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Software developed by my group 

• Sequence database searching  
– CUDASW++ (Smith-Waterman) 
– CUDA-BLASTP  

• Multiple sequence alignment  
– MSA-CUDA 
– MSAProbs  

• Next-Generation Sequencing (NGS) 
– DecGPU, SHREC (short-read error correction)  
– CUSHAW (short-read mapping) 
– CRiSPy-CUDA, DySC (short-read clustering)  
– PASHA, Taipan (de-novo assemby) 

• Motif finding  
– CUDA-MEME 

• Accessible via: http://hpc.informatik.uni-mainz.de/  

http://hpc.informatik.uni-mainz.de/
http://hpc.informatik.uni-mainz.de/
http://hpc.informatik.uni-mainz.de/
http://hpc.informatik.uni-mainz.de/


Utilized Parallel Architectures and 
Programming Languages 

• Multi-core CPUs 
– Pthreads/OpenMP 
– SSE Vectorization  

• Many-core GPUs 
– CUDA 

• CPU/GPU Clusters 
– MPI 
– Pthreads/OpenMP 
– CUDA 

• FPGAs 
– Verilog 

• MOGON 
– 81st in latest Top500 list   



Cost of DNA Sequencing 

1000-
fold drop 

from 
2007 to 

2012 



Next-Generation Sequencing (NGS) 

R
ead

-seq
u

en
ces 

DNA-sequence 

DNA 

May contain errors! 

HiSeq2500 

Read length (typical) 100bps 

Reads per run   1.2 Billion 

Run Time (paired end) ~1 day 

• Ultra-high throughput 
• Short-read length 
• Example: Human Genome Sequencing (Li et al., 2010) 

– 4 billion reads 
– Average length 53bps (71x Coverage) 



Common Algorithmic Patterns in NGS 
Data Analysis 

• Indexing and lookup 
– Hashing 
– BWT and FM-Index 
– Bloom filter 

• Dynamic programming 
– Smith-Waterman, Needleman-Wunsch 

• NGS Bioinformatics Challenges  
– Scalability  

• to deal with huge amounts of reads 

– Algorithm design  
• to deal with short reads 

– Parallelisation 
• Many Bioinformatics algorithms are irregular and therefore challenging to 

map to parallel architectures 



Local Pairwise Sequence Alignment 

Align  S1=ATCTCGTATGATG   S2=GTCTATCAC 
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Extraction of Parallelism 

• Ligowski, Rudnicki, Liu, Schmidt: "Accurate scanning of sequence databases with 
the Smith-Waterman algorithm", GPU Computing Gems, Vol. 1, Chapter 11, 2011 

• Liu, Maskell, Schmidt: "CUDASW++: optimizing Smith-Waterman sequence 
database searches for CUDA-enabled graphics processing units", BMC Research 
Notes, 2:73, 2009  
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MSA with ClustalW 
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CUDA 
• Kernels consist of threads 

– All threads execute the same program 
– Local memory per thread 

• Threads grouped into thread blocks 
– Threads within a block can cooperate 

through Per Block Shared Memory (PBSM) 
– SIMT Model and Local synchronization 
– Threads run in groups of 32 called warps  

• Threads/blocks have IDs 
• GPU global memory 

– 3GB or 6GB RAM for Fermi-based Tesla  

• Texture Memory 
– Cached (texture cache, L2) 
– Texture cache optimized for spatial locality 

Kernel Invocation
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CUDA Parallelization: Stage 1 

• Inter-task parallelization  
– Each alignment (task) is assigned to exactly one thread  
– dimBlock alignments are performed in parallel within a thread block. 

