
NEW FEATURES IN MPI-3.0 IN THE
CONTEXT OF EXASCALE COMPUTING
TORSTEN HOEFLER
ZIH COLLOQUIUM
DRESDEN, GERMANY, OCT. 2012

WHAT IS THE MESSAGE PASSING INTERFACE?

 An open standard library interface for message
passing, ratified by the MPI Forum
 Versions: 1.0 (’94), 1.1 (’95), 1.2 (’97), 2.0 (’97), 1.3

(’08), 2.1 (’08), 2.2 (’09), 3.0 (probably ’12)

 Common misconceptions:
 MPI parallelizes your application
 MPI is for distributed memory only
 MPI (a library interface) is not scalable
 MPI is fundamentally slower then PGAS etc.
 MPI is a programming model

 Really, if you don’t know what MPI is, you won’t enjoy this talk 

Torsten Hoefler Slide 2 of 49

 Organization and Mantras of the MPI Forum:
 Chapter chairs (convener) and (sub)committees
 Avoid the “Designed by a Committee” phenomenon
 standardize common practice

 99.5% backwards compatible
 Final vote passed in September in Vienna!

 Adding new things:
 Review and discuss early proposals in chapter
 Bring proposals to the forum (discussion)
 Plenary formal reading (usually word by word)
 Two votes on each ticket (distinct meetings)
 Final vote on each chapter (finalizing MPI-3.0)

HOW DID THE MPI-3.0 PROCESS WORK

Torsten Hoefler Slide 3 of 49

 MPI has been there since ~20 years

 Likely to remain another 20 years

 MPI-1’s design was future proof

 Worked well for 15 years

 How will hardware look in 10 years from now?

THE MOST COMPLEX PART

Torsten Hoefler Slide 4 of 49

Torsten Hoefler

FUTURE HARDWARE SPECULATIONS
Only “Big Cores” (speed saturated, facing process problems)

Slide 5 of 49

Torsten Hoefler

FUTURE HARDWARE SPECULATIONS
Only “Big Cores” (speed saturated, facing process problems)

Only “Small Cores” (BlueGene Family, weak scaling is
constrained by memory, Amdahl’s law)

Slide 6 of 49

Torsten Hoefler

FUTURE HARDWARE SPECULATIONS
Only “Big Cores” (speed saturated, facing process problems)

Only “Small Cores” (BlueGene Family, weak scaling is
constrained by memory, Amdahl’s law)

“Big & Small Cores” SoC (NVIDIA Echelon,
DEEP, combine high speed and throughput)

Slide 7 of 49

Torsten Hoefler

FUTURE HARDWARE SPECULATIONS
Only “Big Cores” (speed saturated, facing process problems)

Only “Small Cores” (BlueGene Family, weak scaling is
constrained by memory, Amdahl’s law)

“Big & Small Cores” SoC (NVIDIA Echelon,
DEEP, combine high speed and throughput)

Accelerated Commodity
(GPUs, MIC, easy and cheap to build)
 will probably be the mass market

in the near future!

Slide 8 of 49

Torsten Hoefler

FUTURE HARDWARE SPECULATIONS
Only “Big Cores” (speed saturated, facing process problems)

Only “Small Cores” (BlueGene Family, weak scaling is
constrained by memory, Amdahl’s law)

“Big & Small Cores” SoC (NVIDIA Echelon,
DEEP, combine high speed and throughput)

Accelerated Commodity
(GPUs, MIC, easy and cheap to build)
 will probably be the mass market

in the near future! Something Completely
Different? PIM?

Slide 9 of 49

 Optimize performance constrained by

 Purchasing cost (max. ~$200M)

 Power (max. ~20 MW)

 Programmer productivity (hard to measure)

 We may not be able to continue “as usual”

 New hardware challenges!

 Will discuss most significant challenges

 Then we will discuss strategies to address them

LIMITS TO REALITY

Torsten Hoefler Slide 10 of 49

 Motivate five hardware challenges:
 (1) Data Movement and Energy, (2) Failing Systems,

(3) Complex Parallelism, (4) Hybrid Systems,
(5) System Noise

 Show seven cross-cutting research topics:
 (1) System Noise, (2) Parallelism and Networks,

(3) Flops vs. Data Movement, (4) Self-Adaptation and
Tuning, (5) User-Level Networking, (6) Hybrid
Programming, (7) Fault Resiliency

 And how they can be addressed with MPI-3.0

 Understand issues and open research topics!

