Parallel Algorithms and Tools for Bioinformatics on GPUs

Bertil Schmidt

Contents

- Overview
 - HPC Bioinformatics Software developed by my group
- Pairwise Sequence Alignment
- Multiple Sequence Alignment
- Short Read Error Correction
- Short Read Mapping
- De-novo Assembly
- Motif Finding
- Short Read Clustering

Software developed by my group

- Sequence database searching
 - CUDASW++ (Smith-Waterman)
 - CUDA-BLASTP
- Multiple sequence alignment
 - MSA-CUDA
 - MSAProbs
- Next-Generation Sequencing (NGS)
 - DecGPU, SHREC (short-read error correction)
 - CUSHAW (short-read mapping)
 - CRiSPy-CUDA, DySC (short-read clustering)
 - PASHA, Taipan (de-novo assemby)
- Motif finding
 - CUDA-MEME
- Accessible via: http://hpc.informatik.uni-mainz.de/

Utilized Parallel Architectures and Programming Languages

- Multi-core CPUs
 - Pthreads/OpenMP
 - SSE Vectorization
- Many-core GPUs
 CUDA
- CPU/GPU Clusters
 - MPI
 - Pthreads/OpenMP
 - CUDA
- FPGAs
 - Verilog
- MOGON
 - 81st in latest Top500 list

Cost of DNA Sequencing

Next-Generation Sequencing (NGS)

HiSeq2500			
Read length (typical)	100bps		
Reads per run	1.2 Billion		
Run Time (paired end)	~1 day		

- Ultra-high throughput
- Short-read length
- Example: Human Genome Sequencing (Li et al., 2010)
 - 4 billion reads
 - Average length 53bps (71x Coverage)

Common Algorithmic Patterns in NGS Data Analysis

- Indexing and lookup
 - Hashing
 - BWT and FM-Index
 - Bloom filter
- Dynamic programming
 - Smith-Waterman, Needleman-Wunsch
- NGS Bioinformatics Challenges
 - Scalability
 - to deal with huge amounts of reads
 - Algorithm design
 - to deal with short reads
 - Parallelisation
 - Many Bioinformatics algorithms are irregular and therefore challenging to map to parallel architectures

Local Pairwise Sequence Alignment

Align S1=ATCTCGTATGATG S2=GTCTATCAC

- Ligowski, Rudnicki, Liu, <u>Schmidt</u>: "Accurate scanning of sequence databases with the Smith-Waterman algorithm", GPU Computing Gems, Vol. 1, Chapter 11, 2011
- Liu, Maskell, <u>Schmidt</u>: "CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units", BMC Research Notes, 2:73, 2009

MSA with ClustalW

CUDA

- Kernels consist of threads
 - All threads execute the same program
 - Local memory per thread
- Threads grouped into thread blocks
 - Threads within a block can cooperate through **Per Block Shared Memory** (PBSM)
 - SIMT Model and Local synchronization
 - Threads run in groups of 32 called warps
- Threads/blocks have IDs
- GPU global memory
 - 3GB or 6GB RAM for Fermi-based Tesla
- Texture Memory
 - Cached (texture cache, L2)
 - Texture cache optimized for spatial locality

CUDA Parallelization: Stage 1

- Inter-task parallelization
 - Each alignment (task) is assigned to exactly one thread
 - *dimBlock* alignments are performed in parallel within a thread block.
- Load balancing
 - Sequences sorted by lengths \Rightarrow all threads within a thread block have similar workload

CUDA Parallelization: Stage 1

- Memory access
 - $O(min\{I_a, I_b\})$ storage for intermediate results per thread
 - Stored in global memory using coalesced memory access pattern
 - Partition of DP-matrix into blocks ⇒ reduce global memory access by using shared memory and registers
- Illustration of the use of shared memory
 - Each thread sequentially computes k = 12 matrix cells in column j (green) in shared memory.
 - The k+1 required cells of column j-1
 (blue) have been computed in the previous iteration and are therefore already stored in shared memory.
 - However, the upper neighboring cell (red) needs to be read from global memory.
 - At the end of the computation only the bottom cell (fat, green) needs to be written to global memory

Overview: Parallelization Approaches

Performance Comparison: Speedup and Productivity (Stage 1)

- FPGA: Xilinx XC5VLX330
 - 416PEs
 - 65MHz
- GPU: GeForce GTX 280
 - 240SPs
 - 1.3GHz
- Cell/BE: PlayStation3
 - 6SPEs
 - SIMD vector-length:8
 - 3.2GHz

