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Introduction

Performance analysis → visualization
Register behavior during program execution
Offline, or post-mortem, visual analysis

Traces characteristics
Timestamped and typed events
Very detailed in time → micro to nanoseconds
Many observed entities (processes, threads)

Analysis through trace visualization

Explore human perception, intuitive
Interactive and exploratory approach
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Challenges and Motivation
Very large applications
→ Top500 has machines with 1.5 million cores
Low-intrusion tracing techniques
→ Buffering, hardware support, simulation traces

Space/Time trace size explosion

Very detailed in time, many entities in space
Data representation without care
→ may deceive understanding

Real BOINC availability trace file
Availability is either true or false
8-month period, then 12-day zoom
One volunteer

Plot with GNUPlot to a PDF (vector) file
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Motivation (BOINC example)

One volunteer client (top: 8-month, bottom: 12-day)
Reasonable view, with a zoom for details
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Motivation – trust the rendering?

Same vector file, two different views
→ Different interpretation depending on the viewer

Evince Acroread

Should we trust the rendering ?
No!
We need to make choices before visualizing data
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Motivation → data aggregation

24-hour time integration
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Space/Time views for trace analysis

Widespread, useful, intuitive, fast adoption
Space (vertical axis) and Time (horizontal)
All trace events represented, causal order

Paje
http://paje.sf.net

Vite
http://vite.gforge.inria.fr

Vampir
http://vampir.eu

However...

Also impacted by ever larger trace sizes
Limited visualization scalability
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Space/Time views – closer look (ViTe tool)

Trust the OpenGL rendering, no data aggregation

Source: http://vite.gforge.inria.fr
8/ 34
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Space/Time views – closer look (new Pajé)

Trust the two types of rendering
→ without or with OpenGL
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Space/Time views – closer look (old Pajé)

Opaque aggregating filter (no user interaction)
→ Slashed rectangles represent time-integrated states
Self-configure depending on temporal zoom

Source: http://paje.sourceforge.net
10/ 34
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Space/Time views – closer look (old Pajé)

Space dimension: one process per vertical pixel
→ at best, 1000 process represented at the same time

Clustering algorithms by process behavior?
→ Remove similar processes and choose a representative
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Introduction – summary and approach

Data aggregation is key for large-scale visualization
→ Avoid graphical aggregation rendering

Aggregated data may be more representative

Note: Concerns with behavior attenuation
Aggregation may remove important details
Flexible aggregation: operators & neighborhood

Main idea:
Visualization
techniques
based upon
aggregated data

Spatial and temporal trace aggregation
Alternative visualization techniques

Squarified Treemap View
Hierarchical Graph View
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Outline

1 Space/Time Trace Aggregation

2 Visualization techniques
Squarified Treemap View
Hierarchical Graph View

3 Some scenarios

4 Conclusion
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Space/Time Trace Aggregation

Temporal integration
1 Time interval defined during the analysis
2 Summary of events for each monitored entity

B

A

C

E

D

BlockedExecution

9 seconds

Time-integrated summary for processes

Numbers are in seconds (Execution, Blocked)
B=(7,2)A=(4,5) C=(3,6) E=(4,5)D=(9,0)
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Space/Time Trace Aggregation
Spatial integration

1 Define a neighborhood for each monitored entity
2 Apply an aggregating operator on the neighborhood

Neighborhood as a hierarchy
Resource-based
Application groups

Deeper the hierarchy → higher the quality

B

A

C

E

D

M1

M2

M3

C1

C2

G

Space-integrated summary

Aggregating operator: addition (Execution, Blocked)

B=(7,2)

A=(4,5)

C=(3,6)

E=(4,5)

D=(9,0)

M1=(11,7)

M2=(12,6)

M3=(4,5)

C1=(11,7)

C2=(16,11)

G=(27,18)
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Alternative Visualization techniques
Based on trace aggregation data
Keep visualization scalability under control

Techniques

Squarified Treemap View
Observe outliers, differences of behavior
Compare behavior

Hierarchical Graph View
Pin-point resource contention
Correlate application behavior to network topology

Design
How time and space-aggregated data is represented
An example
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Squarified Treemap View – Basic concepts

Scalable representation for hierarchies
→ when compared to node-link diagrams
→ better visualization scalability for large trees
Complementary to the space/time view
Hard to discern the structure of hierarchy
→ Borders help, but occupy space. Cushion treemaps?

Adopt the simple algorithm + interaction

Space-filling top-down recursive layout algorithm
Node value → space occupied in the screen
Squarified version → keeps rectangles ratio close to 1

T=6

M=3 N=2 O=1

A=1 B=1 C=1 D=1 E=1 F=1

T=6 M=3
N=2

O=1

A=1

B=1

C=1

D=1

E=1

F=1
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Squarified Treemap View – Aggregated Data

Considering temporal aggregation only
Sum of all time-integrated data → node screen space
Each time-integrated variable → inner-node division

B

A

C

E

D

BlockedExecution

9 seconds
A B

C D E

Note: nodes might have different sizes
→ depends on the time-slice and the state values
Time-slice changes → new treemap layout rendered
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Squarified Treemap View – Aggregated Data

Considering spatial-temporal aggregation
BlockedExecution

9 seconds

B=(7,2)

A=(4,5)

C=(3,6)

E=(4,5)

D=(9,0)

M1=(11,7)

M2=(12,6)

M3=(4,5)

C1=(11,7)

C2=(16,11)

G=(27,18)

Space-aggregated variables

Sum of space-integrated data → node screen space
Each space-integrated variable → inner-node division

