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WHAT IS THE MESSAGE PASSING INTERFACE? 

 An open standard library interface for message 
passing, ratified by the MPI Forum 
 Versions: 1.0 (’94), 1.1 (’95), 1.2 (’97), 2.0 (’97), 1.3 

(’08), 2.1 (’08), 2.2 (’09), 3.0 (probably ’12)   

 Common misconceptions: 
 MPI parallelizes your application 
 MPI is for distributed memory only 
 MPI (a library interface) is not scalable 
 MPI is fundamentally slower then PGAS etc. 
 MPI is a programming model 

 Really, if you don’t know what MPI is, you won’t enjoy this talk  
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 Organization and Mantras of the MPI Forum: 
 Chapter chairs (convener) and (sub)committees 
 Avoid the “Designed by a Committee” phenomenon  
 standardize common practice 

 99.5% backwards compatible 
 Final vote passed in September in Vienna! 

 Adding new things: 
 Review and discuss early proposals in chapter 
 Bring proposals to the forum (discussion) 
 Plenary formal reading (usually word by word) 
 Two votes on each ticket (distinct meetings) 
 Final vote on each chapter (finalizing MPI-3.0) 

HOW DID THE MPI-3.0 PROCESS WORK 
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 MPI has been there since ~20 years 

 Likely to remain another 20 years 

 MPI-1’s design was future proof 

 Worked well for 15 years 

 How will hardware look in 10 years from now? 

THE MOST COMPLEX PART 
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 Optimize performance constrained by 

 Purchasing cost (max. ~$200M) 

 Power (max. ~20 MW) 

 Programmer productivity (hard to measure) 

 We may not be able to continue “as usual” 

 New hardware challenges! 

 Will discuss most significant challenges 

 Then we will discuss strategies to address them 

 

 

LIMITS TO REALITY 
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 Motivate five hardware challenges: 
 (1) Data Movement and Energy, (2) Failing Systems,  

(3) Complex Parallelism, (4) Hybrid Systems,  
(5) System Noise 

 Show seven cross-cutting research topics: 
 (1) System Noise, (2) Parallelism and Networks,  

(3) Flops vs. Data Movement, (4) Self-Adaptation and 
Tuning, (5) User-Level Networking, (6) Hybrid 
Programming, (7) Fault Resiliency 

 And how they can be addressed with MPI-3.0 

 Understand issues and open research topics! 
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PRESENTATION OUTLINE 



 Data movement will be most expensive 

   

 Idle energy: 46% on today’s commodity systems 

 Most networks draw constant power  

 On-chip optics may change the game 

 But have high constant energy 

HARDWARE CHALLENGE #1: DATA MOVEMENT 
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Hoefler: Software and Hardware Techniques for Power-Efficient HPC Networking (CISE 2012) 
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CRAY XE-6 POWER CONSUMPTION 
 

Idle (calibrate wait) 

Scale=32 

452 MFLOPS/W ~75 kTEPS/W 
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 Has been discussed as “blocker” for Petascale 

 Application-based checkpointing goes a long way 

 May be a problem for Exascale? 

 Can be addressed in hardware (cf. ECC, IBM System z) 

 Programming support would be great 

 Very hard problem 

  Distributed Consensus 

HARDWARE CHALLENGE #2: FAILURES 
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 When one process fails, others cannot agree 

 Unless they (collectively) declare the process dead 

 Needs a failure detector 

 Not trivial, several tradeoffs: 

 E.g., sporadic (with application messages) 
vs. periodic (using extra messages) 

 May also rely on HW watchdogs 

 Or extra monitoring chips 

DISTRIBUTED CONSENSUS AND FAILURE DETECTORS 

Kharbas, Kim, Hoefler, Mueller: Assessing HPC Failure Detectors for MPI Jobs, PDP’12 
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 Everything will be parallel: 

 Execution units, Pipelines, Vectors, CPU threads, 
Cores, Sockets, Nodes, Cabinets … 

 Intel Westmere MX CPU (10 cores): 

HARDWARE CHALLENGE #3: PARALLELISM 
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 Everything will be parallel: 

 Intel Westmere MX node (4 sockets): 

HARDWARE CHALLENGE #3: PARALLELISM 
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 Everything will be parallel: 

 Accelerated Intel Westmere MX board (2 nodes): 

HARDWARE CHALLENGE #3: PARALLELISM 
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 Everything will be parallel: 

 Accelerated Intel Westmere MX network: 

HARDWARE CHALLENGE #3: PARALLELISM 
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 Everything will be parallel: 

 Accelerated Intel Westmere MX network: 

HARDWARE CHALLENGE #3: PARALLELISM 
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 Systems will be hybrid 
 GPU, MIC, XYZ … we had this before: x87 

 

 

 Nine years later: integrated FPU 
 Same instruction set/stream etc. 

