
NEW FEATURES IN MPI-3.0 IN THE
CONTEXT OF EXASCALE COMPUTING
TORSTEN HOEFLER
ZIH COLLOQUIUM
DRESDEN, GERMANY, OCT. 2012

WHAT IS THE MESSAGE PASSING INTERFACE?

 An open standard library interface for message
passing, ratified by the MPI Forum
 Versions: 1.0 (’94), 1.1 (’95), 1.2 (’97), 2.0 (’97), 1.3

(’08), 2.1 (’08), 2.2 (’09), 3.0 (probably ’12)

 Common misconceptions:
 MPI parallelizes your application
 MPI is for distributed memory only
 MPI (a library interface) is not scalable
 MPI is fundamentally slower then PGAS etc.
 MPI is a programming model

 Really, if you don’t know what MPI is, you won’t enjoy this talk

Torsten Hoefler Slide 2 of 49

 Organization and Mantras of the MPI Forum:
 Chapter chairs (convener) and (sub)committees
 Avoid the “Designed by a Committee” phenomenon
 standardize common practice

 99.5% backwards compatible
 Final vote passed in September in Vienna!

 Adding new things:
 Review and discuss early proposals in chapter
 Bring proposals to the forum (discussion)
 Plenary formal reading (usually word by word)
 Two votes on each ticket (distinct meetings)
 Final vote on each chapter (finalizing MPI-3.0)

HOW DID THE MPI-3.0 PROCESS WORK

Torsten Hoefler Slide 3 of 49

 MPI has been there since ~20 years

 Likely to remain another 20 years

 MPI-1’s design was future proof

 Worked well for 15 years

 How will hardware look in 10 years from now?

THE MOST COMPLEX PART

Torsten Hoefler Slide 4 of 49

Torsten Hoefler

FUTURE HARDWARE SPECULATIONS
Only “Big Cores” (speed saturated, facing process problems)

Slide 5 of 49

Torsten Hoefler

FUTURE HARDWARE SPECULATIONS
Only “Big Cores” (speed saturated, facing process problems)

Only “Small Cores” (BlueGene Family, weak scaling is
constrained by memory, Amdahl’s law)

Slide 6 of 49

Torsten Hoefler

FUTURE HARDWARE SPECULATIONS
Only “Big Cores” (speed saturated, facing process problems)

Only “Small Cores” (BlueGene Family, weak scaling is
constrained by memory, Amdahl’s law)

“Big & Small Cores” SoC (NVIDIA Echelon,
DEEP, combine high speed and throughput)

Slide 7 of 49

Torsten Hoefler

FUTURE HARDWARE SPECULATIONS
Only “Big Cores” (speed saturated, facing process problems)

Only “Small Cores” (BlueGene Family, weak scaling is
constrained by memory, Amdahl’s law)

“Big & Small Cores” SoC (NVIDIA Echelon,
DEEP, combine high speed and throughput)

Accelerated Commodity
(GPUs, MIC, easy and cheap to build)
 will probably be the mass market

in the near future!

Slide 8 of 49

Torsten Hoefler

FUTURE HARDWARE SPECULATIONS
Only “Big Cores” (speed saturated, facing process problems)

Only “Small Cores” (BlueGene Family, weak scaling is
constrained by memory, Amdahl’s law)

“Big & Small Cores” SoC (NVIDIA Echelon,
DEEP, combine high speed and throughput)

Accelerated Commodity
(GPUs, MIC, easy and cheap to build)
 will probably be the mass market

in the near future! Something Completely
Different? PIM?

Slide 9 of 49

 Optimize performance constrained by

 Purchasing cost (max. ~$200M)

 Power (max. ~20 MW)

 Programmer productivity (hard to measure)

 We may not be able to continue “as usual”

 New hardware challenges!

 Will discuss most significant challenges

 Then we will discuss strategies to address them

LIMITS TO REALITY

Torsten Hoefler Slide 10 of 49

 Motivate five hardware challenges:
 (1) Data Movement and Energy, (2) Failing Systems,

(3) Complex Parallelism, (4) Hybrid Systems,
(5) System Noise

 Show seven cross-cutting research topics:
 (1) System Noise, (2) Parallelism and Networks,

(3) Flops vs. Data Movement, (4) Self-Adaptation and
Tuning, (5) User-Level Networking, (6) Hybrid
Programming, (7) Fault Resiliency

 And how they can be addressed with MPI-3.0

 Understand issues and open research topics!