Speedup compared to ClustalW 2.0.9

MSA-CUDA: Performance Stage 2 + 3

- MSA-CUDA on a GPU (GeForce GTX280)
 - Better Performance than ClustalW-MPI on a PC-cluster with 32 Cores for all tested datasets
 - Best Paper Award at IEEE ASAP 2009 (Boston)
- MSAProbs: Improving MSA accuracy
 - Overall mean scores and runtimes on BAliBASE 3.0

Aligner	SPS	CS	Time (hh:mm:ss)
MSAProbs	89.09	64.51	1:12:56
MAFFT	87.50	61.07	0:41:05
ProbCons	88.31	61.89	5:29:15
ClustalW	78.65	44.75	0:18:56

Short Read Error Correction with SAP

G

l-mer Spectrum = {..., TCA<u>A</u>, CA<u>A</u>C, A<u>A</u>CG, <u>A</u>CGT, ...}

matrix $V(r_i)[][]$:

Changing the single error at position 6 in the given read from **G** to **A** results in *I* corresponding matches in the spectrum.

Corrected Read $r_i[6][A]$: T T G

Bloom Filter Data Structure

- Membership test most important operation (test if an *l*-mer is in *T*(*m*,*R*))
- →Use of a space-efficient Bloom filter for probabilistic hashing stored in CUDA texture memory

DecGPU error correction algorithm

- 1. (Distributed) spectrum construction
- 2. filtering out error-free reads
- 3. fixing erroneous reads using a voting algorithm
- 4. trimming (or discarding entirely) the fixed reads that remain erroneous
- 5. optional iterative policy between the filtering and fixing stages for the correction of more than one base error in a single read
- 6. On a cluster DecGPU uses a one-toone correspondence between an MPI process and one GPU

DecGPU: Performance Evaluation

Dataset	Euler-SR (runtime in sec)		DecGPU (runtime in sec)		Overall Speedup
	Spectrum Construction	Error Correction	Spectrum Construction	Error Correction	
A	61	671	16	10	28.2
В	746	7016	222	94	24.5

Dataset	Assembler	N50	N90	#contigs
	Velvet	5.3K	1.6K	310
SRR006331	DecGPU-Velvet	10.4K	2.2K	213
	Velvet	67.3K	17.0K	255
SRR001665	DecGPU-Velvet	95.5K	30.8K	176

PASHA: Short read de-novo assembly using MPI + pThreads

- Assembly often modeled as finding an Eulerian tour of the **de Bruijn graph**
- Assemblies of complex genomes highly fragmented, since there is generally an exponential number of compatible sequences
- Efficient GPU parallelization is difficult

Assembly E.coli (4.6M genome size) 20.8M Reads (2x36bps), single core					
PASHA ABySS					
N50	164.4K	96.3K			
Genome Coverage 97.4% 95.6%					
Runtime	intime 5.4 mins 9.9 mins				
Human Genome Assembly (3.1G genome size) 3.76 billion reads (36-42bps, 200bp library) 8-node CPU Cluster (8-cores and 24GB RAM per node)					
Human Gei 3.76 billio 8-node CPU Clu	nome Assembly (3.1G ge on reads (36-42bps, 200b ister (8-cores and 24GB l	enome size) op library) RAM per node)			
Human Gei 3.76 billio 8-node CPU Clu	nome Assembly (3.1G ge on reads (36-42bps, 200b Ister (8-cores and 24GB I PASHA	enome size) op library) RAM per node) ABySS			
Human Ger 3.76 billio 8-node CPU Clu N50	nome Assembly (3.1G ge on reads (36-42bps, 200b ister (8-cores and 24GB i PASHA 2.3K	enome size) op library) RAM per node) ABySS 1.3K			
Human Ger 3.76 billio 8-node CPU Clu N50 Genome Coverage	nome Assembly (3.1G ge on reads (36-42bps, 200b ister (8-cores and 24GB PASHA 2.3K 66.9%	enome size) op library) RAM per node) ABySS 1.3K 71.5%			

Background on Short Read Mapping

- Reference Genome and reads are too large for direct DP approach
- *"Seed-and-Extend"*: Use an *index data structure* to rapidly find short exact matches to seed longer in-exact alignments, e.g.
 - Build a hash table on all k-mers of genome
 - Segment query sequence into k-mer seeds

CUSHAW: short-read aligner to human genome based on BWT

- *Indexing* approaches (memory sizes for human genome)
 - Suffix tree (> 35 GB)
 - Suffix array (> 12 GB)
 - Hash tables (> 12 GB)
- CUSHAW: GPU-Approach
 - Index Reference Genome using BWT (Burrows Wheeler Transform)
 - Needs **2.2 GB memory** for Human Genome \Rightarrow fits on Fermi C2050
 - optimized for Fermi architecture using CUDA
 - CUSHAW currently only supports a restrictive alignment models
 - allows up to 2 mismatches in seed
 - no indels

