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WHAT IS THE MESSAGE PASSING INTERFACE? 

 An open standard library interface for message 
passing, ratified by the MPI Forum 
 Versions: 1.0 (’94), 1.1 (’95), 1.2 (’97), 2.0 (’97), 1.3 

(’08), 2.1 (’08), 2.2 (’09), 3.0 (probably ’12)   

 Common misconceptions: 
 MPI parallelizes your application 
 MPI is for distributed memory only 
 MPI (a library interface) is not scalable 
 MPI is fundamentally slower then PGAS etc. 
 MPI is a programming model 

 Really, if you don’t know what MPI is, you won’t enjoy this talk  
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 Organization and Mantras of the MPI Forum: 
 Chapter chairs (convener) and (sub)committees 
 Avoid the “Designed by a Committee” phenomenon  
 standardize common practice 

 99.5% backwards compatible 
 Final vote passed in September in Vienna! 

 Adding new things: 
 Review and discuss early proposals in chapter 
 Bring proposals to the forum (discussion) 
 Plenary formal reading (usually word by word) 
 Two votes on each ticket (distinct meetings) 
 Final vote on each chapter (finalizing MPI-3.0) 

HOW DID THE MPI-3.0 PROCESS WORK 
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 MPI has been there since ~20 years 

 Likely to remain another 20 years 

 MPI-1’s design was future proof 

 Worked well for 15 years 

 How will hardware look in 10 years from now? 

THE MOST COMPLEX PART 
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 Optimize performance constrained by 

 Purchasing cost (max. ~$200M) 

 Power (max. ~20 MW) 

 Programmer productivity (hard to measure) 

 We may not be able to continue “as usual” 

 New hardware challenges! 

 Will discuss most significant challenges 

 Then we will discuss strategies to address them 

 

 

LIMITS TO REALITY 
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 Motivate five hardware challenges: 
 (1) Data Movement and Energy, (2) Failing Systems,  

(3) Complex Parallelism, (4) Hybrid Systems,  
(5) System Noise 

 Show seven cross-cutting research topics: 
 (1) System Noise, (2) Parallelism and Networks,  

(3) Flops vs. Data Movement, (4) Self-Adaptation and 
Tuning, (5) User-Level Networking, (6) Hybrid 
Programming, (7) Fault Resiliency 

 And how they can be addressed with MPI-3.0 

 Understand issues and open research topics! 
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 Data movement will be most expensive 

   

 Idle energy: 46% on today’s commodity systems 

 Most networks draw constant power  

 On-chip optics may change the game 

 But have high constant energy 

HARDWARE CHALLENGE #1: DATA MOVEMENT 
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Hoefler: Software and Hardware Techniques for Power-Efficient HPC Networking (CISE 2012) 
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CRAY XE-6 POWER CONSUMPTION 
 

Idle (calibrate wait) 

Scale=32 

452 MFLOPS/W ~75 kTEPS/W 
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 Has been discussed as “blocker” for Petascale 

 Application-based checkpointing goes a long way 

 May be a problem for Exascale? 

 Can be addressed in hardware (cf. ECC, IBM System z) 

 Programming support would be great 

 Very hard problem 

  Distributed Consensus 

HARDWARE CHALLENGE #2: FAILURES 
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 When one process fails, others cannot agree 

 Unless they (collectively) declare the process dead 

 Needs a failure detector 

 Not trivial, several tradeoffs: 

 E.g., sporadic (with application messages) 
vs. periodic (using extra messages) 

 May also rely on HW watchdogs 

 Or extra monitoring chips 

DISTRIBUTED CONSENSUS AND FAILURE DETECTORS 

Kharbas, Kim, Hoefler, Mueller: Assessing HPC Failure Detectors for MPI Jobs, PDP’12 
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 Everything will be parallel: 

 Execution units, Pipelines, Vectors, CPU threads, 
Cores, Sockets, Nodes, Cabinets … 

 Intel Westmere MX CPU (10 cores): 

HARDWARE CHALLENGE #3: PARALLELISM 
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 Everything will be parallel: 

 Intel Westmere MX node (4 sockets): 

HARDWARE CHALLENGE #3: PARALLELISM 
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 Everything will be parallel: 

 Accelerated Intel Westmere MX board (2 nodes): 

HARDWARE CHALLENGE #3: PARALLELISM 
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 Everything will be parallel: 

 Accelerated Intel Westmere MX network: 

HARDWARE CHALLENGE #3: PARALLELISM 
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 Systems will be hybrid 
 GPU, MIC, XYZ … we had this before: x87 

 

 

 Nine years later: integrated FPU 
 Same instruction set/stream etc. 