 Transparent to programmer 

 MT units will be integrated … but can  
they be handled by a compiler/HW? 
 Unclear! Facing hard compiler problems! 

HARDWARE CHALLENGE #4: HYBRID 

Intel’s 8087, 1980, ~$150 
5 MHz, 50 kF, 2.4 Watts 
Special interface (F* assembly) 
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 “System noise” is due to lost CPU cycles 

 Less than 0.02% overhead 

 Some noise cannot be avoided! 

 Process synchronization may 
propagate noise to other procs. 

 

HARDWARE CHALLENGE #5: NOISE 

Allreduce on a  
Large-Scale System 

with noise! Noise Signature 

deterministic 
slowdown  

(noise bottleneck) 

Hoefler et al.: Characterizing the Influence of System Noise on Large-Scale Applications by Simulation, SC10 
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 We can construct a large-scale machine 

 But how to use/program it? 

 From an MPI perspective: 

 Some challenges require new implementation 
techniques (no interface changes) 

 Some challenges require new or extended 
interfaces (MPI-3.0) 

  hardware “issues” quickly turn into bigger 
software problems 

 

SOFTWARE TO THE RESCUE! 

Torsten Hoefler Slide 24 of 49 



 … finally, since a long time 

 MPI is trying to help but cannot always succeed 

 Many changes go up to an algorithmic level 

 The following will address two target 
audiences: 

 Designers of scientific applications 

 How to cope with new challenges 

 Researchers in parallel processing 

 MPI’s choices, interesting new research directions 

 

SOFTWARE DESIGN MUST CHANGE 

Torsten Hoefler Slide 25 of 49 



 A (parallel) programming model defines the user’s view 
of the hardware 
 Has to be abstract (portable) but also needs to represent 

the machine (performance) model well 

 and easy to use  

 A good programming model: 
 Hides everything that it can hide (superscalar, pipeline, …) 

 Virtualizes everything else (vectorization, parallelism …) 

 We’ll discuss things that cannot be hidden and how they 
can be handled in MPI  
 Attention: MPI is not a programming model! 

 

GOOD PROGRAMMING ABSTRACTIONS 
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 Problem: noise propagation at large-scale (#5) 

 Remedy: synchronization-avoiding algorithms 

 Reduce synchronization 

 Not always possible 

 Relax synchronization 

 Nonblocking operations  

 Global synchronization 

 Nonblocking collective operations 

 Introduce synchronization windows  
that absorb noise 

TOPIC 1: SYSTEM NOISE 
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NONBLOCKING COLLECTIVE OPERATIONS 

 E.g., MPI_Ibcast(…, &req); MPI_Wait(&req); 

 Simple to understand, some things to note: 
 Requests are normal MPI_Requests, can be mixed 

 Progress is not guaranteed! 

 The init call will return independently of remote procs 

 All buffers (including arrays for vector colls) shall not  
be modified (or accessed) until the op completes 

 No matching with blocking collectives 

 Collectives must be called in order (as for threading) 

 

 Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI, SC07 
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 NBC enable completely new algorithms! 

  e.g., Dynamic Sparse Data Exchange 

 Process i has ki,j (0<i,j<P-1) items to send to process j, 
but no more than O(PlogP) ki,j  are > 0 (sparse 
exchange) 

 Protocols:  

 Alltoall 

 Reduce_scatter 

 Nonblocking Barrier 

NBC OPPORTUNITIES: DSDE 

Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange, PPoPP’10 

distributed 
level-wise 

BFS 
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 Complex networks will be everywhere (#3) 

 Can be captured as a graph:  

       set of physical nodes 

           number of PEs in node  

                link capacity (bandwidth) of link  

        set of routes (may be multiple routes from u to v) 

 Application  topologies are simpler:  

      is the set of processes 

       represents the communication volume 

 How would you define an abstract interface? 

TOPIC 2: PARALLELISM AND NETWORKS 

Hoefler and Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures, ICS’11 
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TOPOLOGY PERMUTATION MAPPING 

 Application topologies     are often only known 
during runtime 
 Often prohibits mapping before allocation 
 Topology-aware allocation  interesting research! 