Torsten Hoefler Slide 11 of 49

PRESENTATION OUTLINE

 Data movement will be most expensive

 Idle energy: 46% on today’s commodity systems

 Most networks draw constant power

 On-chip optics may change the game

 But have high constant energy

HARDWARE CHALLENGE #1: DATA MOVEMENT

0

200

400

600

800

0.1 10 1000
En

e
rg

y/
6

4
 b

it
 (

p
J)

Distance (cm)

On Die

Chip to chip

Board to Board

Between

cabinets

Memory
9%

CPU
56%

Network
33%

Memory
2% CPU

11%

Network
79%

Architectural
Optimizations

Hoefler: Software and Hardware Techniques for Power-Efficient HPC Networking (CISE 2012)
Torsten Hoefler Slide 12 of 49

CRAY XE-6 POWER CONSUMPTION

Idle (calibrate wait)

Scale=32

452 MFLOPS/W ~75 kTEPS/W

Torsten Hoefler Slide 13 of 49

CRAY XE-6 POWER CONSUMPTION

Idle (calibrate wait)

Scale=32

~75 kTEPS/W 452 MFLOPS/W

Torsten Hoefler Slide 14 of 49

 Has been discussed as “blocker” for Petascale

 Application-based checkpointing goes a long way

 May be a problem for Exascale?

 Can be addressed in hardware (cf. ECC, IBM System z)

 Programming support would be great

 Very hard problem

 Distributed Consensus

HARDWARE CHALLENGE #2: FAILURES

Torsten Hoefler Slide 15 of 49

 When one process fails, others cannot agree

 Unless they (collectively) declare the process dead

 Needs a failure detector

 Not trivial, several tradeoffs:

 E.g., sporadic (with application messages)
vs. periodic (using extra messages)

 May also rely on HW watchdogs

 Or extra monitoring chips

DISTRIBUTED CONSENSUS AND FAILURE DETECTORS

Kharbas, Kim, Hoefler, Mueller: Assessing HPC Failure Detectors for MPI Jobs, PDP’12
Torsten Hoefler Slide 16 of 49

 Everything will be parallel:

 Execution units, Pipelines, Vectors, CPU threads,
Cores, Sockets, Nodes, Cabinets …

 Intel Westmere MX CPU (10 cores):

HARDWARE CHALLENGE #3: PARALLELISM

Torsten Hoefler Slide 17 of 49

 Everything will be parallel:

 Intel Westmere MX node (4 sockets):

HARDWARE CHALLENGE #3: PARALLELISM

Torsten Hoefler Slide 18 of 49

 Everything will be parallel:

 Accelerated Intel Westmere MX board (2 nodes):

HARDWARE CHALLENGE #3: PARALLELISM

Torsten Hoefler Slide 19 of 49

 Everything will be parallel:

 Accelerated Intel Westmere MX network:

HARDWARE CHALLENGE #3: PARALLELISM

Torsten Hoefler Slide 20 of 49

 Everything will be parallel:

 Accelerated Intel Westmere MX network:

HARDWARE CHALLENGE #3: PARALLELISM

Torsten Hoefler Slide 21 of 49

 Systems will be hybrid
 GPU, MIC, XYZ … we had this before: x87

 Nine years later: integrated FPU
 Same instruction set/stream etc.

 Transparent to programmer

 MT units will be integrated … but can
they be handled by a compiler/HW?
 Unclear! Facing hard compiler problems!

HARDWARE CHALLENGE #4: HYBRID

Intel’s 8087, 1980, ~$150
5 MHz, 50 kF, 2.4 Watts
Special interface (F* assembly)

Torsten Hoefler Slide 22 of 49

 “System noise” is due to lost CPU cycles

 Less than 0.02% overhead

 Some noise cannot be avoided!

 Process synchronization may
propagate noise to other procs.

HARDWARE CHALLENGE #5: NOISE

Allreduce on a
Large-Scale System

with noise! Noise Signature

deterministic
slowdown

(noise bottleneck)

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation, SC10
Torsten Hoefler Slide 23 of 49

 We can construct a large-scale machine

 But how to use/program it?