 Transparent to programmer 

 MT units will be integrated … but can  
they be handled by a compiler/HW? 
 Unclear! Facing hard compiler problems! 

HARDWARE CHALLENGE #4: HYBRID 

Intel’s 8087, 1980, ~$150 
5 MHz, 50 kF, 2.4 Watts 
Special interface (F* assembly) 

Torsten Hoefler Slide 22 of 49 



 “System noise” is due to lost CPU cycles 

 Less than 0.02% overhead 

 Some noise cannot be avoided! 

 Process synchronization may 
propagate noise to other procs. 

 

HARDWARE CHALLENGE #5: NOISE 

Allreduce on a  
Large-Scale System 

with noise! Noise Signature 

deterministic 
slowdown  

(noise bottleneck) 

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation, SC10 
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 We can construct a large-scale machine 

 But how to use/program it? 

 From an MPI perspective: 

 Some challenges require new implementation 
techniques (no interface changes) 

 Some challenges require new or extended 
interfaces (MPI-3.0) 

  hardware “issues” quickly turn into bigger 
software problems 

 

SOFTWARE TO THE RESCUE! 
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 … finally, since a long time 

 MPI is trying to help but cannot always succeed 

 Many changes go up to an algorithmic level 

 The following will address two target 
audiences: 

 Designers of scientific applications 

 How to cope with new challenges 

 Researchers in parallel processing 

 MPI’s choices, interesting new research directions 

 

SOFTWARE DESIGN MUST CHANGE 
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 A (parallel) programming model defines the user’s view 
of the hardware 
 Has to be abstract (portable) but also needs to represent 

the machine (performance) model well 

 and easy to use  

 A good programming model: 
 Hides everything that it can hide (superscalar, pipeline, …) 

 Virtualizes everything else (vectorization, parallelism …) 

 We’ll discuss things that cannot be hidden and how they 
can be handled in MPI  
 Attention: MPI is not a programming model! 

 

GOOD PROGRAMMING ABSTRACTIONS 
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 Problem: noise propagation at large-scale (#5) 

 Remedy: synchronization-avoiding algorithms 

 Reduce synchronization 

 Not always possible 

 Relax synchronization 

 Nonblocking operations  

 Global synchronization 

 Nonblocking collective operations 

 Introduce synchronization windows  
that absorb noise 

TOPIC 1: SYSTEM NOISE 

Torsten Hoefler Slide 27 of 49 



NONBLOCKING COLLECTIVE OPERATIONS 

 E.g., MPI_Ibcast(…, &req); MPI_Wait(&req); 

 Simple to understand, some things to note: 
 Requests are normal MPI_Requests, can be mixed 

 Progress is not guaranteed! 

 The init call will return independently of remote procs 

 All buffers (including arrays for vector colls) shall not  
be modified (or accessed) until the op completes 

 No matching with blocking collectives 

 Collectives must be called in order (as for threading) 

 

 Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI, SC07 
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 NBC enable completely new algorithms! 

  e.g., Dynamic Sparse Data Exchange 

 Process i has ki,j (0<i,j<P-1) items to send to process j, 
but no more than O(PlogP) ki,j  are > 0 (sparse 
exchange) 

 Protocols:  

 Alltoall 

 Reduce_scatter 

 Nonblocking Barrier 

NBC OPPORTUNITIES: DSDE 

Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange, PPoPP’10 

distributed 
level-wise 

BFS 
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 Complex networks will be everywhere (#3) 

 Can be captured as a graph:  

       set of physical nodes 

           number of PEs in node  

                link capacity (bandwidth) of link  

        set of routes (may be multiple routes from u to v) 

 Application  topologies are simpler:  

      is the set of processes 

       represents the communication volume 

 How would you define an abstract interface? 

TOPIC 2: PARALLELISM AND NETWORKS 

Hoefler and Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures, ICS’11 
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TOPOLOGY PERMUTATION MAPPING 

 Application topologies     are often only known 
during runtime 
 Often prohibits mapping before allocation 
 Topology-aware allocation  interesting research! 