 MPI-2.2 defines interface for re-mapping 
 Scalable process topology graph 
 Permutes ranks in communicator 
 NP-hard problem  

 Returns “better” permutation to the user 
 User needs to re-distribute data 

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE 2010 
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 Implements the MPI-2.2 Topology Interface 
 Standard-compliant remapping of MPI applications 

 Different Strategies: 
 Simple Greedy 

 Recursive Bisection 

 Hierarchical Multicore (partitioning) 

 Simulated Annealing / Threshold Accepting 

 SCOTCH Adapter 

 Graph Similarity (Reverse Cuthill McKee) 

 … and any combination of these 

 

A TOPOLOGY MAPPING LIBRARY: LIBTOPOMAP 

Hoefler and Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures, ICS’11 

Network Graph of the  
Deimos InfiniBand System 
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HIDING TOPOLOGY (A PROGRAMMING MODEL)? 

 Matrix Template Library - Linear Algebra 

 Automatic partitioning, load balancing,  
topology mapping, serial optimizations,  
neighborhood collectives 

for (std::size_t k= 0; k < num rows(LU)−1; k++) , 
  if(abs(LU[k][k]) <= eps) throw matrix singular(); 
  irange r(k+1, imax); // Interval *k+1, n−1+ 
  LU[r][k] /= LU[k][k]; 
  LU*r+*r+ −= LU*r+*k+ * LU*k+*r+; 
} 

  Gottschling, Hoefler: “Productive Parallel Linear Algebra Programming *…+ “, CCGrid 2012 

Parallel LU 
Single MatVec (ldoor) 

Partitioning/Topology Mapping 

>10x 

processes 
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 Data movement will be most expensive (#1) 

 Remedies: 

 Communication-reducing algorithms (Demmel et al.) 

 Mixed precision algorithms (Dongarra et al.) 

 Redundant computation (Curioni and others) 

 Topomapping for energy (libtopomap, cf. Topic 2) 

 Avoid extra copies (topic of today’s discussion) 

TOPIC 3: FLOPS VS. DATA MOVEMENT 

for(int i=0, j=0; i<N, i+=stride, j++)  
  buf[j] = A[i] 
MPI_Send(buf, N, MPI_DOUBLE, ...) 

MPI_Recv(buf, N, MPI_DOUBLE, ...) 
for(int i=0, j=0; i<N, i+=stride, j++)  
  A[i] = buf[j] 
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 Think of a new ping-pong benchmark: 

THE FORGOTTEN BYTES IN COMMUNICATIONS 

Schneider, Gerstenberger, Hoefler: Micro-Applications for Communication Data Access Patterns, EuroMPI 2012 
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TIME SPENT PACKING/UNPACKING 

Schneider, Gerstenberger, Hoefler: Micro-Applications for Communication Data Access Patterns, EuroMPI 2012 
Hoefler, Gottlieb: Parallel Zero-Copy Algorithms for FFT and Conjugate Gradient using MPI Datatypes, EuroMPI 2010 
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 Architectures are too complex for analytic 
tuning (#2, #3, #4)  empiric tuning 

 Two options: 
 Tune MPI applications 
 E.g., move send/recv to maximize cache reuse 

 Requires static analysis of application code 

 Tune MPI libraries 
 E.g., change communication patterns to match 

architecture/topology 

 Requires high-level specification in application codes 

TOPIC 4: SELF-ADAPTATION AND TUNING 
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 Compiled MPI project 

 With LLNL (Bronevetsky, Quinlan), IU (Lumsdaine) 

 In collaboration with S. Pellegrini and T. Fahringer 

 Transform blocking MPI calls to nonblocking 

 Static for now, but exposes tuning parameters! 

 First results: 
up to 28% 
speedup! 

MPI STATIC ANALYSIS 

Pellegrini et al.: Exact Dependence Analysis for Increased Communication Overlap, EuroMPI’12 
Credits: S. Pellegrini 
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 MPI-3.0 allows to create arbitrary collectives 
 “User-defined collective communication” 
 Cf. MPI Datatypes 

 Communication along a virtual topology 
 MPI_Neighbor_allgather() – same buffer to all 
 MPI_Neighbor_alltoall() – personalized send buffer 
 No user-defined reductions (yet!) 

 Benefits: 
 Simplifies programming 
 Numerous optimization possibilities 
 Fits many applications (stencil, grid etc.) 

