

HPC Storage: Challenges and
Opportunities of new Storage
Technologies

André Brinkmann
Zentrum für Datenverarbeitung
Johannes Gutenberg-Universität Mainz

•  Challenges for scientific storage environments
•  Checkpointing
•  Metadata Management
•  Application Hints

–  How to extend POSIX Advices?
–  Applying in-kernel scripting engines to support application

specific data layouts

Agenda

24.1.2013 | André Brinkmann

•  Established in 1477 (15 years before Columbus discovered
America)

•  36,000 students è one of the ten biggest universities in
Germany

•  Strong focus on physics, chemistry, and biology
–  Includes quantum chromodynamics (QCD), earth

simulation, climate prediction, next-generation
sequencing

•  Researchers claim to have data-intensive problems …

Johannes Gutenberg University Mainz

24.1.2013 | André Brinkmann

•  Disk drives are used to store huge amounts of data

Files are logical resources

•  Differentiation of logical blocks of a file and physical blocks
on storage media è Just one interface to storage

•  Parallel file systems support parallel applications
–  All nodes may be accessing the same files at the same

time, concurrently reading and writing
–  Data for a single file is striped across multiple storage

nodes to provide scalable performance to individual files
•  Do we need this kind of support and what are the associated

costs?

File Systems

24.1.2013 | André Brinkmann

•  Important Scenarios
–  Checkpointing/restart with large I/O requests
–  Extreme file creation rates
–  Small block random I/O to a single file
–  Multiple data streams with large data blocks working in

full duplex mode

What are the challenges?

H. Newman: What is HPCS and How Does Impact I/O, May 19th, 2009

•  Important Scenarios
–  Checkpointing/restart with large I/O requests
–  Extreme file creation rates
–  Small block random I/O to a single file
–  Multiple data streams with large data blocks working in

full duplex mode
–  Stage-in of data to 1.000.000 cores

What are the challenges?

H. Newman: What is HPCS and How Does Impact I/O, May 19th, 2009

Metadata - Coordination

•  Defensive I/O required to overcome high failure rates of
Exascale systems

•  Checkpointing seems to put highest pressure on storage
subsystem
–  Nodes have to write back 64 Pbyte in minutes or even

seconds !!
–  64 Pbyte is also the size of the tape-archive at the

German Climate Research Center (DKRZ)
•  Can a file system help or is it a burden?

Checkpointing I

B. Mohr: System Software Stacks Survey

•  Systems like the checkpointing file system PLFS
indicate that parallel file systems do not work well
with checkpointing
–  Rearrange patterns (N-N, N-1 segmented, N-1 strided)

so that they fit the underlying file system
–  Works as layer above parallel file system

Checkpointing II

J. Bent, G. A. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez, M. Polte, M. Wingate: PLFS: a checkpoint
filesystem for parallel applications. SC 2009

•  SCR: The Scalable Checkpoint/Restart Library
–  Do not use a file system to checkpoint data
–  Assign peers to do the job in main memory

•  SCR is not perfect, but it starts with the correct idea:
–  Do not (miss-)use sophisticated file systems to do a

dumb man’s job
•  Thoughts beyond SCR / generalization:

–  You only have to assign free storage space to each
checkpoint

–  This only has to be done once at start-up and is the
task of the Resource Management System (RMS)

–  Can be combined with upper layers like plfs
–  Checkpointing is only about static co-ordination!

Checkpointing III

A. Moody: Overview of the Scalable Checkpoint / Restart (SCR) Library, 2009

“95% of I/O time was spent performing metadata
operations”1

•  Why the do we need file system metadata for
scientific applications?

Metadata I

1 P. Carns: HEC I/O Measurement and Understanding Panel Presentation. HEC
FSIO 2011 Workshop

•  File systems use metadata to
–  grant access permissions
–  store data layout
–  organize data in directories
– …

•  Directories seem to be the non-scalable data structure
•  It is also their fault that it is incredible difficult to create

millions of files per second!

•  Do we need such centralized structures for exascale
computing?

Metadata II

24.1.2013 | André Brinkmann

•  No, because …
– … we can organize data in objects, not files
– … objects can be assigned to disks based on pseudo-

randomized data distribution functions

Metadata III

A. Miranda, S. Effert, Y. Kang, E. Miller, A. Brinkmann, T. Cortes: Reliable and Randomized Data Distribution Strategies for
Large Scale Storage Systems, HiPC 2011

0 1 2 3 4

Where	 should	 I	 place	
the	 next	 object?	 Idea:	 Just	 take	 a	

random	 posi:on!	