 MPI-2.2 defines interface for re-mapping 
 Scalable process topology graph 
 Permutes ranks in communicator 
 NP-hard problem  

 Returns “better” permutation to the user 
 User needs to re-distribute data 

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE 2010 
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 Implements the MPI-2.2 Topology Interface 
 Standard-compliant remapping of MPI applications 

 Different Strategies: 
 Simple Greedy 

 Recursive Bisection 

 Hierarchical Multicore (partitioning) 

 Simulated Annealing / Threshold Accepting 

 SCOTCH Adapter 

 Graph Similarity (Reverse Cuthill McKee) 

 … and any combination of these 

 

A TOPOLOGY MAPPING LIBRARY: LIBTOPOMAP 

Hoefler and Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures, ICS’11 

Network Graph of the  
Deimos InfiniBand System 
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HIDING TOPOLOGY (A PROGRAMMING MODEL)? 

 Matrix Template Library - Linear Algebra 

 Automatic partitioning, load balancing,  
topology mapping, serial optimizations,  
neighborhood collectives 

for (std::size_t k= 0; k < num rows(LU)−1; k++) , 
  if(abs(LU[k][k]) <= eps) throw matrix singular(); 
  irange r(k+1, imax); // Interval *k+1, n−1+ 
  LU[r][k] /= LU[k][k]; 
  LU*r+*r+ −= LU*r+*k+ * LU*k+*r+; 
} 

  Gottschling, Hoefler: “Productive Parallel Linear Algebra Programming *…+ “, CCGrid 2012 

Parallel LU 
Single MatVec (ldoor) 

Partitioning/Topology Mapping 

>10x 

processes 
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 Data movement will be most expensive (#1) 

 Remedies: 

 Communication-reducing algorithms (Demmel et al.) 

 Mixed precision algorithms (Dongarra et al.) 

 Redundant computation (Curioni and others) 

 Topomapping for energy (libtopomap, cf. Topic 2) 

 Avoid extra copies (topic of today’s discussion) 

TOPIC 3: FLOPS VS. DATA MOVEMENT 

for(int i=0, j=0; i<N, i+=stride, j++)  
  buf[j] = A[i] 
MPI_Send(buf, N, MPI_DOUBLE, ...) 

MPI_Recv(buf, N, MPI_DOUBLE, ...) 
for(int i=0, j=0; i<N, i+=stride, j++)  
  A[i] = buf[j] 
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 Think of a new ping-pong benchmark: 

THE FORGOTTEN BYTES IN COMMUNICATIONS 

Schneider, Gerstenberger, Hoefler: Micro-Applications for Communication Data Access Patterns, EuroMPI 2012 
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TIME SPENT PACKING/UNPACKING 

Schneider, Gerstenberger, Hoefler: Micro-Applications for Communication Data Access Patterns, EuroMPI 2012 
Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for FFT and Conjugate Gradient using MPI Datatypes, EuroMPI 2010 
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 Architectures are too complex for analytic 
tuning (#2, #3, #4)  empiric tuning 

 Two options: 
 Tune MPI applications 
 E.g., move send/recv to maximize cache reuse 

 Requires static analysis of application code 

 Tune MPI libraries 
 E.g., change communication patterns to match 

architecture/topology 

 Requires high-level specification in application codes 

TOPIC 4: SELF-ADAPTATION AND TUNING 
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 Compiled MPI project 

 With LLNL (Bronevetsky, Quinlan), IU (Lumsdaine) 

 In collaboration with S. Pellegrini and T. Fahringer 

 Transform blocking MPI calls to nonblocking 

 Static for now, but exposes tuning parameters! 

 First results: 
up to 28% 
speedup! 

MPI STATIC ANALYSIS 

Pellegrini et al.: Exact Dependence Analysis for Increased Communication Overlap, EuroMPI’12 
Credits: S. Pellegrini 
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 MPI-3.0 allows to create arbitrary collectives 
 “User-defined collective communication” 
 Cf. MPI Datatypes 

 Communication along a virtual topology 
 MPI_Neighbor_allgather() – same buffer to all 
 MPI_Neighbor_alltoall() – personalized send buffer 
 No user-defined reductions (yet!) 

 Benefits: 
 Simplifies programming 
 Numerous optimization possibilities 
 Fits many applications (stencil, grid etc.) 