Torsten Hoefler Slide 11 of 49

PRESENTATION OUTLINE

 Data movement will be most expensive



 Idle energy: 46% on today’s commodity systems

 Most networks draw constant power 

 On-chip optics may change the game

 But have high constant energy

HARDWARE CHALLENGE #1: DATA MOVEMENT

0

200

400

600

800

0.1 10 1000
En

e
rg

y/
6

4
 b

it
 (

p
J)

Distance (cm)

On Die

Chip to chip

Board to Board

Between

cabinets

Memory
9%

CPU
56%

Network
33%

Memory
2% CPU

11%

Network
79%

Architectural
Optimizations

Hoefler: Software and Hardware Techniques for Power-Efficient HPC Networking (CISE 2012)
Torsten Hoefler Slide 12 of 49

CRAY XE-6 POWER CONSUMPTION

Idle (calibrate wait)

Scale=32

452 MFLOPS/W ~75 kTEPS/W

Torsten Hoefler Slide 13 of 49

CRAY XE-6 POWER CONSUMPTION

Idle (calibrate wait)

Scale=32

~75 kTEPS/W 452 MFLOPS/W

Torsten Hoefler Slide 14 of 49

 Has been discussed as “blocker” for Petascale

 Application-based checkpointing goes a long way

 May be a problem for Exascale?

 Can be addressed in hardware (cf. ECC, IBM System z)

 Programming support would be great

 Very hard problem

  Distributed Consensus

HARDWARE CHALLENGE #2: FAILURES

Torsten Hoefler Slide 15 of 49

 When one process fails, others cannot agree

 Unless they (collectively) declare the process dead

 Needs a failure detector

 Not trivial, several tradeoffs:

 E.g., sporadic (with application messages)
vs. periodic (using extra messages)

 May also rely on HW watchdogs

 Or extra monitoring chips

DISTRIBUTED CONSENSUS AND FAILURE DETECTORS

Kharbas, Kim, Hoefler, Mueller: Assessing HPC Failure Detectors for MPI Jobs, PDP’12
Torsten Hoefler Slide 16 of 49

 Everything will be parallel:

 Execution units, Pipelines, Vectors, CPU threads,
Cores, Sockets, Nodes, Cabinets …

 Intel Westmere MX CPU (10 cores):

HARDWARE CHALLENGE #3: PARALLELISM

Torsten Hoefler Slide 17 of 49

 Everything will be parallel:

 Intel Westmere MX node (4 sockets):

HARDWARE CHALLENGE #3: PARALLELISM

Torsten Hoefler Slide 18 of 49

 Everything will be parallel:

 Accelerated Intel Westmere MX board (2 nodes):

HARDWARE CHALLENGE #3: PARALLELISM

Torsten Hoefler Slide 19 of 49

 Everything will be parallel:

 Accelerated Intel Westmere MX network:

HARDWARE CHALLENGE #3: PARALLELISM

Torsten Hoefler Slide 20 of 49

 Everything will be parallel:

 Accelerated Intel Westmere MX network:

HARDWARE CHALLENGE #3: PARALLELISM

Torsten Hoefler Slide 21 of 49

 Systems will be hybrid
 GPU, MIC, XYZ … we had this before: x87

 Nine years later: integrated FPU
 Same instruction set/stream etc.

 Transparent to programmer

 MT units will be integrated … but can
they be handled by a compiler/HW?
 Unclear! Facing hard compiler problems!

HARDWARE CHALLENGE #4: HYBRID

Intel’s 8087, 1980, ~$150
5 MHz, 50 kF, 2.4 Watts
Special interface (F* assembly)

Torsten Hoefler Slide 22 of 49

 “System noise” is due to lost CPU cycles

 Less than 0.02% overhead

 Some noise cannot be avoided!

 Process synchronization may
propagate noise to other procs.

HARDWARE CHALLENGE #5: NOISE

Allreduce on a
Large-Scale System

with noise! Noise Signature

deterministic
slowdown

(noise bottleneck)

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation, SC10
Torsten Hoefler Slide 23 of 49

 We can construct a large-scale machine

 But how to use/program it?

