iGEM Team TU Dresden 2017

A Guideline for iGEM-Teams and Sustainable Scientific Bench Work

GoGreenGuide

PUT FORWARD BY THE TU DRESDEN IGEM TEAM 2017.

Opinions, ideas or suggestions? This guide is under ongoing revision during the iGEM year 2017 and we'd love to hear from you! Drop us an email or open an issue on the GoGreenGuide's GitHub page. You are also welcome to follow the iGEM goes green initiative on social media.

igem2017@mailbox.tu-dresden.de
HTTPS://GITHUB.COM/IGEM-DRESDEN/GOGREENGUIDE
HTTPS://WWW.FACEBOOK.COM/IGEM.GOESGREEN
HTTPS://WWW.INSTAGRAM.COM/IGEM_GOES_GREEN

	Introduction	. 5
	How iGEM Goes Green Came Into Beeing	5
	About this Guide	5
1	Taking Part in iGEM goes green	. 7
1.1	Join the initiative!	7
1.2	Set a sign - Plant a tree!	7
1.3	GoGreenChecklist	8
1.4	What's in it for you?	9
2	Green Lab	10
2.1	Lab equipment	10
2.2	Lab consumables	12
2.3	Workspace	14
3	Green Meetups	16
3.1	Transportation	16
3.2	Accommodation and Energy	17
3.3	Food and Catering	17
3.4	Material and Services	18
3.5	Waste management	18
3.6	Communication	18

4		
4	Green Life	19
4.1	Eating Habits	19
4.2	Transport	20
4.3	Waste Reduction	20
4.4	Further Reading	21
5	Greenhouse Gas Compensation	22
5.1	Carbon Emission Trading – Reducing Allowed Emissions for Companies	22
5.2	Support Projects for Reduction of GHG Emissions	23
6	Greenhouse Gas Calculation	25
6.1	Labwork	25
6.2	Meetups	26
6.3	Flights and Travel	26
	Bibliography	28

How iGEM Goes Green Came Into Beeing

For more than 10 years now, over 300 teams from all over the world have been attending Boston to participate in the internationally most renowned student competition for synthetic biology: As part of the international Genetically Engineered Machine competition (iGEM) they find solutions to divers contemporary problems by using genetic components and biological systems.

Besides the lab work, a successful team also has to consider the aspects of biological safety, public relations, documentation and finances of their project. However, when we set out to join iGEM with our own research project, we quickly realized being responsible for the safety, resources and outreach of our project was not covering a facet of the competition we feel strongly about: We decided to take one step further by taking responsibility for the environmental impact of our participation in iGEM and especially the related trip to Boston. We want to investigate the ecological footprint of our work as a team and find ways to reduce it.

With the aim to encourage other teams to join us and get involved in sustainability themselves we decided to share our ideas and started the "iGEM goes green" initiative.

About this Guide

While this guide is written by an iGEM team and primarily with other iGEM teams in mind, it still strives to be of value to any other research group or project team interested in suggestions about a more environmentally friendly working routine as well.

However, for the purpose of giving other iGEM teams a general overview of what to expect, chapter 1 is an iGEM-specific chapter focusing on how to participate in iGEM goes green. Any iGEM team not feeling motivated to read an entire chapter on the matter right away is invited to skip forward to section 1.3 for our **GoGreenChecklist** for now.

Chapter 2 deals with possibilities for environmentally-conscious lab work. Due to the high security regulations in biological laboratories it is not possible to simply turn off devices and systems (e.g. ventilation) to save energy. Despite this, we still believe that lab work can be shaped into a more sustainable practice through good planning and the conscientious usage of resources.

For now the chapter only includes basic information we gathered from different sources. Once our lab gets busy enough for it to yield reasonable results we will track our lab consumption of materials and energy for a set period of time to collect the data we need to calculate our ecological footprint and to identify possibilities to organise processes more economically. We will add more suggestions and some insights here once this is done.

As every other research project, iGEM is more then just lab work: Regional meetups are an important and fixed part of every iGEM year and the highlight is the concluding conference in Boston in November, where all teams are presenting their results. Therefore chapter 3 contains notes concerning the sustainable organisation of meetings and conferences. Everybody motivated to pursue the topic of sustainability even further will find ideas going beyond the mere context of scientific research in chapter 4.

Yet even if our lab and the conference were organized in the most sustainable way and we'd all shape our everyday life more environmentally friendly, there is not much we can do to reduce the impact of the transatlantic flights from Germany to Boston and back. Therefore, chapter 5 dedicates itself to possibilities to compensate greenhouse gas (GHG) emission.

Last but not least — and for those who want to go all the way — chapter 6 provides at least basic knowledge on how to estimate a teams GHG footprint.

1.1 Join the initiative!

Officially becoming a part of iGEM goes green is fairly simple. All you've got to do is:

- 1. Dedicate a subpage of your team's wiki to your efforts towards a sustainable participation in the competition.
- 2. Send us the link.
- 3. Get the go green logo in return and place it on your wiki.
- 4. Do whatever your team can afford to shape your teams participation in iGEM in a green way.

