
Parallel Algorithms and Tools for
Bioinformatics on GPUs

Bertil Schmidt

Contents

• Overview
– HPC Bioinformatics Software developed by my group

• Pairwise Sequence Alignment

• Multiple Sequence Alignment

• Short Read Error Correction

• Short Read Mapping

• De-novo Assembly

• Motif Finding

• Short Read Clustering

Software developed by my group

• Sequence database searching
– CUDASW++ (Smith-Waterman)
– CUDA-BLASTP

• Multiple sequence alignment
– MSA-CUDA
– MSAProbs

• Next-Generation Sequencing (NGS)
– DecGPU, SHREC (short-read error correction)
– CUSHAW (short-read mapping)
– CRiSPy-CUDA, DySC (short-read clustering)
– PASHA, Taipan (de-novo assemby)

• Motif finding
– CUDA-MEME

• Accessible via: http://hpc.informatik.uni-mainz.de/

http://hpc.informatik.uni-mainz.de/
http://hpc.informatik.uni-mainz.de/
http://hpc.informatik.uni-mainz.de/
http://hpc.informatik.uni-mainz.de/

Utilized Parallel Architectures and
Programming Languages

• Multi-core CPUs
– Pthreads/OpenMP
– SSE Vectorization

• Many-core GPUs
– CUDA

• CPU/GPU Clusters
– MPI
– Pthreads/OpenMP
– CUDA

• FPGAs
– Verilog

• MOGON
– 81st in latest Top500 list

Cost of DNA Sequencing

1000-
fold drop

from
2007 to

2012

Next-Generation Sequencing (NGS)

R
ead

-seq
u

en
ces

DNA-sequence

DNA

May contain errors!

HiSeq2500

Read length (typical) 100bps

Reads per run 1.2 Billion

Run Time (paired end) ~1 day

• Ultra-high throughput
• Short-read length
• Example: Human Genome Sequencing (Li et al., 2010)

– 4 billion reads
– Average length 53bps (71x Coverage)

Common Algorithmic Patterns in NGS
Data Analysis

• Indexing and lookup
– Hashing
– BWT and FM-Index
– Bloom filter

• Dynamic programming
– Smith-Waterman, Needleman-Wunsch

• NGS Bioinformatics Challenges
– Scalability

• to deal with huge amounts of reads

– Algorithm design
• to deal with short reads

– Parallelisation
• Many Bioinformatics algorithms are irregular and therefore challenging to

map to parallel architectures

Local Pairwise Sequence Alignment

Align S1=ATCTCGTATGATG S2=GTCTATCAC

G

T

C

T

A

T

C

A

C

 A T C T C G T A T G A T G

0 0 0 0 0 2 1 0 0 2 1 0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0

2

0 2 1 2 1 1 4 3 2 1 1 3 2

0

0

2

1

0

2

1

1

2

2

4

3

2

1

4

3

2

3

6

5

4

3

6

5

4

5

5

4

4

5

5

4

6

5

7

3

4

4

4

5

5

6

3

5

4

6

5

4

5

3

4

7

5

5

7

6

2

5

6

9

8

7

6

1

4

5

8

8

7

6

0

3

6

7

7

10

9

2

2

5

8

7

9

9

2

1

4

7

7

8

8

10

8

9

7

5

3 4

2

0

else 1

)(if 2
),(

yx
yxSbt

=1, =1

A T C T C G T A T G A T G

G T C T A T C A C

)2,1()1,1(

1)1,(

1),1(

0

max),(

ji SSSbtjiH

jiH

jiH
jiH

Extraction of Parallelism

• Ligowski, Rudnicki, Liu, Schmidt: "Accurate scanning of sequence databases with
the Smith-Waterman algorithm", GPU Computing Gems, Vol. 1, Chapter 11, 2011

• Liu, Maskell, Schmidt: "CUDASW++: optimizing Smith-Waterman sequence
database searches for CUDA-enabled graphics processing units", BMC Research
Notes, 2:73, 2009