A B

C D E

M1

M2 M3

C1

C2 C2

The analyst decides
time-slice
hierarchy depth to draw
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Squarified Treemap View – an example

1000 processes, in one of two states (synthetic)
Aggregation level: 0, 1, 2, 3
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Hierarchical Graph View

Scalable representation for graphs
Topology, with application-level metrics
Identify resource bottleneck in space and time

Use spatial-temporal aggregated traces
Interactive force-directed layout (Barnes-Hut algorithm)

Map trace metrics to geometrical attributes
→ Size, shape, filling, colors
→ Nodes: monitored entities
→ Edges: relationship among entities

hostA hostB

link

link utilization

time slice

Hosts → squares
Links → diamonds
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Hierarchical Graph View - Aggregated Data

Considering temporal aggregation only

HostA

MFlops

resource
utilization

HostA

MFlops

Computing
power available

HostA
HostB

LinkA

A1 A2
Time-slice

Graph changes → force-directed updates positions
Time-slice changes → new layout is rendered
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Hierarchical Graph View - Aggregated Data

Considering spatial-temporal aggregation
Nodes are organized as a hierarchy
→ Based on geo or logical location
→ Application-dependent – get from traces
Analyst can control the level

Aggregated representation
Many shapes depending on aggregated entities

→ First aggregation → Second aggregation

Analyst decides
time-slice
the cut on the hierarchy (defining a new graph)
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Hierarchical Graph View - an example

Squares are hosts, diamonds are network links
Colors represent different applications
or parts of it (task type, phase)

Two clusters interconnected by four network links
Cluster backbones have larger bandwidth capacity
Each host connected to the backbone by a private link

time slice
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Some scenarios

1 BOINC fair sharing
2 Work stealing with KAAPI
3 Large scale treemap visualization
4 NAS-DT with graph view
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Scenario 1 – BOINC fair sharing

Setting: BOINC simulation (simulate the client side)
Two BOINC project servers with continuous jobs
65 volunteers, must be fair between the two projects
Ten weeks, real availability traces from FTA

Aggregation: whole time – all volunteer clients

Analysis: Small volunteer contribution → not fair
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Scenario 2 - Work stealing with KAAPI
KAAPI: load balancing through random work stealing
188 processes running on five clusters

Rennes Toulouse

Porto AlegreBordeauxNancy

Analysis: stealing requests depends on latency
Porto Alegre – France: ~300 ms In France: ~10 ms
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Scenario 3 - Synthetic, Large Scale
Synthetic trace with 100 thousand processes
Two states, four-level hierarchy
Visualization artifacts without spatial aggregation

A Hierarchy: Site (10) - Cluster(10) - Machine (10) -  Processor (100) 
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Scenario 3 - Synthetic, Large Scale
Synthetic trace with 100 thousand processes
Two states, four-level hierarchy
Visualization artifacts without spatial aggregation

E Maximum Aggregation
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Scenario 4 - NAS-DT Class A WH

NAS DT Class A White Hole algorithm
→ Traces from SMPI (Simulated MPI, part of SimGrid)
Network topology – resource utilization by red filling
Only temporal aggregation

time slice

Analysis: interconnection backbone is the bottleneck
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Scenario 4 - NAS-DT Class A WH (second try)

Another deployment with a different mapping
→ by changing the order of machines in hostfile
Explore communication locality

time slice

Note: Small scale and easy scenario – but it is a start
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Conclusion

Data aggregation
Key to scale data visualization for analysis
No pre-defined or fixed parameters
Fully configurable by the analyst

Time and space-slice, operators

Visualization techniques
Based upon aggregated data
Complementary to existing techniques
Continuous evaluation of visualization scalability

With larger data-sets, does it remain useful?

Aggregation → behavior attenuation
Have to be able to find the right time/space level
Keep the analyst in control
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Open-source tools

Paje (Space/Time views, pie-charts), LGPL
http://paje.sourceforge.net

Since 2000, GNUstep-based, written in Objective-C
Not only a monolithic visualization tool

Component-based, graph of components
Framework for developing other tools
Paje Protocol

30K SLOC, hard to maintain, hard to install GNUstep

Triva (Treemaps, Hierarchical graph), LGPL
http://triva.gforge.inria.fr

Since 2007, GNUstep and Paje-based, also in Obj-C
Follows the Paje protocol

GNUstep runtime poses scalability problems
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Future work

Technical

Paje++ (or Paje2) – complete re-write in C++, Qt
Viva – visualization tool (Treemap, Hierachical Graph)
Also as a sandbox for developing new techniques
https://github.com/schnorr/viva (coming soon)
For both, debian packaging

Research

Better aggregation algorithms – for performance
What about other aggregation operators?
Aggregated data → space/time view
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Thank you for your attention

Some references
Detection and Analysis of Resource Usage Anomalies in Large
Distributed Systems Through Multi-scale Visualization. Lucas Mello
Schnorr, Arnaud Legrand, Jean-Marc Vincent. Concurrency and
Computation: Practice and Experience. Wiley. 2012.
A Hierarchical Aggregation Model to achieve Visualization Scalability in
the analysis of Parallel Applications. Lucas Mello Schnorr, Guillaume
Huard, Philippe Olivier Alexandre Navaux. Parallel Computing. Volume
38, Issue 3, March 2012, Pages 91-110.

More information
→ http://mescal.imag.fr/membres/lucas.schnorr/

INFRA-SONGS Project (WP-7)
http://infra-songs.gforge.inria.fr/

Simulation of Next Generation Systems
WP-7: Visualization and Analysis
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