We are planning on having a map showing all teams involved in iGEM goes green on our Wiki with links to their go green subpages. As the environmental impact and the options for reducing and compensating greenhouse gases vary a lot between teams of different locations, sizes and projects, having specific requirements or comparing teams does not make much sense. Therefore it is entirely up to your team, how much you actually do and what steps towards a green iGEM competition seem feasible to you. You decide whether your team is part of iGEM goes green.

1.2 Set a sign - Plant a tree!

When we first thought about compensating the environmental impact of our flights to Boston before we started iGEM goes green - our first idea was to plant trees. While we realized we would go beyond the mere compensation of our flights we figured out that the flights alone would need several hundreds of trees to make up for. Still the idea remained and we liked the thought of planting a tree somewhere in Dresden or its vicinity at least as a symbolic act. Right now we are assessing possibilities. Our vision is to have an "iGEM forest" with one tree for every iGEM team participating in iGEM goes green. We will keep you updated whether we will be able to organize this. If so we will ask every go green team to collect the money for one tree. If not we encourage you to search for a spot somewhere close to your university for planting a tree for your team yourself.

1.3 GoGreenChecklist

To give you a good overview of what awaits you, we wrote this checklist. You can put it up in your teams head quarter or use it to show your efforts on your Wiki's go green subpage.

Required to officially become a part of iGEM goes green:

 \swarrow Read this guide.

Create a wiki subpage for your efforts towards a green competition.

Send us the link.

All set? Great to have you on board! No Wiki yet? Doesn't matter. There is no reason not to start with the actual work already and send us the link later on. Start with the actions toward a greener iGEM and fill your Wiki's subpage with what you are doing. Possible steps and suggestions what to do are listed below. Depending on your teams situation you might not have the possibilities to realize all of this, but don't worry, every little bit counts. Little by little a little becomes a lot!

Actions towards a green iGEM competition:		
\square	Make your lab environmentally friendly (suggestions in chapter 2).	
\bigcap	Organize your meetings and meetups environmentally friendly (see chapter 3).	
\bigcap	Track your labs consumption of materials and energy	
	to be able to estimate your teams GHG emission. to share the data with us.	
\bigcap	Calculate the GHG emission caused by your teams trip to Boston.	
\square	Calculate your teams total GHG footprint (don't worry, we tell you how to do it in chapter 6)	
\square	Compensate your teams flights, parts of or even your entire emissions (check chapter 5 for options).	
\square	Help to spread the word by sharing and following iGEM goes green on social media and by posting your own updates.	
\square	Involve the public even more by organizing events.	
\square	Help improving this guide by correcting mistakes or even sending us additional ideas, suggestions or information. Of course you'll be mentioned as a collaborator.	
\square	Collect the money to plant a tree. Please read up on our tree-planting plans in section 1.2.	
\bigcap	your ideas:	

8

1.4 What's in it for you?

Taking part in iGEM goes green is of course not about winning anything. It is about being a part of change, about setting a sign and shouting out that we do care about our environment. Of course you will gain more then just a good feeling: Sustainability is the future and you will become quite an expert concerning sustainable bench science. You will also get the chance to collaborate in a field outside your actual project by helping us to develop this guide further and to gather enough data to learn something about the average environmental profile of an iGEM team. You will get connected with other teams on a whole new level.

Still, most important is the fact that you will help to reduce the harmful impact of scientific work on the environment. Let's rephrase the question: What's in it for the environment? And that's not really a question, is it?

With a high consumption of resources such as energy, water, and chemicals, laboratories are among the university institutions with the greatest impact on the environment. Depending on their size, laboratory buildings consume 3-4 times as much energy as an office building. Thereby, the largest share is accounted for ventilation and cooling systems (~ 60%), followed by the lab equipment (freezer+ other devices) (~ 25%) and most of the rest is lightning. [1]

The total energy consumption is of course dependent on the size of the lab, the research topic, the equipment and its operating times. For calculating how much energy and resulting from that how much GHG your lab produces read chapter 6 about Greenhouse Gas calculation. With some simple "lab hacks" you can avoid waste production, save energy and water and thereby reduce GHG emissions of your lab. If you are not convinced to change your behavior for the environment: sustainable laboratory work saves not only energy and resources, but also money.

Find out how much GHG and energy your lab consumes!

Check out chapter 6 on Greenhouse Gas calculation!

2.1 Lab equipment

2.1.1 Fume hood

One of the most energy intensive devices in laboratories are chemical fume hoods. The air changing system consists of supply fans that bring air in the fume hood and exhaust fans that pull the air out of the building. A fume hood that runs 24 hours a day, 365 days a year consumes 3.5-times more energy than an average house!

Close the sash of your fume hood each time you stop working there and remind your lab mates to do the same!

Closing the window in front of the fume hood, known as "sash" can reduce the exchanged air from 600 m^3 to 200 m^3 per hour. Thereby, a lot of energy and money can be saved.

Harvard University started the "Shut the Sash" program in 2005 and even published their own

2.1 Lab equipment

study with data and behaviour tips to reduce the costs and increase the energy efficiency of fume hoods.¹

2.1.2 Freezer

Where do you store your biological samples? In the freezer of course. Ultra low temperature freezers are commonly used to store biological samples over a longer time period. Thereby, they can cost more than $1000 \in$ in 'plug load' electricity (i.e. not including their impact on room air cooling systems). This is just one -80° C freezer! How many freezers do you have in your laboratory building? Best saving measure is to reduce the number of freezer running at the same time or make them run more efficiently.