G

T

C

T

A

T

C

A

C

 A T C T C G T A T G A T G

0 0 0 0 0 2 1 0 0 2 1 0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0

2

0 2 1 2 1 1 4 3 2 1 1 3 2

0

0

2

1

0

2

1

1

2

2

4

3

2

1

4

3

2

3

6

5

4

3

6

5

4

5

5

4

4

5

5

4

6

5

7

3

4

4

4

5

5

6

3

5

4

6

5

4

5

3

4

7

5

5

7

6

2

5

6

9

8

7

6

1

4

5

8

8

7

6

0

3

6

7

7

10

9

2

2

5

8

7

9

9

2

1

4

7

7

8

8

0

0 0 0

0

2

0

0

1

1

4

2

2

2

0

3

2

1

3

2

1

5

2

4

3

l2

l1

P1 P2 P13

MSA with ClustalW
HA

HU

HB

HU

HA

HO

HB

HO

MY

WH

P1

LH

LG

HB

HAHU

HBHU 21.1

HAHO 32.9 19.7

HBHO 20.7 39.0 20.4

MYWH 11.0 9.8 10.3 9.7

P1LH 9.3 8.6 9.6 8.4 7.0

LGHB 7.1 7.3 7.5 7.4 7.3 4.3

Dist Matrix:

O(n2l2)

LGHB

P1LH

MYWH

HAHU

HAHO

HBHU

HBHO

NJ-Tree:

O(n3)

HBHU

H
B

H
O

Dynamic

Programming

Alignment

HBHU

HBHO

HAHU

Dynamic

Programming

Alignment

HAHU

HAHO

H
A

H
O

HBHU

HBHO

H
A

H
U

H
A

H
O

Dynamic

Programming

Alignment

HBHU

HBHO

HAHU

HAHO

Progressive:

O(nl2)

CUDA
• Kernels consist of threads

– All threads execute the same program
– Local memory per thread

• Threads grouped into thread blocks
– Threads within a block can cooperate

through Per Block Shared Memory (PBSM)
– SIMT Model and Local synchronization
– Threads run in groups of 32 called warps

• Threads/blocks have IDs
• GPU global memory

– 3GB or 6GB RAM for Fermi-based Tesla

• Texture Memory
– Cached (texture cache, L2)
– Texture cache optimized for spatial locality

Kernel Invocation

Block (0, 0) Block (0, 1)

Block (1, 0)

Block (2, 0)

Block (3, 0)

Block (4, 0)

Block (1, 1)

Block (2, 1)

Block (3, 1)

Block (4, 1)

Grid k

CPU Host GPU Device

Serial Codes i

Serial Codes j

Constant Cache

Texture Cache

Device Memory

…

Multiprocessor 1

SP

SP

SP

SP

SP

SP

SP

SP

Shared Memory

Registers

SP

SP

SP

SP

SP

SP

SP

SP

Shared Memory

Registers

SP

SP

SP

SP

SP

SP

SP

SP

Shared Memory

Registers

SP

SP

SP

SP

SP

SP

SP

SP

Shared Memory

Registers

Multiprocessor 2 Multiprocessor N-1 Multiprocessor N

(a) hardware model (b) execution model

CUDA Parallelization: Stage 1

• Inter-task parallelization
– Each alignment (task) is assigned to exactly one thread
– dimBlock alignments are performed in parallel within a thread block.

• Load balancing
– Sequences sorted by lengths all threads within a thread block have

similar workload

S1 S2 S3 S4 S5 S6 S7

S1

S2 21.1

S3 32.9 19.7

S4 20.7 39.0 20.4

S5 11.0 9.8 10.3 9.7

S6 9.3 8.6 9.6 8.4 7.0

S7 7.1 7.3 7.5 7.4 7.3 4.3

CUDA thread:
blockIdx = 2

threadIdx = 4

CUDA thread:
blockIdx = 2

threadIdx = 5

Sorted by
length

CUDA Parallelization: Stage 1
• Memory access

– O(min{la,lb}) storage for intermediate results per thread
– Stored in global memory using coalesced memory access pattern
– Partition of DP-matrix into blocks reduce global memory access by using

shared memory and registers

database sequence

q
u
er

y

• Illustration of the use of shared memory
– Each thread sequentially computes k = 12

matrix cells in column j (green) in shared
memory.

– The k+1 required cells of column j1
(blue) have been computed in the
previous iteration and are therefore
already stored in shared memory.