- BWT(cattattagga\$)
- Backward search to calculate the SA interval for a substring "tta"

 $\begin{cases} I_a(i) = C(S[i]) + Occ(S[i], I_a(i+1) - 1) + 1, & 0 \le i < |S| \\ I_b(i) = C(S[i]) + Occ(S[i], I_b(i+1)), & 0 \le i < |S| \end{cases}$

CUSHAW: short-read aligner to human genome based on BWT

	SRR002273 8.5M Reads, 36bp	ERR000589 24.3M Reads, 51bp	ERR002273 20.4M Reads, 75bps
CUSHAW (Tesla M2090)	1.1 mins	5.5 mins	33.3 mins
BWA 0.5.9 (AMD quad- core CPU, 4 threads)	14.9 mins	67.6 mins	91.9 mins
Speedup	12.8	12.2	2.8

- CUSHAW becomes less efficient with growing read length
- Reference
 - Y. Liu, <u>B.Schmidt</u>, D. Maskell: CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics, 2012, doi: 10.1093/bioinformatics/bts276

mCUDA-MEME: Motif finding

ChiP-Seq Dataset	mCUDA-MEME (4-node dual-S2050)		Parallel MEME (MPI)	Spee	dups
	8 GPUs	1 GPU	32 CPU cores	8 GPUs	1 GPU
NRSF1000	6.5 mins	45.0 mins	43.6 mins	6.7	1.0
NRSF2000	27.7 mins	202.5 mins	230.5 mins	8.3	1.1

 CUDA-MEME is integrated in the CompleteMotifs pipeline (<u>http://cmotifs.tchlab.org</u>) for ChiP-Seq data analysis

Taxonomic clustering of Metagnomic data

- Profiling of microbial communities
 - in water, human gut, etc.
 - Example: water-membrane profiling
- Based on sequencing of hyper-variable regions of 16S rRNA marker gene
- Typical dataset sizes (454 sequencers)
 - Read length 200-600 bps
 - Number of reads 10K to 10M
- Taxonomy-independent clustering approach
 - hierarchical clustering from a distance matrix
 - Bin reads into OTUs (Operational Taxonomic Units) based on a distance threshold
- Bioinformatics challenges
 - Highly compute/memory-intensive
 - Scalability
 - Accuracy

CRiSPy-CUDA: Hierarchical Clustering

- Time: $O(n^2 \cdot l^2)$, Space: $O(n^2)$
- Techniques to reduce time and space complexities
- 1. Filtration using *k*-mer distance before genetic distance
- 2. Sparse Matrix Representation of distance matrix using thresholds
- 3. Space-efficient hierarchical clustering implementation using sorting

Dataset	#cleaned reads (length)	ESPRIT (sequential runtime)	CRiSPy-CUDA on C2050 (speedup)
SRR029122	15K (239bps)	2.8 hours	68
SRR013437	22K (267bps)	8.0 hours	78
SRR064911	17K (524bps)	3.3 days	94

DySC: Improved Greedy Short-Read Clustering

- Classical greedy sequence clustering
 - Cluster represented by one sequence (*seed*)
 - Unseen read is aligned to all seeds
 - If all alignments return distances above a threshold, the read is used as the seed of a new cluster. Otherwise, the read is added to the nearest clusters
- DySC (Dynamic Seed-based Clustering)
 - delays production of fixed clusters through usage of pending clusters

Tool	SIM	NMI-score (gut microbiome)	
		V2	V6
UCLUST	97%	0.73	0.64
CD-HIT		0.68	0.64
ESPRIT- Tree		0.78	0.68
DySC		0.78	0.78

Sequential Runtime: 4-Level Clustering of SRR069029 (2.7M Reads, 125 bps)

UCLUST	CD-HIT-EST	ESPRIT-Tree	DySC
3.0 hours	3.8 hours	26.2 hours	2.2 hours

Z. Zheng, S. Kramer, <u>B.Schmidt</u>: *DySC: Software for Greedy Clustering of 16S rRNA Reads*. Bioinformatics, accepted

Conclusion

- NGS technologies establish the need for scalable Bioinformatics tools that can process massive amounts of short reads
- Parallel computing is a highly suitable technology to address this need
- NGS algorithms often need to be adapted since throughput and read length continues to increase
- Website
 - <u>http://hpc.informatik.uni-mainz.de/</u>