But how to achieve that?

Become a sample minimalist

Start decluttering your freezer and organize it in a more accessible way. Make sure you know exactly what is inside and dispose any samples that are no longer needed. Do regular inventory checks before it starts getting messy again.

Share with a neighboring lab

After decluttering you have now a freezer that is only partly filled? Ask your neighbor labs if you can share freezing space with them. Supports socializing as well.

Defrost and clean your freezers regularly

Opening your freezer gives you an arctic feeling and makes you afraid of ice bear attacks? Time for defrosting!

When there is an ice layer covering the coils, the compressor must run longer to maintain its temperature = higher energy consumption.

Raise freezer temperatures

Raising the temperature from -80 to -70 degrees saves up to 30% of the energy it uses and research shows that many samples can be stored at -70 degree as well. Moreover, the less cooling effort will increase the lifetime of your freezer.

2.1.3 Autoclave

A single run of an autoclave can consume up to 900 liters of water, but of course sterilization methods are important for save working. Still by improving your autoclaving skills, you can reduce energy and water consumption of the device significantly.

Consider the following rules when autoclaving:

Do not run the autoclave only half filled but do not overfill the chamber either – Steam Flow is Key!

Whenever you need to run the autoclave, ask your lab mates to combine load and leave a note at the autoclave to remind other people to ask you before autoclaving, too.

Turn the unit off and keep the door shut when not in use

Even when not in use, an autoclave uses between 3 to 6 liters per minute for its cooling system only.

You would not leave the door of your refrigerator open, would you?

¹Find the pdf here:

https://green.harvard.edu/sites/green.harvard.edu/files/FumeHoodWhitePaper.pdf

Use energy saving control features

Check the instructions of your device to find out if there is a more ecofriendly mode for your use applicable.

Sort your stuff!

Reduce autoclaving needs by sorting your working material. Only required items are autoclaved and other items are run through the dishwasher.

2.1.4 Electrical devices

There are so many different electrical devices in a lab you only need on certain days or just for some hours a day. What about centrifuges, PCR cyclers, plate readers, heating plates ...?

Remember to turn them off every time you finish your task!

You can also add "Turn me off" stickers to the devices to remind your lab mates. Also turn off environmental rooms or incubators when not in use.

2.2 Lab consumables

Plastic accumulates in ever larger quantities in the oceans, but because of its advantages it is difficult to replace. Plastic materials are also widely used in every day lab work. Due to sterility, products like gloves and pipettes are often used only once. So it is more important than ever to think about waste reduction, recycling and environmental friendly behavior concerning lab consumables. Tips from A-Z. Let's get started!

(\mathbf{A}) Autoclavable glassware

All sorts of lab equipment are also available as glass ware instead of disposable plastic products. Do you really need one-use plastic pipettes or wouldn't glass pipettes serve the same purpose? As already mentioned in the previous section, autoclaving is an energy and water consuming process. Autoclaving reusable glassware is still more efficient than autoclaving contaminated plastic waste.

B **Biodegradable materials**

The theory behind bioplastics is simple: Making plastic starting from kinder chemicals, it would break down faster and easier when we compost it. Check out if things like biodegradable gloves are practicable for you!

(\mathbf{C}) **Consolidate purchase**

Reduce packaging waste and transport ways by combining your orders with other labs or by planning ahead. Additionally, if sterility is not an issue, try to buy items that are packed in bulk.

D Dry orders

Order your oligos dry. It saves shipping weight, package material and is more stable.

(\mathbf{E}) **Eliminate hazardous chemicals**

Minimize the generation of hazardous wastes and find out if you could use eco-friendlier chemicals instead. E.g the MIT Green Chemical Alternatives Wizard assists researchers to find a safer, more environmentally-friendly alternative.

2.2 Lab consumables

(F) Follow iGEM goes green

We'll keep you updated about revisions of the Guideline, new tips and ideas and more!

Instagram: https://www.instagram.com/igem_goes_green
Facebook: https://www.facebook.com/igem.goesgreen

G Get creative!

Give your package material a second life and reuse card boxes and styrofoam containers. Upcycle them as storage boxes, underlay or hiding place for your cat.

H Halogenated waste

Segregate halogenated from non-halogenated wastes.

(I) Inspire

Set a good example by making your lab more sustainable and motivate coworkers or other labs to join the movement. #gogreen

(J) Journal

Purchase journal abonnements online and do not print articles to reduce paper waste.

K Keep it simple!

Start with simple changes in your daily working routine to make your lab work greener - then you can deal with bigger problems.

L Label your stuff!

Label everything you do clearly, so you and others can be sure what it is and if it is still needed. Also label your bins clearly to support waste separation and recycling.

Minimize

Order only the amount that you need. Do not buy chemicals in large amounts just because it is cheaper when you will never use it up.

N No excuses!

Start making your lab more sustainable today. There are so many possibilities how to start right away.

O Offer...

... unwanted equipment or unused materials to other labs or student groups.