– However, the upper neighboring cell (red)
needs to be read from global memory.

– At the end of the computation only the
bottom cell (fat, green) needs to be
written to global memory

Overview: Parallelization Approaches

Sequential

ClustalW

Algorithm

DP-Modification

to allow more

efficient

parallelization

GPU: SIMT

Parallelization

with CUDA

FPGA:

Systolization

with Verilog

HDL

Cell/BE: MIMD

Parallelization

with Cell/BE

SDK

FPGA: Load

Balancing,

Partitioning (FIFO,

Multi-Lanes)

GPU: Load

Balancing,

Optimization of

memory accesses

(coalesced, shared)

Cell/BE: Load

Balancing, SIMD

Vectorization

Performance Comparison:
Speedup and Productivity (Stage 1)

• FPGA: Xilinx XC5VLX330

– 416PEs

– 65MHz

• GPU: GeForce GTX 280

– 240SPs

– 1.3GHz

• Cell/BE: PlayStation3

– 6SPEs

– SIMD vector-length:8

– 3.2GHz

141 131

505

617

1202
1270

61 75
140

196

323 336

41 41
77

112
185 194

83(4000) 73(8000) 266(2000) 247(4000) 856(400) 858(1000)

Speedup compared to ClustalW 2.0.9

FPGA GPU Cell/BE

MSA-CUDA: Performance Stage 2 + 3

• MSA-CUDA on a GPU (GeForce GTX280)
– Better Performance than ClustalW-MPI on a PC-cluster with 32 Cores for all

tested datasets
– Best Paper Award at IEEE ASAP 2009 (Boston)

• MSAProbs: Improving MSA accuracy
– Overall mean scores and runtimes on BAliBASE 3.0

1.56

7.38

16.75

21.56

19.88

23.20

2.67 3.86
2.67 2.49 2.68

4.03

2.25

4.85
7.22

8.40
7.30

11.08

0

5

10

15

20

25

400(856) 1000(858) 2000(266) 4000(247) 4000(57) 8000(73)

S
p

e
e
d

u
p

s

Datasets

NJ Tree Reconstruction

NJ Tree Rerooting

Guided Tree Overall

3.06

3.86

1.48 1.35

5.94

2.20

0

1

2

3

4

5

6

7

400(856) 1000(858) 2000(266) 4000(247) 4000(57) 8000(73)

S
p

e
e
d

u
p

s

Datasets

Aligner SPS CS Time (hh:mm:ss)

MSAProbs 89.09 64.51 1:12:56

MAFFT 87.50 61.07 0:41:05

ProbCons 88.31 61.89 5:29:15

ClustalW 78.65 44.75 0:18:56

Short Read Error Correction with SAP

Changing the single error at
position 6 in the given read from
G to A results in l corresponding
matches in the spectrum.

Bloom Filter Data Structure
• Membership test most important operation (test if an l-mer is in T(m,R))
• Use of a space-efficient Bloom filter for probabilistic hashing stored in

CUDA texture memory

C

A

C

T

G

G

A

A

G

T

C

l-
tu

p
le

s

0
1
0
1
0
0

1
0
0
0
0
1
0
0
1

0
0
1
1
0
0
1
0
0

BF[1..m]

&
1 if sTm,l(R) or FP(s)

0 if sTm,l(R) and not FP(s)

DecGPU error correction algorithm

1. (Distributed) spectrum construction
2. filtering out error-free reads
3. fixing erroneous reads using a voting

algorithm
4. trimming (or discarding entirely) the

fixed reads that remain erroneous
5. optional iterative policy between the

filtering and fixing stages for the
correction of more than one base
error in a single read

6. On a cluster DecGPU uses a one-to-
one correspondence between an MPI
process and one GPU

DecGPU: Performance Evaluation

Dataset Euler-SR
(runtime in sec)

DecGPU
(runtime in sec)