 From an MPI perspective:

 Some challenges require new implementation
techniques (no interface changes)

 Some challenges require new or extended
interfaces (MPI-3.0)

 hardware “issues” quickly turn into bigger
software problems

SOFTWARE TO THE RESCUE!

Torsten Hoefler Slide 24 of 49

 … finally, since a long time

 MPI is trying to help but cannot always succeed

 Many changes go up to an algorithmic level

 The following will address two target
audiences:

 Designers of scientific applications

 How to cope with new challenges

 Researchers in parallel processing

 MPI’s choices, interesting new research directions

SOFTWARE DESIGN MUST CHANGE

Torsten Hoefler Slide 25 of 49

 A (parallel) programming model defines the user’s view
of the hardware
 Has to be abstract (portable) but also needs to represent

the machine (performance) model well

 and easy to use

 A good programming model:
 Hides everything that it can hide (superscalar, pipeline, …)

 Virtualizes everything else (vectorization, parallelism …)

 We’ll discuss things that cannot be hidden and how they
can be handled in MPI
 Attention: MPI is not a programming model!

GOOD PROGRAMMING ABSTRACTIONS

Torsten Hoefler Slide 26 of 49

 Problem: noise propagation at large-scale (#5)

 Remedy: synchronization-avoiding algorithms

 Reduce synchronization

 Not always possible

 Relax synchronization

 Nonblocking operations

 Global synchronization

 Nonblocking collective operations

 Introduce synchronization windows
that absorb noise

TOPIC 1: SYSTEM NOISE

Torsten Hoefler Slide 27 of 49

NONBLOCKING COLLECTIVE OPERATIONS

 E.g., MPI_Ibcast(…, &req); MPI_Wait(&req);

 Simple to understand, some things to note:
 Requests are normal MPI_Requests, can be mixed

 Progress is not guaranteed!

 The init call will return independently of remote procs

 All buffers (including arrays for vector colls) shall not
be modified (or accessed) until the op completes

 No matching with blocking collectives

 Collectives must be called in order (as for threading)

 Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI, SC07
Torsten Hoefler Slide 28 of 49

 NBC enable completely new algorithms!

 e.g., Dynamic Sparse Data Exchange

 Process i has ki,j (0<i,j<P-1) items to send to process j,
but no more than O(PlogP) ki,j are > 0 (sparse
exchange)

 Protocols:

 Alltoall

 Reduce_scatter

 Nonblocking Barrier

NBC OPPORTUNITIES: DSDE

Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange, PPoPP’10

distributed
level-wise

BFS

Torsten Hoefler Slide 29 of 49

 Complex networks will be everywhere (#3)

 Can be captured as a graph:

 set of physical nodes

 number of PEs in node

 link capacity (bandwidth) of link

 set of routes (may be multiple routes from u to v)

 Application topologies are simpler:

 is the set of processes

 represents the communication volume

 How would you define an abstract interface?

TOPIC 2: PARALLELISM AND NETWORKS

Hoefler and Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures, ICS’11

Torsten Hoefler Slide 30 of 49

TOPOLOGY PERMUTATION MAPPING

 Application topologies are often only known
during runtime
 Often prohibits mapping before allocation
 Topology-aware allocation interesting research!

 MPI-2.2 defines interface for re-mapping
 Scalable process topology graph
 Permutes ranks in communicator
 NP-hard problem

 Returns “better” permutation to the user
 User needs to re-distribute data

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE 2010

Torsten Hoefler Slide 31 of 49

 Implements the MPI-2.2 Topology Interface
 Standard-compliant remapping of MPI applications

 Different Strategies:
 Simple Greedy

 Recursive Bisection

 Hierarchical Multicore (partitioning)

 Simulated Annealing / Threshold Accepting

 SCOTCH Adapter

 Graph Similarity (Reverse Cuthill McKee)

 … and any combination of these

A TOPOLOGY MAPPING LIBRARY: LIBTOPOMAP

Hoefler and Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures, ICS’11

Network Graph of the
Deimos InfiniBand System

Torsten Hoefler Slide 32 of 49

HIDING TOPOLOGY (A PROGRAMMING MODEL)?