 From an MPI perspective:

 Some challenges require new implementation
techniques (no interface changes)

 Some challenges require new or extended
interfaces (MPI-3.0)

  hardware “issues” quickly turn into bigger
software problems

SOFTWARE TO THE RESCUE!

Torsten Hoefler Slide 24 of 49

 … finally, since a long time

 MPI is trying to help but cannot always succeed

 Many changes go up to an algorithmic level

 The following will address two target
audiences:

 Designers of scientific applications

 How to cope with new challenges

 Researchers in parallel processing

 MPI’s choices, interesting new research directions

SOFTWARE DESIGN MUST CHANGE

Torsten Hoefler Slide 25 of 49

 A (parallel) programming model defines the user’s view
of the hardware
 Has to be abstract (portable) but also needs to represent

the machine (performance) model well

 and easy to use 

 A good programming model:
 Hides everything that it can hide (superscalar, pipeline, …)

 Virtualizes everything else (vectorization, parallelism …)

 We’ll discuss things that cannot be hidden and how they
can be handled in MPI
 Attention: MPI is not a programming model!

GOOD PROGRAMMING ABSTRACTIONS

Torsten Hoefler Slide 26 of 49

 Problem: noise propagation at large-scale (#5)

 Remedy: synchronization-avoiding algorithms

 Reduce synchronization

 Not always possible

 Relax synchronization

 Nonblocking operations

 Global synchronization

 Nonblocking collective operations

 Introduce synchronization windows
that absorb noise

TOPIC 1: SYSTEM NOISE

Torsten Hoefler Slide 27 of 49

NONBLOCKING COLLECTIVE OPERATIONS

 E.g., MPI_Ibcast(…, &req); MPI_Wait(&req);

 Simple to understand, some things to note:
 Requests are normal MPI_Requests, can be mixed

 Progress is not guaranteed!

 The init call will return independently of remote procs

 All buffers (including arrays for vector colls) shall not
be modified (or accessed) until the op completes

 No matching with blocking collectives

 Collectives must be called in order (as for threading)

 Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI, SC07
Torsten Hoefler Slide 28 of 49

 NBC enable completely new algorithms!

  e.g., Dynamic Sparse Data Exchange

 Process i has ki,j (0<i,j<P-1) items to send to process j,
but no more than O(PlogP) ki,j are > 0 (sparse
exchange)

 Protocols:

 Alltoall

 Reduce_scatter

 Nonblocking Barrier

NBC OPPORTUNITIES: DSDE

Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange, PPoPP’10

distributed
level-wise

BFS

Torsten Hoefler Slide 29 of 49

 Complex networks will be everywhere (#3)

 Can be captured as a graph:

 set of physical nodes

 number of PEs in node

 link capacity (bandwidth) of link

 set of routes (may be multiple routes from u to v)

 Application topologies are simpler:

 is the set of processes

 represents the communication volume

 How would you define an abstract interface?

TOPIC 2: PARALLELISM AND NETWORKS

Hoefler and Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures, ICS’11

Torsten Hoefler Slide 30 of 49

TOPOLOGY PERMUTATION MAPPING

 Application topologies are often only known
during runtime
 Often prohibits mapping before allocation
 Topology-aware allocation  interesting research!

 MPI-2.2 defines interface for re-mapping
 Scalable process topology graph
 Permutes ranks in communicator
 NP-hard problem 

 Returns “better” permutation to the user
 User needs to re-distribute data

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE 2010

Torsten Hoefler Slide 31 of 49

 Implements the MPI-2.2 Topology Interface
 Standard-compliant remapping of MPI applications

 Different Strategies:
 Simple Greedy

 Recursive Bisection

 Hierarchical Multicore (partitioning)

 Simulated Annealing / Threshold Accepting

 SCOTCH Adapter

 Graph Similarity (Reverse Cuthill McKee)

 … and any combination of these

A TOPOLOGY MAPPING LIBRARY: LIBTOPOMAP

Hoefler and Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures, ICS’11

Network Graph of the
Deimos InfiniBand System

Torsten Hoefler Slide 32 of 49

HIDING TOPOLOGY (A PROGRAMMING MODEL)?

