
MUST

MPI Runtime Error Detection Tool

November 9, 2011

1

CONTENTS CONTENTS

Contents

1 Introduction 3

2 Installation 3
2.1 PnMPI . 4
2.2 GTI . 4
2.3 MUST . 5
2.4 Environmentals . 5

3 Usage 5
3.1 Execution . 5
3.2 Results . 6

4 Example 6
4.1 Execution with MUST . 7
4.2 Output File . 7

5 Included Checks 11

6 Optional: MUST Installation with Dyninst 12

7 Troubleshooting 12
7.1 Issues with Ld-Preload . 12

8 Copyright and Contact 13

2

2 INSTALLATION

1 Introduction

MUST detects usage errors of the Message Passing Interface (MPI) and reports
them to the user. As MPI calls are complex and usage errors common, this
functionality is extremely helpful for application developers that want to de-
velop correct MPI applications. This includes errors that already manifest as
segmentation faults or incorrect results as well as many errors that are not visi-
ble to the application developer or do not manifest on a certain system or MPI
implementation.

To detect errors, MUST intercepts the MPI calls that are issued by the tar-
get application and evaluates their arguments. The two main usage scenarios
for MUST arise during application development and during porting. When a
developer adds new MPI communication calls, MUST can detect newly intro-
duced errors, especially also some that may not manifest in an application crash.
Further, before porting an application to a new system, MUST can detect vio-
lations to the MPI standard that might manifest on the target system. MUST
reports errors in a log file that can be investigated once the execution of the
target executable finishes (irrespective of whether the application crashed or
not).

2 Installation

The MUST software consists of three individual packages:

• PnMPI

• GTI

• MUST

The PnMPI package provides base infrastructure for the MUST software and
intercepts MPI calls of the target application. GTI provides tool infrastructure,
while the MUST package contains the actual correctness checks.

Each MUST installation is build with a certain compiler and MPI library.
It should only be used for applications that are built with the same pair of
compiler and MPI library. This is necessary as the behavior of MUST may
differ depending on the MPI library. Compilers may be mixed if they are binary
compatible.

All three packages require CMake for configuration, it is freely available at
http://www.cmake.org/. You can execute which cmake to determine whether
a CMake installation is available. If not, contact your system administrator or
install your a local version, which requires no root privileges. We suggest to use
CMake version 2.8 or later (use cmake --version).

Further, in order to augment the MUST output with call stack information,
which is very helpful for pinpointing errors, it is possible to utilize Dyninst.
In that case MUST uses the Stackwalker API from Dyninst to read and print

3

http://www.cmake.org/

2.1 PnMPI 2 INSTALLATION

stacktraces for errors. As the installation of Dyninst is often non-trivial we sug-
gest this for more experienced users or administrators only. Section 6 presents
the necessary steps for such an installation.

2.1 PnMPI

PnMPI can be build as follows:

tar -xf pnmpi.tar

cd pnmpi

mkdir BUILD

cd BUILD

CC=<C-COMPILER> CXX=<C++-COMPILER> FC=<F90-COMPILER> \

cmake ../ \

-DCMAKE_INSTALL_PREFIX=<PNMPI-INSTALLATION-DIR> \

-DCMAKE_BUILD_TYPE=Release

make

make install

The CMake call will determine your MPI installation in order to configure
PnMPI correctly. If this should fail – or multiple MPIs are available – you can
tip the configuration by specifying -DMPI C COMPLIER=<FILE-PATH-TO-
MPICC> as well as -DMPI CXX COMPLIER=<FILE-PATH-TO-MPICXX>
and -DMPI Fortran COMPLIER=<FILE-PATH-TO-MPIF90> as additional
arguments to the cmake command. More advanced users can fine tune the
detection by specifying additional variables, consult the comments in cmake-
modules/FindMPI.cmake.

Further, PnMPI will require a Python installation of version 2.7 or later.

2.2 GTI

GTI can be build as follows:

tar -xf gti.tar

cd gti

mkdir BUILD

cd BUILD

CC=<C-COMPILER> CXX=<C++-COMPILER> FC=<F90-COMPILER> \

cmake ../ \

-DCMAKE_INSTALL_PREFIX=<GTI-INSTALLATION-DIR> \

-DCMAKE_BUILD_TYPE=Release \

-DPnMPI_HOME=<PNMPI-INSTALLATION-DIR>

make

make install

If you specified extra arguments for the MPI detection when installing PnMPI,
you must also add these arguments for the cmake call of the GTI configuration.
Further, GTI will require developer headers for libxml2 that should be available
on most systems.