 Matrix Template Library - Linear Algebra

 Automatic partitioning, load balancing,
topology mapping, serial optimizations,
neighborhood collectives

for (std::size_t k= 0; k < num rows(LU)−1; k++) ,
 if(abs(LU[k][k]) <= eps) throw matrix singular();
 irange r(k+1, imax); // Interval *k+1, n−1+
 LU[r][k] /= LU[k][k];
 LU*r+*r+ −= LU*r+*k+ * LU*k+*r+;
}

 Gottschling, Hoefler: “Productive Parallel Linear Algebra Programming *…+ “, CCGrid 2012

Parallel LU
Single MatVec (ldoor)

Partitioning/Topology Mapping

>10x

processes

Torsten Hoefler Slide 33 of 49

 Data movement will be most expensive (#1)

 Remedies:

 Communication-reducing algorithms (Demmel et al.)

 Mixed precision algorithms (Dongarra et al.)

 Redundant computation (Curioni and others)

 Topomapping for energy (libtopomap, cf. Topic 2)

 Avoid extra copies (topic of today’s discussion)

TOPIC 3: FLOPS VS. DATA MOVEMENT

for(int i=0, j=0; i<N, i+=stride, j++)
 buf[j] = A[i]
MPI_Send(buf, N, MPI_DOUBLE, ...)

MPI_Recv(buf, N, MPI_DOUBLE, ...)
for(int i=0, j=0; i<N, i+=stride, j++)
 A[i] = buf[j]

Torsten Hoefler Slide 34 of 49

 Think of a new ping-pong benchmark:

THE FORGOTTEN BYTES IN COMMUNICATIONS

Schneider, Gerstenberger, Hoefler: Micro-Applications for Communication Data Access Patterns, EuroMPI 2012
Torsten Hoefler Slide 35 of 49

TIME SPENT PACKING/UNPACKING

Schneider, Gerstenberger, Hoefler: Micro-Applications for Communication Data Access Patterns, EuroMPI 2012
Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for FFT and Conjugate Gradient using MPI Datatypes, EuroMPI 2010
 Torsten Hoefler Slide 36 of 49

 Architectures are too complex for analytic
tuning (#2, #3, #4) empiric tuning

 Two options:
 Tune MPI applications
 E.g., move send/recv to maximize cache reuse

 Requires static analysis of application code

 Tune MPI libraries
 E.g., change communication patterns to match

architecture/topology

 Requires high-level specification in application codes

TOPIC 4: SELF-ADAPTATION AND TUNING

Torsten Hoefler Slide 37 of 49

 Compiled MPI project

 With LLNL (Bronevetsky, Quinlan), IU (Lumsdaine)

 In collaboration with S. Pellegrini and T. Fahringer

 Transform blocking MPI calls to nonblocking

 Static for now, but exposes tuning parameters!

 First results:
up to 28%
speedup!

MPI STATIC ANALYSIS

Pellegrini et al.: Exact Dependence Analysis for Increased Communication Overlap, EuroMPI’12
Credits: S. Pellegrini

Torsten Hoefler Slide 38 of 49

 MPI-3.0 allows to create arbitrary collectives
 “User-defined collective communication”
 Cf. MPI Datatypes

 Communication along a virtual topology
 MPI_Neighbor_allgather() – same buffer to all
 MPI_Neighbor_alltoall() – personalized send buffer
 No user-defined reductions (yet!)

 Benefits:
 Simplifies programming
 Numerous optimization possibilities
 Fits many applications (stencil, grid etc.)

NEIGHBORHOOD COLLECTIVES

Torsten Hoefler Slide 39 of 49
Hoefler, Traeff: Sparse Collective Operations for MPI, HIPS 2009 , IPDPS

 Use principles known from traditional collectives

 Specify application persistence in comm_create

 Some relevant optimization results:

OPTIMIZING NEIGHBORHOOD COLLECTIVES

4D Stencil

Sparse MatVec

Hoefler, Schneider: Optimization Principles for Collective Neighborhood Communications, SC12
 Torsten Hoefler Slide 40 of 49

 Cannot afford kernel calls or additional copies (#1)

 True since a while (“zero copy”)

 RDMA-capable networks (most of them are)

 Programmed as a PGAS model

 MPI-2 One-Sided had some issues

 New MPI-3.0 One Sided Communications

 Complex topic, see full MPI-3.0 tutorials at
http://www.unixer.de/teaching/mpi_tutorials/

TOPIC 5: USER-LEVEL NETWORKING

Torsten Hoefler Slide 41 of 49

http://www.unixer.de/teaching/mpi_tutorials/
http://www.unixer.de/teaching/mpi_tutorials/