 

NEIGHBORHOOD COLLECTIVES 
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Hoefler, Traeff: Sparse Collective Operations for MPI, HIPS 2009 , IPDPS 



 Use principles known from traditional collectives 

 Specify application persistence in comm_create 

 

 

 Some relevant optimization results: 

OPTIMIZING NEIGHBORHOOD COLLECTIVES 

4D Stencil 

Sparse MatVec 

Hoefler, Schneider: Optimization Principles for Collective Neighborhood Communications, SC12 
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 Cannot afford kernel calls or additional copies (#1) 

 True since a while (“zero copy”) 

 RDMA-capable networks (most of them are) 

 Programmed as a PGAS model 

 MPI-2 One-Sided had some issues 

  New MPI-3.0 One Sided Communications 

 Complex topic, see full MPI-3.0 tutorials at 
http://www.unixer.de/teaching/mpi_tutorials/ 

TOPIC 5: USER-LEVEL NETWORKING  
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MPI-3.0 ONE SIDED OVERVIEW 
 Creation 
 Expose memory collectively - Win_create 
 Allocate exposed memory – Win_allocate 
 Dynamic memory exposure – Win_create_dynamic 

 Communication 
 Data movement (put, get, rput, rget) 
 Accumulate (acc, racc, get_acc, rget_acc, fetch&op, cas) 

 Synchronization 
 Active - Collective (fence); Group (PSCW) 
 Passive - P2P (lock/unlock); One epoch (lock _all) 

 Semantics 
 Loose consistency model (not sequentially consistent) 
 Two internal memory models: separate and unified  
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 MPI offers two memory models: 

 Unified: public and private window are identical 

 Separate: public and private window are separate 

 Type is attached as attribute to window 

 MPI_WIN_MODEL 

MPI-3.0 ONE SIDED MEMORY MODELS 

MPI_UNIFIED MPI_SEPARATE 

Torsten Hoefler Slide 43 of 49 



 Hybrid systems (multicore, accelerator) 
dominate (#4)! 

 Multicore message-passing issues: 

 Threaded message passing (Mprobe) 

 On-node memory sharing  

 Accelerator issues: 

 Separate address spaces (maybe?) 

 Memory copying (maybe?) 

 

TOPIC 6: HYBRID PROGRAMMING 
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 MPI-2.2 point-to-point communication is not 
thread safe! 

 
 
 

 
 

 Easy to fix: return a  
message handle! 
 Receive this message only through the handle 
 Easier to use and faster! 
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THREAD-SAFE MATCHED PROBE 

Hoefler et al.: Efficient MPI Support for Advanced Hybrid Programming Models, EuroMPI’10 

MPI_Probe(..., status) 
size = get_count(status)*size_of(datatype) 
buffer = malloc(size) 
MPI_Recv(buffer, ...) 

MPI_Mprobe(..., msg, status) 
size = get_count(status)*size_of(datatype) 
buffer = malloc(size) 
MPI_Mrecv(buffer, …, msg, ...) 



 MPI-3.0 allows to create windows of shared 
memory (all processes have load/store access) 

 MPI_Comm_split_type() creates communicators 

 MPI_Win_alloc_shared() creates shared window 

 Allows direct load/store and all RMA accesses 

SHARED MEMORY WINDOWS 

Hoefler et al.: Leveraging MPI's One-Sided Communication Interface for Shared-Memory Programming, EuroMPI’12 
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 MPI-2.2 makes fault resiliency a matter of 
quality of implementation 

 No guarantees, no standard but possible! 

 So runtime may stay up in case of a crash-fault 

 Failure-detectors are possible 

 Communication functions can return appropriate 
errors (or invoke error handlers etc.) 

 How can a code recover from a crash-fault? 

 Re-create or repair a communicator? 

TOPIC 7: FAULT RESILIENCY 

Gropp, Lusk: Fault Tolerance in MPI Programs, IJHPCA 2002 
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NONCOLLECTIVE COMMUNICATOR CREATION 

 Cumbersome communicator repair in MPI-2.2 

 Or just live with holes and without collectives! 

 

 MPI_Comm_create_group() allows to:  

 Allow to create communicators without involving all 
processes in the parent communicator 

 Very useful for some applications (dynamic sub-
grouping) or fault tolerance (dead processes) 

J. Dinan et al.: Noncollective Communicator Creation in MPI, EuroMPI’11 

Torsten Hoefler Slide 48 of 49 



 The future will be exciting! 
 Frequency scaling came to a halt, Moore’s law will 

follow  optimizations become more important! 

 Specialized hardware/accelerators can gain market 
share (even with “older” process technology) 

 MPI is prepared for most likely scenario 
 Forms a stable baseline to go forward 
 Integrates with accelerators and multicore 

 Interesting research opportunities 
 For application and middleware developers 

 I’m always looking for excellent interns (Illinois or Zurich)! 

 Some problems remain … MPI development continues! 

 
 

SUMMARY AND CONCLUSIONS 
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