4

2.3 MUST 3 USAGE

2.3 MUST

MUST is built as follows:

tar -xf must.tar

cd must

mkdir BUILD

cd BUILD

CC=<C-COMPILER> CXX=<C++-COMPILER> FC=<F90-COMPILER> \

cmake ../ \

-DCMAKE_INSTALL_PREFIX=<MUST-INSTALLATION-DIR> \

-DCMAKE_BUILD_TYPE=Release \

-DGTI_HOME=<GTI-INSTALLATION-DIR>

make

make install

The installation of MUST relies almost completely on the settings specified
when installing GTI. Usually no extra arguments are needed. You can specify
-DENABLE TESTS=On to activate the test suite that is included in MUST.

2.4 Environmentals

You must add <MUST-INSTALLATION-DIR>/bin to your PATH variable to
allow convenient usage of MUST. Further, you should make sure that you load
the version of CMake that was used to build MUST.

3 Usage

The following two steps allow you to use MUST:

• Replace the mpiexec command with mustrun to execute your application;

• Inspect the result file of the run.

3.1 Execution

The actual execution of an application with MUST is done by replacing the
mpiexec command with mustrun. It performs a code generation step to adapt
the MUST tool to your application and will run your application with MUST
afterwards. It uses a default set of correctness checks and a communication
system where one MPI process is used to drive some of MUST’s correctness
checks. So when submitting a batch job, you should be sure to allocate resources
for one additional task. Further, when calling mustrun you need to have access
to the compilers and MPI utilities that where used to build MUST itself.

A regular mpiexec command like:

mpiexec -np 4 application.exe

5

3.2 Results 4 EXAMPLE

Is replaced with:

mustrun -np 4 application.exe

It will execute your application with 4 tasks, but requires one additional task,
i.e. it will actually invoke mpiexec with -np 5.

If your machine provides no compilers in batch jobs, you can prepare a run
as follows:

mustrun --must:mode prepare -np 4 application.exe

In your batch job you would then just execute:

mustrun --must:mode run -np 4 application.exe

The mustrun tool provides further switches to modify its behavior, call
mustrun --must:help for a summary. On many machines the mpiexec command
can differ on batch jobs, add --must:mpiexec <MPIEXEC> to the mustrun com-
mand to override the default. If you encounter errors during execution, please
submit error reports where you use --must:verbose as an argument to mustrun.

3.2 Results

MUST stores its results in an HTML file named MUST Output.html. It contains
information on all detected issues including information on where the error
occurred.

4 Example

As an example consider the following application that contains three MPI usage
errors:

1 #include <s t d i o . h>
2 #include <mpi . h>
3

4 int main (int argc , char∗∗ argv)
5 {
6 int rank ,
7 size ,
8 sBuf [2] = {1 ,2} ,
9 rBuf [2] ;

10 MPI Status status ;
11 MPI Datatype newType ;
12

13 MPI Init(&argc ,&argv) ;
14 MPI Comm rank (MPICOMMWORLD, &rank) ;
15 MPI Comm size (MPICOMMWORLD, &s ize) ;
16

17 //Enough tasks ?
18 i f (s ize < 2)
19 {
20 printf (”This t e s t needs at l e a s t 2 p r o c e s s e s !\n”) ;
21 MPI Finalize () ;
22 return 1 ;
23 }
24

6

4.1 Execution with MUST 4 EXAMPLE

25 //Say h e l l o
26 printf (”Hel lo , I am rank %d of %d pro c e s s e s .\n” , rank , s ize) ;
27

28 // 1) Create a datatype
29 MPI Type contiguous (2 , MPI INT, &newType) ;
30 MPI Type commit (&newType) ;
31

32 // 2) Use MPI Sendrecv to perform a r ing communication
33 MPI Sendrecv (
34 sBuf , 1 , newType , (rank+1)%size , 123 ,
35 rBuf , s izeof (int) ∗2 , MPIBYTE, (rank−1+s ize) % size , 123 ,
36 MPICOMMWORLD, &status) ;
37

38 // 3) Use MPI Send and MPI Recv to perform a r ing communication
39 MPI Send (sBuf , 1 , newType , (rank+1)%size , 456 , MPICOMMWORLD) ;
40 MPI Recv (rBuf , s izeof (int) ∗2 , MPIBYTE, (rank−1+s ize) % size ,