 

NEIGHBORHOOD COLLECTIVES 
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 Use principles known from traditional collectives 

 Specify application persistence in comm_create 

 

 

 Some relevant optimization results: 

OPTIMIZING NEIGHBORHOOD COLLECTIVES 

4D Stencil 

Sparse MatVec 

Hoefler, Schneider: Optimization Principles for Collective Neighborhood Communications, SC12 
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 Cannot afford kernel calls or additional copies (#1) 

 True since a while (“zero copy”) 

 RDMA-capable networks (most of them are) 

 Programmed as a PGAS model 

 MPI-2 One-Sided had some issues 

  New MPI-3.0 One Sided Communications 

 Complex topic, see full MPI-3.0 tutorials at 
http://www.unixer.de/teaching/mpi_tutorials/ 

TOPIC 5: USER-LEVEL NETWORKING  
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MPI-3.0 ONE SIDED OVERVIEW 
 Creation 
 Expose memory collectively - Win_create 
 Allocate exposed memory – Win_allocate 
 Dynamic memory exposure – Win_create_dynamic 

 Communication 
 Data movement (put, get, rput, rget) 
 Accumulate (acc, racc, get_acc, rget_acc, fetch&op, cas) 

 Synchronization 
 Active - Collective (fence); Group (PSCW) 
 Passive - P2P (lock/unlock); One epoch (lock _all) 

 Semantics 
 Loose consistency model (not sequentially consistent) 
 Two internal memory models: separate and unified  
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 MPI offers two memory models: 

 Unified: public and private window are identical 

 Separate: public and private window are separate 

 Type is attached as attribute to window 

 MPI_WIN_MODEL 

MPI-3.0 ONE SIDED MEMORY MODELS 

MPI_UNIFIED MPI_SEPARATE 
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 Hybrid systems (multicore, accelerator) 
dominate (#4)! 

 Multicore message-passing issues: 

 Threaded message passing (Mprobe) 

 On-node memory sharing  

 Accelerator issues: 

 Separate address spaces (maybe?) 

 Memory copying (maybe?) 

 

TOPIC 6: HYBRID PROGRAMMING 
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 MPI-2.2 point-to-point communication is not 
thread safe! 

 
 
 

 
 

 Easy to fix: return a  
message handle! 
 Receive this message only through the handle 
 Easier to use and faster! 
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THREAD-SAFE MATCHED PROBE 

Hoefler et al.: Efficient MPI Support for Advanced Hybrid Programming Models, EuroMPI’10 

MPI_Probe(..., status) 
size = get_count(status)*size_of(datatype) 
buffer = malloc(size) 
MPI_Recv(buffer, ...) 

MPI_Mprobe(..., msg, status) 
size = get_count(status)*size_of(datatype) 
buffer = malloc(size) 
MPI_Mrecv(buffer, …, msg, ...) 



 MPI-3.0 allows to create windows of shared 
memory (all processes have load/store access) 

 MPI_Comm_split_type() creates communicators 

 MPI_Win_alloc_shared() creates shared window 

 Allows direct load/store and all RMA accesses 

SHARED MEMORY WINDOWS 

Hoefler et al.: Leveraging MPI's One-Sided Communication Interface for Shared-Memory Programming, EuroMPI’12 
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 MPI-2.2 makes fault resiliency a matter of 
quality of implementation 

 No guarantees, no standard but possible! 

 So runtime may stay up in case of a crash-fault 

 Failure-detectors are possible 

 Communication functions can return appropriate 
errors (or invoke error handlers etc.) 

 How can a code recover from a crash-fault? 

 Re-create or repair a communicator? 

TOPIC 7: FAULT RESILIENCY 

Gropp, Lusk: Fault Tolerance in MPI Programs, IJHPCA 2002 
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NONCOLLECTIVE COMMUNICATOR CREATION 

 Cumbersome communicator repair in MPI-2.2 

 Or just live with holes and without collectives! 

 

 MPI_Comm_create_group() allows to:  

 Allow to create communicators without involving all 
processes in the parent communicator 

 Very useful for some applications (dynamic sub-
grouping) or fault tolerance (dead processes) 

J. Dinan et al.: Noncollective Communicator Creation in MPI, EuroMPI’11 

Torsten Hoefler Slide 48 of 49 



 The future will be exciting! 
 Frequency scaling came to a halt, Moore’s law will 

follow  optimizations become more important! 

 Specialized hardware/accelerators can gain market 
share (even with “older” process technology) 

 MPI is prepared for most likely scenario 
 Forms a stable baseline to go forward 
 Integrates with accelerators and multicore 

 Interesting research opportunities 
 For application and middleware developers 

 I’m always looking for excellent interns (Illinois or Zurich)! 

 Some problems remain … MPI development continues! 

 
 

SUMMARY AND CONCLUSIONS 
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