- L Lectures

- LC Language course
 - Alternative depending on choices made by the students