456 , MPICOMMWORLD, &status) ;
41

42 //Say bye bye
43 printf (” S ign ing o f f , rank %d .\n” , rank) ;
44

45 MPI Finalize () ;
46

47 return 0 ;
48 }
49

50 /∗EOF∗/

4.1 Execution with MUST

A user could set up the environment for MUST, build the application, and run
the it with the following commands:

#Set up environment

export PATH=<MUST-INSTALLATION-DIR>/bin:$PATH

#Compile and link, we rely on the ld-preload mechanism

mpicc example.c -o example.exe -g

#Run with 4 processes, will need resources for 5 tasks!

mustrun -np 4 example.exe

4.2 Output File

The output of the run with MUST will be stored in a file named MUST Output.html.
For this application MUST will detect three different errors that are:

• A type mismatch (Table 2)

• A send-send deadlock (Table 4)

• A leaked datatype (Table 6)

Table 2 shows the first error that MUST detects. The error results from the
usage of non-matching datatypes, which are an MPI INT and an MPI BYTE of the

7

4.2 Output File 4 EXAMPLE

MUST Output, date: Thu Aug 25 09:04:01 2011.

Rank Type
Message Form References

0
Error

A send and a receive operation use
datatypes that do not match!

Miss-match occurs at
(CONTIGUOUS)[0](MPI INT) in
the send type and at (MPI BYTE)

in the receive type (consult the
MUST manual for a detailed

description of datatype positions).
The send operation was started at
reference 1, the receive operation

was started at reference 2.
(Information on communicator:

MPI COMM WORLD)
(Informationon send of count 1
with type: Datatype created at

reference 3 is for C, commited at
reference 4, based on the following
type(s): MPI INT) (Information

on receive of count 8 with
type:MPI BYTE)

call
MPI Sendrecv

reference 1: call
MPI Sendrecv @rank

3
reference 2: call

MPI Sendrecv @rank
0

reference 3: call
MPI Type contiguous

@rank 3
reference 4: call
MPI Type commit

@rank 3

Table 2: Type miss-match error report from MUST.

8

4.2 Output File 4 EXAMPLE

same size as the integer value. This is not allowed according to the MPI stan-
dard. A correct application would use MPI INT for both the send and receive
call.
The example shows the specification of the location in the datatype that mis-
matches. The location (CONTIGUOUS)[0](MPI INT) means that the used datatype
is of contiguous kind, the mismatch is within the first child of the contiguous
type which is defined to be a base type namely MPI INT.
As another example (VECTOR)[1][2](MPI CHAR) would address the third entry
of the second block of a vector with basetype MPI CHAR.

MUST Output, date: Thu Aug 25 09:04:01 2011.

Rank Type
Message Form References

Error

The application issued a set of
MPI calls that can cause a

deadlock! A graphical
representation of this situation is

available in the file named
”MUST Deadlock.dot”. Use the

dot tool of the graphviz package to
visualize it, e.g. issue ”dot -Tps

MUST Deadlock.dot -o
deadlock.ps”. The graph shows the
nodes that form the root cause of

the deadlock, any other active MPI
calls have been removed. A legend

is available in the dot format in
the file named

”MUST DeadlockLegend.dot”,
further information on these

graphs is available in the MUST
manual. References 1-4 list the

involved calls (limited to the first 5
calls, further calls may be

involved). The application still
runs, if the deadlock manifested
(e.g. caused a hang on this MPI

implementation) you can attach to
the involved ranks with a

debugger.

reference 1: call
MPI Send@rank 0
reference 2: call

MPI Send@rank 1
reference 3: call

MPI Send@rank 2
reference 4: call
MPI Send@rank 3

Table 4: Send-send deadlock report from MUST.

The second error results from the application calling send calls that can lead
to deadlock (Table 4). Each task issues one call to MPI Send while no matching

9

4.2 Output File 4 EXAMPLE

receive is available. This can cause deadlock, however, as such calls would be
buffered for most MPI implementations this is a deadlock that only manifests
for some message sizes or MPI implementations.

(a) Wait-for graph. (b) Legend

Figure 1: Visualization of the send-send deadlock from Table 4.