P Pipette tips

Refill your old tip boxes by purchasing your tips in bulk. It makes great as initiation ritual for new lab members or as pastime during lab meetings. Alternatively, old pipette boxes in the lab make great containers for storage.

Q Quality

Make sure that all your lab consumables are of a high quality.

(R) Reduce experiments

Reduce the scale of experiments and protocols to the minimum size necessary to achieve research objectives. This can be achieved by good planning and saves chemicals, tubes and other working material.

S Size

Use appropriate sized vessels to store your samples. You will save plastic, freezer space and money.

T Tubes

Buy your micro reaction vessels and tubes from recycled plastic. Get them in bags and refill boxes and racks yourself.

U Up-to-date inventory

Keep an up-to-date list of your lab consumables to avoid duplicate orders.

V Values

Try to instill green values in coworkers and support green suppliers.

W Waste manager

Choose a person responsible for waste reduction and informing other people about recycling ways.

X XYZ...

Have a closer look around your lab. You will probably find more ways to reduce, recycle and refill.

2.3 Workspace

Much has been said about how to go about working greener in the lab, but what about the office? Research is also a lot of reading, writing and computer work. Check out your possibilities for a more sustainable desk space.

2.3.1 Paper and printing products

Nearly every office relies on large quantities of paper. On the one hand Paper is made from wood, a truly renewable and sustainable resource. However, on the other hand the current demand for paper consumes already 40% of the annual industrial wood harvest. So we exhaust the resource faster than it can regrow. [2] This will not work forever we should start overthinking our paper production and consumption practices now.

Alternatives?

Reduce paper waste by avoiding paper in the first place. Be more aware whenever you use paper and think about whether you really need a paper version of whatever you're up to.

Store manuals, policies and other documents digitally

Consider the environment before printing emails, papers or instructions.

Use both sides of paper

You thought about it and you are absolutely sure that you need a printed version of your document? Then at least make sure that your printer prints double-sided. Use it as default setting for your office printer.

Use recycling paper

Buying a writing pad with 80 sheets of recycling paper instead of a conventional one saves the amount of CO_2 that 353 web queries produce. More advantages of recycling paper compared to paper made from wood:

14

- The production requires 2-6 times less water.
- The total energy consumption is 3-4 times lower.
- The resource wood is spared. [3]

E.g shred it and use it as package material for shipments.

2.3.2 Lights

Turn the lights off whenever you leave a room.

Try to make use of the cheapest light source and shut the light in your office off as long as there is enough daylight for working. Use the night for sleeping and work during the day.

Save energy and money by switching to LED lights. They are not very expensive anymore and their life span is so much longer than other lights.

2.3.3 Computers

Your computer is running the whole day - even when you are in the lab? Think about when you use your computer the most and switch it off in between.

Car sharing is a common trend, so how about computer sharing? Estimate the time you spend in front of the monitor and think about if you really need your own computer. Maybe you can manage to share one with your lab mate.

🔍 Give it a nap

Make sure your computer turns to energy saving mode when you are not using it for a short time.

Thanks for reading this chapter. You see, it is not that difficult to make a difference! If you feel motivated to also change some of your personal habits now, check out chapter 4.

Main ideas from this chapter were taken from the Harvard Green Labs Program [1] and the Green Lab Program of the University of California [4].

This chapter concerns especially conferences and is mainly based on the guide for sustainable organization of events by the German Federal Environmental Agency [5]. In the iGEM context teams from certain areas get together for local meetups to create contacts and collaborations. However, even if you do not plan to host a conference of any kind yourself any time soon, this chapter is worth reading. Many aspects will be relevant for simple team meetings or events just as well. Furthermore, if you are attending a conference, reading this chapter will give you a good understanding on how to help shaping it green.

3.1 Transportation

Depending on the distance and mode of travelling, transportation easily becomes a very big issue for sustainable meetings. Try reducing the traffic induced environmental stress of you meeting as much as possible and think about compensating for unavoidable emissions or suggest to do so to the participants of you meeting. There are easy calculation tools for emissions produced by transportation and lots of providers for compensation, check out chapter 6 and chapter 5.

Keep in mind the following:

Make sure, public transport is a good option.

- Choose a location that is easily reachable by public transport.
- Organising a shuttle service or shared cars form the train/bus station if the final location is hard to reach without a car.
- Schedule beginning and end of your event according to the operating times of relevant public transport.
- Give "attractive" options for using public transport. Check with the provider if there are any discounts. The tickets could include a bike option in the city etc.

Provide support for planning the journey.

- Inform the participants about environmental friendly travel options, this includes giving them a detail description on how to reach the location via public transport. The best choice can vary in each situation. Guiding principle: bike > a full bus > a full car > train > an empty car with just one person > plane
- Encourage them to share cars. If possible, provide a platform (mailing list, facebook group, etc.) for organizing shared rides.

Considering possible alternatives like telephone or video conferences.

Obviously this is not exactly an option for iGEM meetups, but meetings without a connected social aspect often don't call for a meeting in person.

3.2 Accommodation and Energy

Saving energy is something most people have thought about before, if only for financial reasons. Of course it's a good idea in the context of protecting the environment as well:

Reduce energy consumption.