• Load balancing 
– Sequences sorted by lengths  all threads within a thread block have 

similar workload 

S1 S2 S3 S4 S5 S6 S7 

S1 

S2 21.1 

S3 32.9 19.7 

S4 20.7 39.0 20.4 

S5 11.0 9.8 10.3 9.7 

S6 9.3 8.6 9.6 8.4 7.0 

S7 7.1 7.3 7.5 7.4 7.3 4.3 

CUDA thread: 
blockIdx = 2 

threadIdx = 4    

CUDA thread: 
blockIdx = 2 

threadIdx = 5    

Sorted by 
length 



CUDA Parallelization: Stage 1 
• Memory access 

– O(min{la,lb}) storage for intermediate results per thread  
– Stored in global memory using coalesced memory access pattern 
– Partition of DP-matrix into blocks  reduce global memory access by using 

shared memory  and registers 

database sequence 

q
u
er

y
 

• Illustration of the use of shared memory 
– Each thread sequentially computes k = 12 

matrix cells in column j (green) in shared 
memory.  

– The k+1 required cells of column j1 
(blue) have been computed in the 
previous iteration and are therefore 
already stored in shared memory.  

– However, the upper neighboring cell (red) 
needs to be read from global memory.  

– At the end of the computation only the 
bottom cell (fat, green) needs to be 
written to global memory 



Overview: Parallelization Approaches 

Sequential 

ClustalW 

Algorithm 

DP-Modification 

to allow more 

efficient 

parallelization 

GPU: SIMT 

Parallelization 

with CUDA 

FPGA: 

Systolization 

with Verilog 

HDL 

Cell/BE: MIMD 

Parallelization 

with Cell/BE 

SDK  

FPGA: Load 

Balancing, 

Partitioning (FIFO, 

Multi-Lanes) 

GPU: Load 

Balancing, 

Optimization of 

memory accesses 

(coalesced, shared)  

Cell/BE: Load 

Balancing, SIMD 

Vectorization 



Performance Comparison:  
Speedup and Productivity (Stage 1) 

• FPGA: Xilinx XC5VLX330 

– 416PEs  

– 65MHz 

• GPU: GeForce GTX 280 

– 240SPs 

– 1.3GHz 

• Cell/BE: PlayStation3 

– 6SPEs 

– SIMD vector-length:8  

– 3.2GHz 

141 131

505

617

1202
1270

61 75
140

196

323 336

41 41
77

112
185 194

83(4000) 73(8000) 266(2000) 247(4000) 856(400) 858(1000)

Speedup compared to ClustalW 2.0.9

FPGA GPU Cell/BE



MSA-CUDA: Performance Stage 2 + 3  

• MSA-CUDA on a GPU (GeForce GTX280) 
– Better Performance than ClustalW-MPI on a PC-cluster with 32 Cores for all 

tested datasets 
– Best Paper Award at IEEE ASAP 2009 (Boston) 

• MSAProbs: Improving MSA accuracy 
– Overall mean scores and runtimes on BAliBASE 3.0 
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MSAProbs 89.09 64.51 1:12:56 

MAFFT 87.50 61.07 0:41:05 

ProbCons 88.31 61.89 5:29:15 

ClustalW 78.65 44.75 0:18:56 



Short Read Error Correction with SAP 

Changing the single error at 
position 6 in the given read from 
G to A results in l corresponding 
matches in the spectrum. 



Bloom Filter Data Structure 
• Membership test most important operation (test if an l-mer is in T(m,R)) 
• Use of a space-efficient Bloom filter for probabilistic hashing stored in 

CUDA texture memory 
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DecGPU error correction algorithm 

1. (Distributed) spectrum construction 
2. filtering out error-free reads 
3. fixing erroneous reads using a voting 

algorithm 
4. trimming (or discarding entirely) the 

fixed reads that remain erroneous 
5. optional iterative policy between the 

filtering and fixing stages for the 
correction of more than one base 
error in a single read 

6. On a cluster DecGPU uses a one-to-
one correspondence between an MPI 
process and one GPU 



DecGPU: Performance Evaluation 

Dataset Euler-SR 
(runtime in sec) 