 Matrix Template Library - Linear Algebra

 Automatic partitioning, load balancing,
topology mapping, serial optimizations,
neighborhood collectives

for (std::size_t k= 0; k < num rows(LU)−1; k++) ,
 if(abs(LU[k][k]) <= eps) throw matrix singular();
 irange r(k+1, imax); // Interval *k+1, n−1+
 LU[r][k] /= LU[k][k];
 LU*r+*r+ −= LU*r+*k+ * LU*k+*r+;
}

 Gottschling, Hoefler: “Productive Parallel Linear Algebra Programming *…+ “, CCGrid 2012

Parallel LU
Single MatVec (ldoor)

Partitioning/Topology Mapping

>10x

processes

Torsten Hoefler Slide 33 of 49

 Data movement will be most expensive (#1)

 Remedies:

 Communication-reducing algorithms (Demmel et al.)

 Mixed precision algorithms (Dongarra et al.)

 Redundant computation (Curioni and others)

 Topomapping for energy (libtopomap, cf. Topic 2)

 Avoid extra copies (topic of today’s discussion)

TOPIC 3: FLOPS VS. DATA MOVEMENT

for(int i=0, j=0; i<N, i+=stride, j++)
 buf[j] = A[i]
MPI_Send(buf, N, MPI_DOUBLE, ...)

MPI_Recv(buf, N, MPI_DOUBLE, ...)
for(int i=0, j=0; i<N, i+=stride, j++)
 A[i] = buf[j]

Torsten Hoefler Slide 34 of 49

 Think of a new ping-pong benchmark:

THE FORGOTTEN BYTES IN COMMUNICATIONS

Schneider, Gerstenberger, Hoefler: Micro-Applications for Communication Data Access Patterns, EuroMPI 2012
Torsten Hoefler Slide 35 of 49

TIME SPENT PACKING/UNPACKING

Schneider, Gerstenberger, Hoefler: Micro-Applications for Communication Data Access Patterns, EuroMPI 2012
Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for FFT and Conjugate Gradient using MPI Datatypes, EuroMPI 2010
 Torsten Hoefler Slide 36 of 49

 Architectures are too complex for analytic
tuning (#2, #3, #4)  empiric tuning

 Two options:
 Tune MPI applications
 E.g., move send/recv to maximize cache reuse

 Requires static analysis of application code

 Tune MPI libraries
 E.g., change communication patterns to match

architecture/topology

 Requires high-level specification in application codes

TOPIC 4: SELF-ADAPTATION AND TUNING

Torsten Hoefler Slide 37 of 49

 Compiled MPI project

 With LLNL (Bronevetsky, Quinlan), IU (Lumsdaine)

 In collaboration with S. Pellegrini and T. Fahringer

 Transform blocking MPI calls to nonblocking

 Static for now, but exposes tuning parameters!

 First results:
up to 28%
speedup!

MPI STATIC ANALYSIS

Pellegrini et al.: Exact Dependence Analysis for Increased Communication Overlap, EuroMPI’12
Credits: S. Pellegrini

Torsten Hoefler Slide 38 of 49

 MPI-3.0 allows to create arbitrary collectives
 “User-defined collective communication”
 Cf. MPI Datatypes

 Communication along a virtual topology
 MPI_Neighbor_allgather() – same buffer to all
 MPI_Neighbor_alltoall() – personalized send buffer
 No user-defined reductions (yet!)

 Benefits:
 Simplifies programming
 Numerous optimization possibilities
 Fits many applications (stencil, grid etc.)

NEIGHBORHOOD COLLECTIVES

Torsten Hoefler Slide 39 of 49
Hoefler, Traeff: Sparse Collective Operations for MPI, HIPS 2009 , IPDPS

 Use principles known from traditional collectives

 Specify application persistence in comm_create

 Some relevant optimization results:

OPTIMIZING NEIGHBORHOOD COLLECTIVES

4D Stencil

Sparse MatVec

Hoefler, Schneider: Optimization Principles for Collective Neighborhood Communications, SC12
 Torsten Hoefler Slide 40 of 49

 Cannot afford kernel calls or additional copies (#1)

 True since a while (“zero copy”)

 RDMA-capable networks (most of them are)

 Programmed as a PGAS model

 MPI-2 One-Sided had some issues

  New MPI-3.0 One Sided Communications

 Complex topic, see full MPI-3.0 tutorials at
http://www.unixer.de/teaching/mpi_tutorials/

TOPIC 5: USER-LEVEL NETWORKING

Torsten Hoefler Slide 41 of 49

http://www.unixer.de/teaching/mpi_tutorials/
http://www.unixer.de/teaching/mpi_tutorials/

