
Always-on Application Introspection
for Large HPC Systems
15th Parallel Tools Workshop | Sep 20, 2024 | Josef Weidendorfer

Always-On Application Introspection | September 20 | Josef Weidendorfer 1

2Always-On Application Introspection | September 20 | Josef Weidendorfer

Work together with
Amir Raoofy, Michael Ott, Carla Guillien
Julian Scheipl

Analyse, Predict Recommend

Understand best options – not just for the next system
Recommendations internally (for system purchase and operation)

and externally (for supporting LRZ users)

Technology HW & SWUser Requirements
Compute Demands | Ease of Use Cost-Effective | Sustainable/Green

The Role of the FC Group

4Always-On Application Introspection | September 20 | Josef Weidendorfer

Future
Computing

Group

5Always-On Application Introspection | September 20 | Josef Weidendorfer

Path to Best System for Users
Future Computing

1

2

3

4

5

6

Identification of dominant compute kernels defining user requirements

Characterization of Application Mix on Current System

Estimation of future requirements (Artifical Intelligence, Big Data)

Ensure that benchmark suite is available for upcoming architectures
(heterogenous, with accelerators)

Derivation of representative Benchmark-Suite (mix of micro-benchmarks, proxy-apps) for
procurements

Benchmark on recent architectures on-site
(1) validate vendor claims, (2) understand usability, (3) check stability of SW stack

Context: LRZ User Base

• Jobs on SuperMUC NG
• Around 750 research projects, Munich / Bavaria / German
• Around 2000 researchers

• Some HPC community codes, but often codes written from scratch
• Top 5 codes only use 17% of CPU hours

6Always-On Application Introspection | September 20 | Josef Weidendorfer

For a good understanding
of the performance characteristics of the application mix,

we need always-on background monitoring

Motivation for Performance Characterization Monitoring

• Identify jobs with performance issues
• High cache miss ratio, low Flop count, load imbalance
• Allows to notify user about eventual waste of CPU budget

• No enforcement of action
(users already showed performance/scaling figures in project proposals)

• Statistics to understand demand on resources
• Focus for next system more on

• High compute, fast caches, high memory BW, memory capacity, network, storage… ?
• Embed this requirement in adequate benchmarks for next procurement

8Always-On Application Introspection | September 20 | Josef Weidendorfer

Solution (1): Performance Characterization

PerSyst
• Low-frequency sample collection of Performance Counters (every 10 minutes)
• Subset of counters for basic analysis of performance issues / resource demand
• Per-Job data provided to users as web page

9Always-On Application Introspection | September 20 | Josef Weidendorfer

PerSyst Visualization

11Always-On Application Introspection | September 20 | Josef Weidendorfer

Solution (2): Monitoring Infrastructure

SuperMUC 1/2
• PerSyst used custom agent tree for aggregation

SuperMUC NG
• DCDB: Data Center Data Base
• Developed by LRZ Energy-Efficiency Group within DEEPEST project
• Integrated solution for various monitoring needs
• For sensor data from building infra / cooling infra / HPC system HW / HPC SW …
• Supports sources from perf_events / {proc,sys}fs / GPFS / OPA / IPMI / SNMP / REST …
• Open source (GPLv3): http://dcdb.it
• PerSyst ported to DCDB

12Always-On Application Introspection | September 20 | Josef Weidendorfer

http://dcdb.it/

DCDB Software Architecture

Legend

Ongoing

Done

DCDB Collect Agent

Data Analytics
EngineSensor Cache

Operations Monitoring

REST API

libdcdb

DB Interface

DCDB Pusher

Plugins

User/Admin Interface

REST API

Sensor Cache Data Analytics
Engine

Data
Visualisation

Feedback to
SLURM

Management and analytics nodes [1,..,M]Compute nodes [1,..,N]

MQTT
ServerPusher core Collect Agent core

Management and analytics nodes [1,..,M]

13Always-On Application Introspection | September 20 | Josef Weidendorfer

DCDB Overhead

Runtime overhead of DCDB core against High Performance Linpack on Intel Skylake

Intel Skylake
14Always-On Application Introspection | September 20 | Josef Weidendorfer

DCDB: Grafana Integration

15Always-On Application Introspection | September 20 | Josef Weidendorfer

We Want More Details!

Cannot pinpoint at source of performance issue / kernels with given characterization

Performance Issues
• Users are expected to use specific performance analysis tools
• More details allow to

• Give suggestion to users fix the issue (better service)
• Identify issues in common libraries where improvements would help everybody

Kernel Identification / Characterization
• Understand usage of installed software packages (get rid of unused packages)
• Help in designing smaller, still representative benchmarks for next procurement
• Allow to estimate porting efforts required towards new architectures / accelerators

16Always-On Application Introspection | September 20 | Josef Weidendorfer

Approach: System-Wide Program Counter Sampling

Goal
• Answer questions like “time spent in vendor-provided linear algebra library?”