DecGPU 
(runtime in sec)  

Overall 
Speedup 

Spectrum 
Construction 

Error 
Correction 

Spectrum 
Construction 

Error 
Correction 

A 61 671 16 10 28.2 

B 746 7016 222 94 24.5 

Dataset Assembler N50 N90 #contigs 

 
SRR006331 

Velvet  5.3K 1.6K 310 

DecGPU-Velvet 10.4K 2.2K 213 

 
SRR001665 

Velvet 67.3K 17.0K 255 

DecGPU-Velvet 95.5K 30.8K 176 



PASHA: Short read de-novo assembly 
using MPI + pThreads 

Assembly E.coli (4.6M genome size) 
20.8M Reads (2x36bps), single core 

PASHA ABySS 

N50 164.4K 96.3K 

Genome Coverage 97.4% 95.6% 

Runtime 5.4 mins 9.9 mins 

Human Genome Assembly (3.1G genome size) 
3.76 billion reads (36-42bps, 200bp library) 

8-node CPU Cluster (8-cores and 24GB RAM per node) 

PASHA ABySS 

N50 2.3K 1.3K 

Genome Coverage 66.9% 71.5% 

Runtime  21 hours 51 hours 

• Assembly often modeled as finding an Eulerian tour of the de Bruijn graph 
• Assemblies of complex genomes highly fragmented, since there is generally an 

exponential number of compatible sequences 
• Efficient GPU parallelization is difficult 



Background on Short Read Mapping 
• Reference Genome and reads are too large for direct DP approach 
• „Seed-and-Extend“: Use an index data structure to rapidly find short 

exact matches to seed longer in-exact alignments, e.g. 
– Build a hash table on all k-mers of genome  
– Segment query sequence into k-mer seeds 

Ref Genome: …CAAACCAGCTCTTATGGTCAGAACTCTGAAAGACAACTGAGCTGCTG… 

Read Seed:                                        TGGTCAGAAC 

k-mer positions 



CUSHAW: short-read aligner to human 
genome based on BWT 

• Indexing approaches (memory sizes for human genome) 
– Suffix tree (> 35 GB) 

– Suffix array (> 12 GB) 

– Hash tables (> 12 GB) 

• CUSHAW: GPU-Approach 
– Index Reference Genome using BWT (Burrows Wheeler Transform) 

– Needs 2.2 GB memory for Human Genome  fits on Fermi C2050  

– optimized for Fermi architecture using CUDA 

– CUSHAW currently only supports a restrictive alignment models 
• allows up to 2 mismatches in seed  

• no indels 

 

 



• BWT(cattattagga$) 
• Backward search to 

calculate the SA interval for 
a substring “tta” 
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CUSHAW: short-read aligner to human 
genome based on BWT 

• CUSHAW becomes less efficient with growing read length 
• Reference 

– Y. Liu, B.Schmidt, D. Maskell: CUSHAW: a CUDA compatible short read 
aligner to large genomes based on the Burrows-Wheeler transform. 
Bioinformatics, 2012, doi: 10.1093/bioinformatics/bts276  

SRR002273 
8.5M Reads, 36bp 

ERR000589 
24.3M Reads, 51bp 

ERR002273 
20.4M Reads, 75bps 

CUSHAW (Tesla M2090) 1.1 mins 5.5 mins 33.3 mins 

BWA 0.5.9 (AMD quad-
core CPU, 4 threads) 

14.9 mins 67.6 mins 91.9 mins 

Speedup 12.8 12.2 2.8 



mCUDA-MEME: Motif finding 

gene ATCCCG 

gene TTCCGG 

gene ATGCCG 

gene 
ATCCAC 

• CUDA-MEME is integrated in the CompleteMotifs pipeline (http://cmotifs.tchlab.org) for 
ChiP-Seq data analysis 

ChiP-Seq 
Dataset 

mCUDA-MEME  
(4-node dual-S2050) 