- Don't heat the conference rooms over 20°C, don't cool them down further than 6 degrees below outside temperature.
- If you have the choice use energy efficient devices.

However, one thing you probably don't think about much when you plug in a device or turn on the light is where exactly the energy comes from. Green energy makes quite a difference [6].

Think about energy sources.

Ask the accommodations whether they are using "green" energy sources and make it a criterion when choosing the hotel and conference building.

3.3 Food and Catering

Favour organic, fair trade and local products in season.

The positive impact of seasonal products is obvious (short transport routes). However, though you will probably agree that organic and fair trade are great in general, you might wonder how both help reducing emission. To answer that: Fairtrade International developed a Climate Standard and actively works against climate change [7], and organic farming, amongst other benefits, doesn't use the pesticides and fertilizers common in conventional farming which have a far larger carbon footprint [8].

Provide tab water in carafes.

If tab water is drinkable in your country, that is. Aside from the environmental benefits it safes you money and the hassle of transporting all those heavy water bottles.

Reduce the amount of animal products on the menu.

Global livestock causes 14.5 percent of all anthropogenic GHG emissions [9]. That's good reason to reduce the amount of meat, dairy products and eggs involved in your meals. Lamb, beef and cheese have the biggest impact here [10]. Yes, that's right: Cheese is worse than chicken, so going veg isn't enough (though of course it helps).

- Always provide vegetarian and vegan options.
- Cut down on animal products. It's up to you how far you want to go here however, eating veg or even vegan for a weekend shouldn't be much of a problem for anyone. ;)
- Pay special attention to the source of products like coffee, chocolate and fish.

3.4 Material and Services

Procure and use materials prudently.

- Avoid paper waste: Print on both sites, minimize the number of handouts, and take back and recycle or reuse flyers etc.
- Try to use 100% recycled paper.

Pay attention to the sustainability of providers.

When inviting offers for services or products always state your environmental goals.

3.5 Waste management

Conferences and get-togethers with big enough numbers of people almost always end up with paper floods and mountains of disposable cutlery, plates and cups. We have talked about handouts and flyers before. Of course, there is more:

Reduce waste where you can...

- Use environmental friendly packaging (avoid plastic, prefer reusable containers, buy in bulk).
- Use reusable plates, cutlery and glasses.

…and separate where you can't.

Set up places for waste separation and make them easy to use by clearly stating what goes where and making sure full containers get emptied quickly.

3.6 Communication

Welcome to the most important section of this chapter. You might have read the preceding sections with a bit of unease or doubt, especially when it comes to checking energy sources or having all vegan meals. Understandably. If you haven't, maybe because none of this is new to you and you are excited to realize all this, keep in mind this probably won't be the case for all participants of your meeting. Therefore, no matter how far you decide to go with having a green meeting, make sure the communication is working out. Everyone involved needs to know about your goal to have a sustainable "green" meeting, otherwise it will be hard to make it a success.

Inform participants and public early on.

The goal of having a "green" meeting and the approaches to do so should be made public early on. While this works as a stimulus to reach the stated goals it's also a good advertisement for your meeting and for the green movement in general. Especially the participants should be informed about the green aspects of the meeting beforehand.

Involve the participants.

You won't be successful without their support and cooperation. Provide them with ways to get involved easily. We mentioned providing ways to organize car sharing before. You can think of more! Provide short guidelines on how to safe water in the rest rooms for example.

Name a person responsible for the "green" aspects oft the event.

That way someone will have the overview about what's going on. Everyone involved in organizing the event as well as participants should know whom to contact with questions.

Nowadays there are so many lifestyles addressing different aspects of sustainable living. Minimalism, Veganism and Zero Waste are just some catch words here.

In this chapter we collected a few suggestions for developing a more sustainable lifestyle to provide a starting point for everyone who has not yet thought about sustainability in everyday life but feels motivated now to dive into the topic.

4.1 Eating Habits

What we buy and eat influences regional and global structures. Sustainable nutrition means considering the health aspects and the environmental, ecological and social impact of your food [11]. The same facts we already mentioned in chapter 3 are applicable here:

Reduce the amount of meat, eggs and dairy products on your menu

You do not have to quit everything you enjoy from your meal schedule. But think about reducing your consumption of animal-based food and pay attention to the quality. Global livestock causes 14.5% of all anthropogenic GHG emissions [9]. A plant-based mixed diet produces about 15% less green house gases than an unbalanced meat-based diet. Moreover, the production requires less water and acreage [11].

Buy regional and seasonal products

Buying regional and seasonal avoids unnecessary food transport. Furthermore it supports regional agriculture and economy.

Favour organic and fair trade

Though you will probably agree that organic and fair trade are great in general, you might wonder how both help reducing emission. To answer that: Fairtrade International developed a Climate Standard and actively works against climate change [7], and organic farming, amongst other benefits, doesn't use the pesticides and fertilizers common in conventional farming which have a far larger carbon footprint [8].

Drink tab water (if that's safe in your country)

It safes you money, the hassle of transporting all those heavy water bottles and is good for the environment. Also get yourself a reusable bottle for whenever you are on the go. Having your own fancy bottle might even motivate you to drink enough during the day. :)

4.2 Transport

Being mobile is crucial these days for most people, no question here. However, a car is not the only option to get around of course.