Solution
• Get distribution of time spent by all jobs in binaries / shared libraries / waiting
• Time-based sampling of PC (1 Hz) with Linux perf_events, extension of PerSyst daemon

• Own parsing of event stream from kernel with map / unmap / sample events with PC
• Similar to “perf top -a” without resolving symbols (no DWARF info needed)

Low overhead
• 1 Hz enough for significant statistics on binary / shared lib usage
• Local aggregation into histogram, push to DCDB every few minutes

17Always-On Application Introspection | September 20 | Josef Weidendorfer

Pieces of the Solution

• Full System Sampling Mechanism
• Linux Kernel-based Sampling (Perf)

• Catch User Knowledge: Instrumentation Library
• Mark Phases, Relation Phases/Samples, Control of minimal Overhead

• Integration into System Monitoring
• Collection, Aggregation, Time Series Database, Storage

• Postprocessing
• Query Interfaces, Grafana, Export to User-Side Visualization Tools

18Always-On Application Introspection | September 20 | Josef Weidendorfer

LibExe

randomized starts to avoid aliasing effects

Approach – Time Based Sampling

• System-wide, per core, using fixed „reference clock unhalted“
• Collected:

PID, TID, IP è Sh Lib / Exe
 (via mapping info)

19Always-On Application Introspection | September 20 | Josef Weidendorfer

time

Node 1
 Core 1
 Core 2

Node 2
 Core 1
 Core 2

5s

active
sleeping

1s

1s

Exe Lib … Idle
2 1 2

 3 1 1

 4 1 0
 1 2 2

to
DCDB
every

10 min

Approach – Marking Phases

20Always-On Application Introspection | September 20 | Josef Weidendorfer

time

Process X
X Data: ph

Daemon

eBPF Data
Event Buf

eBPF Prog

Register
Process X:
Phase in

Address &ph

Instr
Marker:
Ph=3

30

X:&ph

4

Instr
Marker:
Ph=4

Unreg
Proc

X

-

Sample
trigger

in X

Attach 3
(at &ph in X)

to event

(e1:X/3)

Sample
trigger

in X

Flush
Events

Attach 4
(at &ph in X)

to event

(e1:X/3,
 e2:X/4) -

eBPF Program

21Always-On Application Introspection | September 20 | Josef Weidendorfer

Architecture

22Always-On Application Introspection | September 20 | Josef Weidendorfer

[Poster CF23]

Output of Example: LULESH code with function markers

23Always-On Application Introspection | September 20 | Josef Weidendorfer

[BA thesis Scheipl]

Overhead

Must be neglectable: always on, running partly on user budget for LRZ purposes

How?
• sampling + collection: overhead controllable
• time spent for instrumentation

• must be small for good statistics + not make users angry (their budget)
• issue: user may put markers in inner loops

Solution
• instrumentation points can be de-activated
• dynamic check of overhead: if too high, de-activate!

(1) visible in samples (2) counters + threshold

24Always-On Application Introspection | September 20 | Josef Weidendorfer

Marker Implementation: LIIF – leight weight instrumentation Interface

25Always-On Application Introspection | September 20 | Josef Weidendorfer

• C macro for inlining
• Registration on 1st use

• pass static info
• Notify about address of

disable flag („id“)
• Regular use (id >= 0)

• pass dynamic info
• Disabled state: id < 0

• mem access +
compare + branch
(no reg on x86)

• other option: DynInst with dynamic patching

_Atomic

Example: Code for Instrumention with Ability for Deactivate

26Always-On Application Introspection | September 20 | Josef Weidendorfer

Overhead of De-activated LIIF Instrumentation

27Always-On Application Introspection | September 20 | Josef Weidendorfer

Instrumentation Rate (MHz)

1.0

1.5

2.0

2.5

Sl
ow

do
w

n
Fa

ct
or

ThunderX2

Instrumentation Rate (MHz)

1.0

1.5

2.0

2.5
Rome

0.1 1 10 100 1000
Instrumentation Rate (MHz)

1.0

1.5

2.0

2.5

Sl
ow

do
w

n
Fa

ct
or

Ice Lake

0.1 1 10 100 1000
Instrumentation Rate (MHz)

1.0

1.5

2.0

2.5
A64FX

0.96
0.98
1.00
1.02
1.04

0.96
0.98
1.00
1.02
1.04

0.96
0.98
1.00
1.02
1.04

0.96
0.98
1.00
1.02
1.04

[Poster CF22]

Overhead of Sampling + Collection

28Always-On Application Introspection | September 20 | Josef Weidendorfer

Conclusion: Sampling for HPC Systems

• System-side monitoring for
• operation: track utilization + tune operation + feedback to user
• future procurement: user requirements à benchmark selection

Improved monitoring: Statistics with relation to Code
• Low-frequency sampling across full system (~ 1 Hz): capture relevant compute kernels
• User-provided phase markers: capture coarse-grained developer knowledge

Implementation
• Use sampling feature of „Performance Counters for Linux“
• Attach user-provided phase IDs to sample points via eBPF

29Always-On Application Introspection | September 20 | Josef Weidendorfer

Future Work

Sampling for more details on resource contention
• FLOP rates, memory bandwidth
• currently: “free running“ performance counters read every 10 mins

• this only gives average usage across each 10 min interval
• idea via sampling: do 3 samples in a row to derive rates, attach to IP of middle sample

Other use of phase markers provided by users
• Guide energy-aware system tools: clock up/down when entering phase

„Application Mentors“ can use profiling results to detect issues, contact users

30Always-On Application Introspection | September 20 | Josef Weidendorfer

Questions ?