MPI-3.0 ONE SIDED OVERVIEW
 Creation
 Expose memory collectively - Win_create
 Allocate exposed memory – Win_allocate
 Dynamic memory exposure – Win_create_dynamic

 Communication
 Data movement (put, get, rput, rget)
 Accumulate (acc, racc, get_acc, rget_acc, fetch&op, cas)

 Synchronization
 Active - Collective (fence); Group (PSCW)
 Passive - P2P (lock/unlock); One epoch (lock _all)

 Semantics
 Loose consistency model (not sequentially consistent)
 Two internal memory models: separate and unified

Torsten Hoefler Slide 42 of 49

 MPI offers two memory models:

 Unified: public and private window are identical

 Separate: public and private window are separate

 Type is attached as attribute to window

 MPI_WIN_MODEL

MPI-3.0 ONE SIDED MEMORY MODELS

MPI_UNIFIED MPI_SEPARATE

Torsten Hoefler Slide 43 of 49

 Hybrid systems (multicore, accelerator)
dominate (#4)!

 Multicore message-passing issues:

 Threaded message passing (Mprobe)

 On-node memory sharing

 Accelerator issues:

 Separate address spaces (maybe?)

 Memory copying (maybe?)

TOPIC 6: HYBRID PROGRAMMING

Torsten Hoefler Slide 44 of 49

 MPI-2.2 point-to-point communication is not
thread safe!

 Easy to fix: return a
message handle!
 Receive this message only through the handle
 Easier to use and faster!

Torsten Hoefler Slide 45 of 49

THREAD-SAFE MATCHED PROBE

Hoefler et al.: Efficient MPI Support for Advanced Hybrid Programming Models, EuroMPI’10

MPI_Probe(..., status)
size = get_count(status)*size_of(datatype)
buffer = malloc(size)
MPI_Recv(buffer, ...)

MPI_Mprobe(..., msg, status)
size = get_count(status)*size_of(datatype)
buffer = malloc(size)
MPI_Mrecv(buffer, …, msg, ...)

 MPI-3.0 allows to create windows of shared
memory (all processes have load/store access)

 MPI_Comm_split_type() creates communicators

 MPI_Win_alloc_shared() creates shared window

 Allows direct load/store and all RMA accesses

SHARED MEMORY WINDOWS

Hoefler et al.: Leveraging MPI's One-Sided Communication Interface for Shared-Memory Programming, EuroMPI’12
Torsten Hoefler Slide 46 of 49

 MPI-2.2 makes fault resiliency a matter of
quality of implementation

 No guarantees, no standard but possible!

 So runtime may stay up in case of a crash-fault

 Failure-detectors are possible

 Communication functions can return appropriate
errors (or invoke error handlers etc.)

 How can a code recover from a crash-fault?

 Re-create or repair a communicator?

TOPIC 7: FAULT RESILIENCY

Gropp, Lusk: Fault Tolerance in MPI Programs, IJHPCA 2002

Torsten Hoefler Slide 47 of 49

NONCOLLECTIVE COMMUNICATOR CREATION

 Cumbersome communicator repair in MPI-2.2

 Or just live with holes and without collectives!

 MPI_Comm_create_group() allows to:

 Allow to create communicators without involving all
processes in the parent communicator

 Very useful for some applications (dynamic sub-
grouping) or fault tolerance (dead processes)

J. Dinan et al.: Noncollective Communicator Creation in MPI, EuroMPI’11

Torsten Hoefler Slide 48 of 49

 The future will be exciting!
 Frequency scaling came to a halt, Moore’s law will

follow  optimizations become more important!

 Specialized hardware/accelerators can gain market
share (even with “older” process technology)

 MPI is prepared for most likely scenario
 Forms a stable baseline to go forward
 Integrates with accelerators and multicore

 Interesting research opportunities
 For application and middleware developers

 I’m always looking for excellent interns (Illinois or Zurich)!

 Some problems remain … MPI development continues!

SUMMARY AND CONCLUSIONS

Torsten Hoefler Slide 49 of 49

ACKNOWLEDGMENTS
 The MPI Forum

 Especially the collective and RMA WGs!

 All co-authors (listed separately) and many others!

Torsten Hoefler Slide 50 of 49