Go by bike whenever possible...

Traffic studies show that riding a bike can save up to $138g \text{ CO}_2$ per km and that up to 30% of the car trips in cities could be replaced by bike rides[12]. And it also has more advantages than just being climate-friendly: Riding a bike is flexible, pretty fast (for shorter trips within the city you might even beat public transport sometimes), healthy and makes a good start of the day. You'll feel much more energized and less stressed when you arrive at work or university after a morning bike ride instead of squeezing into the too full morning bus or going by car during rush hour.

...and choose the best alternative when the bike isn't an option

The best choice can vary in each situation. A general guiding principle is: bike > a full bus > a full car > train > a rather empty car > plane.¹ Think about looking for shared rides or offering them yourself, whenever you want to go by car.

4.3 Waste Reduction

Switch to reusable bags

Most plastic bags are used only once to carry home your purchases. But after that it takes decades for the plastic bag to disappear. But even then they don't truly disappear they only break down into tiny pieces you don't see anymore but which will end up in the environment and everywhere in the food chain [13]. And we haven't even talked about the related GHG emission during production yet! So bring reusable bags when going shopping to avoid wasting plastic bags.

Think twice before you buy a new product.

You might realize your old stuff is still working just fine. When you do buy something new, better spent a little more money and get something lasting instead of any of the cheap stuff that will only end up in landfills too soon.

Avoid plastic wrapping.

Shops that allow you to buy all your groceries in your own reusable containers can be found in some places already. But even in common stores you will find options using less plastic wrapping than others. Also bring reusable bags for veggies and fruits and try to avoid those plastic bags provided in the fruit and vegetable department as much as possible.

20

¹For Germany the "Deutsche Bahn" offers a calculation service: http://www.deutschebahn.com/en/ sustainability/environmental_pioneer/umweltschutz_interaktiv/11887484/mobilecheck.html

4.4 Further Reading

The lazy persons guide for saving the world:

http://www.un.org/sustainabledevelopment/takeaction/

Sreen blog published by The Green Guide Institute (TGGI): http://blog.thegreenguide.com/

5. Greenhouse Gas Compensation

The first principle for environmental protection from greenhouse gases should always be the reduction and avoidance of emission of those. Nevertheless, some emissions can't be avoided without cancelling the whole project. At this point, compensation comes into play. Let's have a look at the different strategies of compensation!

5.1 Carbon Emission Trading – Reducing Allowed Emissions for Companies

In the 2009 UN Climate Change Conference in Copenhagen an at the most $2^{\circ}C$ (3.6°F) rise in average temperature was set. [14] To achieve this aim, calculated emission limits have to be met. Carbon emission trading was introduced by the Kyoto Protocol 1997 and is based on this strategy. Allowances are needed to release greenhouse gases into the atmosphere. A total amount of emissions, the cap, is set and allowances are distributed among companies and installations. The incentive is to reduce emissions to save money. If a company does not need all the bought allowances, it can sell them to other companies. This simple principle allows a market-based control of carbon emissions. [15]

But how to compensate own emissions with this system? The idea is to buy and cancel allowances, making them unavailable for companies. This will lead to reduced emissions and companies are forced to invest into low carbon solutions. [16]

Alright, let's take action at the global carbon market! But wait, there is none... There are 20 different emission trading systems existing, multinational, national and regional ones, making it quite difficult to follow the path. On their website, the International Emissions Trading Association (IETA) offers a good overview and detailed information about the different systems (see http://www.ieta.org/The-Worlds-Carbon-Markets).Advantages of Emission Trading Systems are the straight-forwarded method and cheap prices as supporting climate protection projects have to be costly realized and monitored.

Different non-profit organizations have set themselves the target to destroy carbon allowances. Among them are Climakind, Sandbag and CO2compensation.org. All of them buy allowances from the European Union Emission Trade System (EU ETS), mainly because it was the first multinational ETS being established, leading to a nowadays highly reliable and robust system. Furthermore, the Carbon emissions in the EU ETS were reduced by 3.1% in 2008, global emissions rose 1.9% in the same time period. [17]

However, this does not indicate that other emission trading systems are not reliable, they have less experience and still have to prove that they meet the requirements set from these organizations.

Despite the advantages of emission trading systems, Sandbag highlights weak points and has decided to temporarily close the Destroy Carbon Project. Reasons named are a low carbon price which is not forcing companies to invest into low carbon solutions, and over 3 billion tons of spare allowances in the EU ETS meaning that companies have still enough allowances to consume. After Sandbag, this system has led to even increased emissions in some cases. [18]

In summary, using emission trading systems for compensation of greenhouse gases follows a simple strategy and can be easily applied with cheap prices. Nevertheless, the 100 % effect should not be taken as guaranteed and further information about different emission trading systems, the cap and spare allowances have to be gathered for each individual case.