MPI-3.0 ONE SIDED OVERVIEW
 Creation
 Expose memory collectively - Win_create
 Allocate exposed memory – Win_allocate
 Dynamic memory exposure – Win_create_dynamic

 Communication
 Data movement (put, get, rput, rget)
 Accumulate (acc, racc, get_acc, rget_acc, fetch&op, cas)

 Synchronization
 Active - Collective (fence); Group (PSCW)
 Passive - P2P (lock/unlock); One epoch (lock _all)

 Semantics
 Loose consistency model (not sequentially consistent)
 Two internal memory models: separate and unified

Torsten Hoefler Slide 42 of 49

 MPI offers two memory models:

 Unified: public and private window are identical

 Separate: public and private window are separate

 Type is attached as attribute to window

 MPI_WIN_MODEL

MPI-3.0 ONE SIDED MEMORY MODELS

MPI_UNIFIED MPI_SEPARATE

Torsten Hoefler Slide 43 of 49

 Hybrid systems (multicore, accelerator)
dominate (#4)!

 Multicore message-passing issues:

 Threaded message passing (Mprobe)

 On-node memory sharing

 Accelerator issues:

 Separate address spaces (maybe?)

 Memory copying (maybe?)

TOPIC 6: HYBRID PROGRAMMING

Torsten Hoefler Slide 44 of 49

 MPI-2.2 point-to-point communication is not
thread safe!

 Easy to fix: return a
message handle!
 Receive this message only through the handle
 Easier to use and faster!

Torsten Hoefler Slide 45 of 49

THREAD-SAFE MATCHED PROBE

Hoefler et al.: Efficient MPI Support for Advanced Hybrid Programming Models, EuroMPI’10

MPI_Probe(..., status)
size = get_count(status)*size_of(datatype)
buffer = malloc(size)
MPI_Recv(buffer, ...)

MPI_Mprobe(..., msg, status)
size = get_count(status)*size_of(datatype)
buffer = malloc(size)
MPI_Mrecv(buffer, …, msg, ...)

 MPI-3.0 allows to create windows of shared
memory (all processes have load/store access)

 MPI_Comm_split_type() creates communicators

 MPI_Win_alloc_shared() creates shared window

 Allows direct load/store and all RMA accesses

SHARED MEMORY WINDOWS

Hoefler et al.: Leveraging MPI's One-Sided Communication Interface for Shared-Memory Programming, EuroMPI’12
Torsten Hoefler Slide 46 of 49

 MPI-2.2 makes fault resiliency a matter of
quality of implementation

 No guarantees, no standard but possible!

 So runtime may stay up in case of a crash-fault

 Failure-detectors are possible

 Communication functions can return appropriate
errors (or invoke error handlers etc.)

 How can a code recover from a crash-fault?

 Re-create or repair a communicator?

TOPIC 7: FAULT RESILIENCY

Gropp, Lusk: Fault Tolerance in MPI Programs, IJHPCA 2002

Torsten Hoefler Slide 47 of 49

NONCOLLECTIVE COMMUNICATOR CREATION

 Cumbersome communicator repair in MPI-2.2

 Or just live with holes and without collectives!

 MPI_Comm_create_group() allows to:

 Allow to create communicators without involving all
processes in the parent communicator

 Very useful for some applications (dynamic sub-
grouping) or fault tolerance (dead processes)

J. Dinan et al.: Noncollective Communicator Creation in MPI, EuroMPI’11

Torsten Hoefler Slide 48 of 49

 The future will be exciting!
 Frequency scaling came to a halt, Moore’s law will

follow optimizations become more important!

 Specialized hardware/accelerators can gain market
share (even with “older” process technology)

 MPI is prepared for most likely scenario
 Forms a stable baseline to go forward
 Integrates with accelerators and multicore

 Interesting research opportunities
 For application and middleware developers

 I’m always looking for excellent interns (Illinois or Zurich)!

 Some problems remain … MPI development continues!

SUMMARY AND CONCLUSIONS

Torsten Hoefler Slide 49 of 49

ACKNOWLEDGMENTS
 The MPI Forum

 Especially the collective and RMA WGs!

 All co-authors (listed separately) and many others!

Torsten Hoefler Slide 50 of 49