Parallel MEME 
(MPI) 

Speedups 

8 GPUs 1 GPU 32 CPU cores 8 GPUs 1 GPU 

NRSF1000 6.5 mins 45.0 mins 43.6 mins 6.7 1.0 

NRSF2000 27.7 mins 202.5 mins 230.5 mins 8.3 1.1 

http://cmotifs.tchlab.org/


Taxonomic clustering of Metagnomic data 

• Profiling of microbial communities  
– in water, human gut, etc. 
– Example: water-membrane profiling  

• Based on sequencing of hyper-variable 
regions of 16S rRNA marker gene  

• Typical dataset sizes (454 sequencers) 
– Read length 200-600 bps 
– Number of reads 10K to 10M 

• Taxonomy-independent clustering 
approach 
– hierarchical clustering from a distance 

matrix  
– Bin reads into OTUs (Operational Taxonomic 

Units) based on a distance threshold 

• Bioinformatics challenges 
– Highly compute/memory-intensive 
– Scalability 
– Accuracy  



CRiSPy-CUDA: Hierarchical Clustering 

• Time: O(n2l2), Space: O(n2) 
• Techniques to reduce time and space complexities   
1. Filtration using k-mer distance before genetic distance 
2. Sparse Matrix Representation of distance matrix using thresholds 
3. Space-efficient hierarchical clustering implementation using sorting 

Dataset #cleaned 
reads (length) 

ESPRIT  (sequential 
runtime) 

CRiSPy-CUDA on C2050 
(speedup)  

SRR029122 15K (239bps) 2.8 hours 68 

SRR013437 22K (267bps) 8.0 hours 78 

SRR064911 17K (524bps) 3.3 days 94 

R1 R2 R3 R4 R5 R6 R7 

R1 

R2 21.1 

R3 32.9 19.7 

R4 20.7 39.0 20.4 

R5 11.0 9.8 10.3 9.7 

R6 9.3 8.6 9.6 8.4 7.0 

R7 7.1 7.3 7.5 7.4 7.3 4.3 

R7 

 

R6 

 

R5 

 

R1 

 

R3 

 

R2 

 

R4 



DySC: Improved Greedy Short-Read Clustering 

 
Tool 

 
SIM 

NMI-score 
(gut microbiome) 

V2 V6 

UCLUST  
 

97% 

0.73 0.64 

CD-HIT 0.68 0.64 

ESPRIT-
Tree 

0.78 0.68 

DySC 0.78 0.78 

Sequential Runtime: 4-Level Clustering of SRR069029 (2.7M Reads, 125 bps) 

UCLUST CD-HIT-EST ESPRIT-Tree DySC 

3.0 hours 3.8 hours 26.2 hours 2.2 hours 

Z. Zheng, S. Kramer, B.Schmidt: DySC: Software for Greedy Clustering of 16S rRNA Reads. Bioinformatics, accepted 

Legends: 
Fixed seed Pending seed 

Cluster member of pending seed 

Input read 

Cluster member of fixed seed 

• Classical greedy sequence clustering  
– Cluster represented by one sequence 

(seed) 
– Unseen read is aligned to all seeds 
– If all alignments return distances above 

a threshold, the read is used as the 
seed of a new cluster. Otherwise, the 
read is added to the nearest clusters  

• DySC (Dynamic Seed-based Clustering) 
– delays production of fixed clusters 

through usage of pending clusters 



Conclusion 

• NGS technologies establish the need for scalable 
Bioinformatics tools that can process massive 
amounts of short reads 

• Parallel computing is a highly suitable technology 
to address this need 

• NGS algorithms often need to be adapted since 
throughput and read length continues to increase  

• Website 

– http://hpc.informatik.uni-mainz.de/ 

http://hpc.informatik.uni-mainz.de/
http://hpc.informatik.uni-mainz.de/
http://hpc.informatik.uni-mainz.de/