Interested in alternatives? No offence, but multiple values are important for you? Here comes the second option:

5.2 Support Projects for Reduction of GHG Emissions

Besides emission trading, the Kyoto Protocol introduced Clean Development Mechanism (CDM) and Joint Implementation (JI) as market-based mechanisms that can be also used for compensation [19] By implementation of an emission-reducing project in another country certified emission reduction credits can be earned and traded. The reduced emissions are then subtracted from the allowed ones, allowing countries with high emission of greenhouse gases to compensate. With CDM, the focus is laid on projects in developing countries. A Win-Win situation is created: investing countries have a flexible and cost-efficient way to meet the Kyoto commitments, host countries profit by investment and technology transfer. The variety of organizations and companies offering climate protection projects is huge. Below, three options are introduced.

• Climate Partner is a company with multiple services for climate protection. They invest money into certified projects with aims like protecting forests and establishing regenerative energies. For them, the benefit for people is as important as climate protection. Just look at their clean stove project in Peru: poor people suffer from enormous smoke generation while cooking over naked flame. By installing new and efficient stoves, both pollution and emission of greenhouse gases are reduced, less firewood is needed. Interested? Have a look at their website and choose your favorite project:

http://www.climatepartner.com/en

• **Plant for the planet** is an organization initiated and mainly operated by children worldwide. Their aim is to plant 1,000 billion trees around the world to absorb and store 10 billion tons of CO₂. They believe that trees serve as time-buffer to slow down climate change, giving us more time to effectively reduce our emission levels by usage of new technologies and adjusting life styles of industrial countries.

Check out the different planting locations at: https://www.plant-for-the-planet.org/en/home

• The Wilderness International foundation has set themselves the target to preserve wilderness from industrial and agricultural damage. They buy land in West Canada to save the largest continuous area of temperate rainforest in the world. This region is endangered by timber and mining industries. GHG compensation is not their preferential aim, nevertheless protecting forest means saving trees which can compensate GHG.

For more details, see: http://wilderness-international.org/home

Convinced? As already mentioned the options for compensation are numerous

Look for local projects and initiatives

Maybe the park in your city needs a refresh and donations to plant new trees are welcome. Planting your own tree as symbolic action would also please us much.

You see, the possibilities to compensate GHG are versatile and usually easy to perform, it's just some clicks away (#noexcuse). Let's act responsible and sustainable together!

The calculation of emission of CO_2 and other greenhouse gases is essential to understand the impact our actions have on the environment. Not only the obvious causes (e.g. intercontinental flights), but also the small ones (e.g. electricity) sum up to a final number.

Wait, we don't want to scare you! We are aware that the last sentence might cause readers to immediately stop and go over to the next chapter. We solemnly swear to provide you with a reasonable compromise between simplicity and accuracy to get a good and easy estimation in the end.

An important point to make things easy and feasible is setting boundaries about what should be included in calculations. The whole bunch of production processes of (subsub-) products might be left out, otherwise this calculation will take forever.

For iGEM teams the points labwork, meet-ups and (in our case the largest emission producer) flights should be taken into account. If you feel that an important point is missing, don't hesitate to make a suggestion to us.

6.1 Labwork

We plan to measure the power consumption of gadgets and machines as well as the amount of consumables used. As our team has started working in the lab just a few weeks ago, we haven't had the opportunity for measurements yet. Therefore, this chapter is still under construction, we will inform you if an updated version of the GoGreenGuide is available online.

With the invaluable help of Toni Kiel from Plant Values¹ we are currently working to provide you with an Excel sheet for easy estimation: just fill in consumed goods (pipette tips, tubes, etc.) and the duration different devices were used to find out how big your lab's carbon footprint is. Stay tuned, the detailed instructions on what to measure and count will follow soon.

By now, we are also cooperating with Wilderness International, a foundation located in our hometown Dresden, who plan to create an online tool for labwork-based emissions of greenhouse

¹Plant Values is a Dresden-based startup offering sustainable consulting for companies. You'll find their website (in German) here: https://www.plant-values.de/

gases. The release is planned for October 2017, so have a look on their website from time to time: http://wilderness-international.org/

🔍 Wanna help?

The data we will obtain with our measurements can be seen as a general estimation. However, the deviation between different devices and different producers might be huge. Consequently own measurements are advantageous for a precise calculation.

We ask you to track your lab consumption of materials and energy. This will also help us to provide average numbers and gain a better estimation for teams all over the world. Interested? Just contact us and we will support you and your team!

6.2 Meetups

The emissions caused due to meetings and other events strongly rely on duration, number of participants and journey.

"Plant for the Planet" provides a useful online tool with the aim to have carbon neutral events. Therefore, the first step is the calculation of carbon emission, and that is exactly what we are looking for:

Compensate your event

Plant for the planet offers an online tool to estimate how much carbon emissions are caused by your event. Go to https://www.plant-for-the-planet.org/en/support/carbon-neutral-event and have the following information ready:

- area of event location
- event duration
- number of participants
- transport (average distance, percentage of means of transport)

6.3 Flights and Travel

Flights cause high emissions of greenhouse gases and therefore should be avoided whenever possible. Is there an alternative to get to the Giant Jamboree in Boston other then by plane (for those who don't live in North America)? By ship? *Joke*

You see, flights usually can't be avoided. Nevertheless, nearly all means of transport (except for cycling and walking) cause emissions and in the end, all have to be taken into account. "Atmosfair", a German organization for climate protection, focuses on travel and provides a reliable online tool for travel emission calculations.