Overall
Speedup

Spectrum
Construction

Error
Correction

Spectrum
Construction

Error
Correction

A 61 671 16 10 28.2

B 746 7016 222 94 24.5

Dataset Assembler N50 N90 #contigs

SRR006331

Velvet 5.3K 1.6K 310

DecGPU-Velvet 10.4K 2.2K 213

SRR001665

Velvet 67.3K 17.0K 255

DecGPU-Velvet 95.5K 30.8K 176

PASHA: Short read de-novo assembly
using MPI + pThreads

Assembly E.coli (4.6M genome size)
20.8M Reads (2x36bps), single core

PASHA ABySS

N50 164.4K 96.3K

Genome Coverage 97.4% 95.6%

Runtime 5.4 mins 9.9 mins

Human Genome Assembly (3.1G genome size)
3.76 billion reads (36-42bps, 200bp library)

8-node CPU Cluster (8-cores and 24GB RAM per node)

PASHA ABySS

N50 2.3K 1.3K

Genome Coverage 66.9% 71.5%

Runtime 21 hours 51 hours

• Assembly often modeled as finding an Eulerian tour of the de Bruijn graph
• Assemblies of complex genomes highly fragmented, since there is generally an

exponential number of compatible sequences
• Efficient GPU parallelization is difficult

Background on Short Read Mapping
• Reference Genome and reads are too large for direct DP approach
• „Seed-and-Extend“: Use an index data structure to rapidly find short

exact matches to seed longer in-exact alignments, e.g.
– Build a hash table on all k-mers of genome
– Segment query sequence into k-mer seeds

Ref Genome: …CAAACCAGCTCTTATGGTCAGAACTCTGAAAGACAACTGAGCTGCTG…

Read Seed: TGGTCAGAAC

k-mer positions

CUSHAW: short-read aligner to human
genome based on BWT

• Indexing approaches (memory sizes for human genome)
– Suffix tree (> 35 GB)

– Suffix array (> 12 GB)

– Hash tables (> 12 GB)

• CUSHAW: GPU-Approach
– Index Reference Genome using BWT (Burrows Wheeler Transform)

– Needs 2.2 GB memory for Human Genome fits on Fermi C2050

– optimized for Fermi architecture using CUDA

– CUSHAW currently only supports a restrictive alignment models
• allows up to 2 mismatches in seed

• no indels

• BWT(cattattagga$)
• Backward search to

calculate the SA interval for
a substring “tta”

Cyclic Rotations MG BWT (B)

cattattagga$

attattagga$c

ttattagga$ca

tattagga$cat

attagga$catt

ttagga$catta

tagga$cattat

agga$cattatt

gga$cattatta

ga$cattattag

a$cattattagg

$cattattagga

a

g

t

t

c

$

g

a

t

t

a

a

$cattattagg a

a$cattattag g

agga$cattat t

attagga$cat t

attattagga$ c

cattattagga $

ga$cattatta g

gga$cattatt a

tagga$catta t

tattagga$ca t

ttagga$catt a

ttattagga$c a

$ cattattagg a

a $cattattag g

a gga$cattat t

a ttagga$cat t

a ttattagga$ c

c attattagga $

g a$cattatta g

g ga$cattatt a

t agga$catta t

t attagga$ca t

t tagga$catt a

t tattagga$c a

$ cattattagg a

a $cattattag g

a gga$cattat t

a ttagga$cat t

a ttattagga$ c

c attattagga $

g a$cattatta g

g ga$cattatt a

t agga$catta t

t attagga$ca t

t tagga$catt a

t tattagga$c a

$ cattattagg a

a $cattattag g

a gga$cattat t

a ttagga$cat t

a ttattagga$ c

c attattagga $

g a$cattatta g

g ga$cattatt a

t agga$catta t

t attagga$ca t

t tagga$catt a

t tattagga$c a

t t a t t a t t a

[1, 4]

[8, 9]

[10, 11]

() ([]) ([], (1) 1) 1, 0

() ([]) ([], (1)), 0

a a

b b

I i C S i Occ S i I i i S

I i C S i Occ S i I i i S

CUSHAW: short-read aligner to human
genome based on BWT

• CUSHAW becomes less efficient with growing read length
• Reference

– Y. Liu, B.Schmidt, D. Maskell: CUSHAW: a CUDA compatible short read
aligner to large genomes based on the Burrows-Wheeler transform.
Bioinformatics, 2012, doi: 10.1093/bioinformatics/bts276