If MUST detects a deadlock it provides a visualization for its core, i.e. the set
of MPI calls of which at least one call has to be modified or replaced. It stores a
wait-for graph representation of this core in a file named MUST Deadlock.dot.
This file uses the DOT language of the Graphviz package. You can visualize
it by issuing dot -Tps MUST Deadlock.dot -o deadlock.ps and opening dead-
lock.ps with the post script viewer of your choice (DOT also supports ad-
ditional output formats). Figure 1 presents this visualization for the send-
send deadlock in the example. It also shows the legend that is provided in
MUST DeadlockLegend.dot. The wait-for graph shows that all the MPI Send

calls are causing a cyclic wait-for condition. If MUST was configured with
Dyninst (Section 6), it will also print a parallel call stack in a file called MUST DeadlockCallStack.dot.

Finally, MUST detects that the application leaks MPI resources when calling
MPI Finalize, which is a not freed datatype in this case. Applications should
free all such resources before invoking MPI Finalize, as leaks are easier to detect
in such cases.

10

5 INCLUDED CHECKS

MUST Output, date: Thu Aug 25 09:04:01 2011.

Rank
Type

Message Form References

Error

There are 1 datatypes that are not
freed when MPI Finalize was

issued, a quality application should
free all MPI resources before
calling MPI Finalize. Listing

information for these datatypes:

-Datatype 1: Datatype created at
reference 1 is for C, commited at

reference 2, based on the following
type(s): MPI INT

reference 1: call
MPI Type contiguous

@rank 0
reference 2: call
MPI Type commit

@rank 0

Table 6: Resource leak report from MUST.

5 Included Checks

MUST currently provides correctness checks for the following classes of errors:

• Constants and integer values

• Communicator usage

• Datatype usage

• Group usage

• Operation usage

• Request usage

• Leak checks (MPI resources not freed before calling MPI Finalize)

• Type miss-matches

• Overlapping buffers passed to MPI

• Deadlocks resulting from MPI calls

11

7 TROUBLESHOOTING

6 Optional: MUST Installation with Dyninst

In order to install MUST with Dyninst support a full Dyninst installation or
a separate installation of the Dyninst Stackwalker API is needed. This usually
requires an installation of libdwarf. Installation instructions for these can be
found on the Dyninst website1. We suggest to install libdwarf as a shared library
(--enable-shared during its configure).

After a successful installation of the Stackwalker API it is necessary to con-
figure MUST to use this installation. Use the following CMake variables:

• -DUSE CALLPATH=On Enables the feature

• -DCALLPATH STACKWALKER HOME= Should point to the di-
rectory used for Stackwalker API installation (i.e. prefix given to its con-
figure)

• -DCALLPATH STACKWALKER PLATFORM= Usually x86 64-
unknown-linux2.4 depends on your platform

• -DCALLPATH STACKWALKER EXTRA LIBRARIES= Addi-
tional libaries that are needed, if libdwarf was built statically you will
need to add an absolute filepath to this lib here

Afterwards run make and make install to build and install MUST. When
running MUST no additional steps are needed. However, the stackwalker library
will only be able to extract source file names and line numbers if the application
was built with the debugging flag -g. Otherwise, it will list symbol addresses
and library names instead.

Note that MUST expects that the shared libraries for the Stackwalker API
and libdwarf (if built as a shared library) are in the LD LIBRARY PATH.

7 Troubleshooting

The following lists currently known problems or issues and potential workarounds.

7.1 Issues with Ld-Preload

In order to use MUST, your application must be linked against the core library
of PnMPI. Per default MUST will add this library at execution time by using the
ld-preload mechanism. If this causes issues you can use the following command
to manually link the PnMPI library:

mpicc source.c -L<PNMPI-INSTALLATION-DIR>/lib \

-lpnmpi -o application.exe

Important: if you manually link against the MPI library, you must add the
PnMPI library first and the MPI library afterwards.

1http://www.dyninst.org/

12

8 COPYRIGHT AND CONTACT

8 Copyright and Contact

MUST is distributed under a BSD style license, for details see the file LICENSE.txt
in its package. Also, MUST uses parts of the callpath library from LLNL, its also
uses a BSD style license, which can be found in the file modules/Callpath/LICENSE.
Further, MUST uses parts of LLNL’s adept utils which have a BSD style license
too, it is listed in the respective source files.

Contact tobias.hilbrich@tu-dresden.de for bug reports, feedback, and feature
requests.

13

	Introduction
	Installation
	PnMPI
	GTI
	MUST
	Environmentals

	Usage
	Execution
	Results

	Example
	Execution with MUST
	Output File

	Included Checks
	Optional: MUST Installation with Dyninst
	Troubleshooting
	Issues with Ld-Preload

	Copyright and Contact