Below, we want to give a short list why we think the Atmosfair emission calculator is a trustful tool and why we highly recommend to apply it, especially for flights.

- A sufficient amount of independent data from scientific research projects was used to obtain numbers for nearly all combinations of factors. For example, if the user doesn't know the plane type, good estimations can be applied. Furthermore, factors with high impact on emissions are considered in detail, whereas factors with low impact are estimated.
- When burning kerosine, different pollutants having different effects are released (e.g. NO_X , CO_2 and particles). The resulting warming effect is calculated by transforming all effects into CO_2 . Here, the "Radiative Forcing Index" (RFI) is used. It can only be applied in high altitudes above 9km and is not used for climbing up and landing phases. The calculator strictly separates between those phases.

26

• The methodology is validated by Germany's Federal Environmental Agency, promising highly reliable calculations.

The detailed description of methods and estimations used in this emission calculator can also be found on their website as pdf file (Documentation_Calculator_EN_2008.pdf). [20]

Compensate your flights

Go to https://www.atmosfair.de/en/home and check out your travel emissions. If you want to use a different tool, please check where they got the data from, how it works in detail and which estimations are made. Don't use it before evaluating its trustworthiness!

- [1] Harvard University. *Green Labs*. URL: https://green.harvard.edu/programs/green-labs (visited on 05/23/2017).
- [2] WWF International. *Pulp and paper*. URL: http://wwf.panda.org/about_our_earth/ deforestation/forest_sector_transformation/pulp_and_paper/ (visited on 05/18/2017).
- [3] Umweltbundesamt. Working green: 50 tips to reduce your office's waste. URL: http: //www.umweltbundesamt.de/papier-druckerzeugnisse#textpart-2 (visited on 05/18/2017).
- [4] University California. Greenlab. URL: http://sustainability.ucr.edu/certification/ greenlab.html (visited on 05/11/2017).
- [5] Leitfaden für die nachhaltige Organisation von Veranstaltungen. Version 3. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB), May 24, 2017. URL: http://www.umweltbundesamt.de/publikationen/ratgeber-leitfaden-fuerdie-nachhaltige.
- [6] World Nuclear Association. Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources. URL: http://www.world-nuclear.org/uploadedFiles/ org/WNA/Publications/Working_Group_Reports/comparison_of_lifecycle.pdf (visited on 05/23/2017).
- [7] Fairtrade international. *Fairtrade Climate Standard*. URL: https://www.fairtrade.net/ standards/our-standards/climate-standard.html (visited on 05/22/2017).
- [8] Umwelt Bundesamt. Organic Farming. URL: http://www.umweltbundesamt.de/en/ topics/soil-agriculture/toward-ecofriendly-farming/organic-farming (visited on 05/22/2017).
- [9] Food and Agriculture Organization of the United Nations. By the numbers: GHG emissions by livestock. URL: http://www.fao.org/news/story/en/item/197623/icode/ (visited on 05/22/2017).

- [10] Environmental Working Group. Meat Eaters Guide. URL: http://www.ewg.org/ meateatersguide/a-meat-eaters-guide-to-climate-change-health-whatyou-eat-matters/climate-and-environmental-impacts/ (visited on 05/22/2017).
- [11] Landwirtschaft und Forsten Bayrisches Staatsministerium für Ernährung. Nachhaltige Ernährung. URL: http://www.stmelf.bayern.de/ernaehrung/007946/index.php (visited on 05/22/2017).
- [12] Umweltbundesamt f
 ür Verkehr. Radverkehr. URL: http://www.umweltbundesamt.de/ themen/verkehr-laerm/nachhaltige-mobilitaet/radverkehr#textpart-1 (visited on 05/23/2017).
- [13] The Environmental Magazine. Plastic Grocery Bags: How Long Until They Decompose? URL: http://business-ethics.com/2010/09/17/4918-plastic-grocery-bagshow-long-until-they-decompose/ (visited on 06/28/2017).
- [14] United Nations. Framework Convention on Climate Change. Copenhagen Climate Change Conference - December 2009. URL: http://unfccc.int/meetings/copenhagen_dec_ 2009/meeting/6295.php (visited on 06/15/2017).
- [15] Building Federal Ministry for the Environment Nature Conservation and Nuclear Safety. Emission Trading. URL: http://www.bmub.bund.de/en/topics/climate-energy/ emissions-trading/general-information/ (visited on 05/10/2017).
- [16] Climakind organization. What is Climakind. URL: http://climakind.com/c/2-Whatis-Climakind.aspx (visited on 05/10/2017).
- [17] Climakind organization. How Climakind works. URL: http://climakind.com/c/2-About.aspx (visited on 05/16/2017).
- [18] Sandbag. Cancel Pollution Permits. URL: https://sandbag.org.uk/carbon-destructionservice/ (visited on 06/15/2017).
- [19] United Nations Framework Convention on Climate Change. The Mechanisms under the Kyoto Protocol: Clean development mechanism, joint implementation and emissions trading. URL: http://unfccc.int/kyoto_protocol/mechanisms/items/1673.php (visited on 05/16/2017).
- [20] "The Atmosfair Emissions calculator". In: (2008).

Space for your notes and ideas:

Thanks to our Sponsors!