SRR002273
8.5M Reads, 36bp

ERR000589
24.3M Reads, 51bp

ERR002273
20.4M Reads, 75bps

CUSHAW (Tesla M2090) 1.1 mins 5.5 mins 33.3 mins

BWA 0.5.9 (AMD quad-
core CPU, 4 threads)

14.9 mins 67.6 mins 91.9 mins

Speedup 12.8 12.2 2.8

mCUDA-MEME: Motif finding

gene ATCCCG

gene TTCCGG

gene ATGCCG

gene
ATCCAC

• CUDA-MEME is integrated in the CompleteMotifs pipeline (http://cmotifs.tchlab.org) for
ChiP-Seq data analysis

ChiP-Seq
Dataset

mCUDA-MEME
(4-node dual-S2050)

Parallel MEME
(MPI)

Speedups

8 GPUs 1 GPU 32 CPU cores 8 GPUs 1 GPU

NRSF1000 6.5 mins 45.0 mins 43.6 mins 6.7 1.0

NRSF2000 27.7 mins 202.5 mins 230.5 mins 8.3 1.1

http://cmotifs.tchlab.org/

Taxonomic clustering of Metagnomic data

• Profiling of microbial communities
– in water, human gut, etc.
– Example: water-membrane profiling

• Based on sequencing of hyper-variable
regions of 16S rRNA marker gene

• Typical dataset sizes (454 sequencers)
– Read length 200-600 bps
– Number of reads 10K to 10M

• Taxonomy-independent clustering
approach
– hierarchical clustering from a distance

matrix
– Bin reads into OTUs (Operational Taxonomic

Units) based on a distance threshold

• Bioinformatics challenges
– Highly compute/memory-intensive
– Scalability
– Accuracy

CRiSPy-CUDA: Hierarchical Clustering

• Time: O(n2l2), Space: O(n2)
• Techniques to reduce time and space complexities
1. Filtration using k-mer distance before genetic distance
2. Sparse Matrix Representation of distance matrix using thresholds
3. Space-efficient hierarchical clustering implementation using sorting

Dataset #cleaned
reads (length)

ESPRIT (sequential
runtime)

CRiSPy-CUDA on C2050
(speedup)

SRR029122 15K (239bps) 2.8 hours 68

SRR013437 22K (267bps) 8.0 hours 78

SRR064911 17K (524bps) 3.3 days 94

R1 R2 R3 R4 R5 R6 R7

R1

R2 21.1

R3 32.9 19.7

R4 20.7 39.0 20.4

R5 11.0 9.8 10.3 9.7

R6 9.3 8.6 9.6 8.4 7.0

R7 7.1 7.3 7.5 7.4 7.3 4.3

R7

R6

R5

R1

R3

R2

R4

DySC: Improved Greedy Short-Read Clustering

Tool

SIM

NMI-score
(gut microbiome)

V2 V6

UCLUST

97%

0.73 0.64

CD-HIT 0.68 0.64

ESPRIT-
Tree

0.78 0.68

DySC 0.78 0.78

Sequential Runtime: 4-Level Clustering of SRR069029 (2.7M Reads, 125 bps)

UCLUST CD-HIT-EST ESPRIT-Tree DySC

3.0 hours 3.8 hours 26.2 hours 2.2 hours

Z. Zheng, S. Kramer, B.Schmidt: DySC: Software for Greedy Clustering of 16S rRNA Reads. Bioinformatics, accepted

Legends:
Fixed seed Pending seed

Cluster member of pending seed

Input read

Cluster member of fixed seed

• Classical greedy sequence clustering
– Cluster represented by one sequence

(seed)
– Unseen read is aligned to all seeds
– If all alignments return distances above

a threshold, the read is used as the
seed of a new cluster. Otherwise, the
read is added to the nearest clusters

• DySC (Dynamic Seed-based Clustering)
– delays production of fixed clusters

through usage of pending clusters

Conclusion

• NGS technologies establish the need for scalable
Bioinformatics tools that can process massive
amounts of short reads

• Parallel computing is a highly suitable technology
to address this need

• NGS algorithms often need to be adapted since
throughput and read length continues to increase

• Website

– http://hpc.informatik.uni-mainz.de/

http://hpc.informatik.uni-mainz.de/
http://hpc.informatik.uni-mainz.de/
http://hpc.informatik.uni-mainz.de/