•  No, because …
– … we can organize data in objects, not files
– … objects can be assigned to disks based on pseudo-

randomized data distribution functions
•  Location and distribution can be easily calculated

by each client / optimal adaptivity / directory
support

Metadata III

A. Miranda, S. Effert, Y. Kang, E. Miller, A. Brinkmann, T. Cortes: Reliable and Randomized Data Distribution Strategies for
Large Scale Storage Systems, HiPC 2011

•  DLFS aims to achieve one-access lookups using hash
based metadata placement

•  In Linux, file system functions are called from the Virtual File
System, which uses path components
–  Modifications of the VFS Layer necessary
–  If original request contains a relative path, then full path

needs to be reconstructed before calling file system
•  Hash buckets primarily store metadata while big file spaces

primarily store data of big files

Hash-Based Metadata Placement for Local File Systems

24.1.2013 | André Brinkmann

Hash-bucket Design

24.1.2013 | André Brinkmann

•  Permissions are typically resolved traversing each path-
component

•  Number of accesses linear in the number of traversed
directories è Contradicts DLFS design goals

•  DLFS Approach:
–  Use reachability sets, which describe access permissions
–  Every inode inherits reachability set of its parent directory

when it is created
–  Changes of reachability set of parent directory have to be

recursively forwarded to all children
•  Empirical Evaluation at BSC file systems shows that

reachability sets remain small

Retaining Access Permissions

24.1.2013 | André Brinkmann

Performance Results: SSD Cold Cache

24.1.2013 | André Brinkmann

Performance Results: SSD Hot Cache

24.1.2013 | André Brinkmann

•  Transfer idea of Direct-Lookup based file system using
randomized metadata placement in a distributed
environment

•  Prototype implementation integrated into the modular
GlusterFS distributed file system

•  How can we support renames / move operations?

Metadata-limits for Parallel File Systems

24.1.2013 | André Brinkmann

•  Transfer idea of Direct-Lookup based file system using
randomized metadata placement in a distributed
environment

•  Prototype implementation integrated into the modular
GlusterFS distributed file system

•  Do we have to support renames / move operations?

Metadata-limits for Parallel File Systems

24.1.2013 | André Brinkmann

•  Transfer idea of Direct-Lookup based file system using
randomized metadata placement in a distributed
environment

•  Prototype implementation integrated into the modular
GlusterFS distributed file system

•  Do we have to support renames / move operations?

•  Approach based on asynchronously mirrored versioned
database to mitigate direct lookup related problems

Metadata-limits for Parallel File Systems

24.1.2013 | André Brinkmann

How to overcome Metadata-limits?

24.1.2013 | André Brinkmann

•  Core question: How can application knowledge be used to
optimize the performance of file systems?

•  Here: Focus on cache management and data layout

•  Coordination between different nodes / applications can be
based on similar approaches

Application Hints

24.1.2013 | André Brinkmann

•  A file system cache offers:
–  Storing / retrieving of data
–  Read ahead / write behind
–  Eviction strategy (e.g. LRU)

•  Potential advices:
–  Storing of data: Do not store data that

is used only once
–  Read ahead: Adjust read ahead size
–  Eviction strategy: Don‘t evict useful

pages

Caching

24.1.2013 | André Brinkmann

Application

Cache

Filesystem

Implementation of Advices in Linux

24.1.2013 | André Brinkmann

Application Application Application

C-Standard Library

Virtual Filesystem (VFS)

Ext2/3 Reiserfs XFS

Userspace

Kernelspace

Linux Page Cache

•  POSIX_FADV_NORMAL: Sequential mode
•  POSIX_FADV_SEQUENTIAL: Seq. Mode + bigger

readahead
•  POSIX_FADV_RANDOM: Random mode

•  POSIX_FADV_WILLNEED: Prefetch file synchronously
•  POSIX_FADV_DONTNEED: Invalidate desired pages
•  POSIX_FADV_NOREUSE: Not implemented

Implementation of Advices in Linux

24.1.2013 | André Brinkmann

•  Synchronous prefetching can slow down applications
•  Sequential/random advices cannot be applied to files
•  Documentation does not match
•  Hints are not getting passed to the file system

•  Static / fixed interface
•  No feedback about the state of advices (accepted/rejected)
•  Features of modern file systems are not reflected

Implementation of Advices in Linux

24.1.2013 | André Brinkmann

•  Goal: Use application knowledge to enhance the (p)NFS
protocol

Advices in distributed settings

24.1.2013 | André Brinkmann

1.  Predictable behavior: The interface should be well
documented and the implementation should stick as closely
to the description as possible

2.  Extensibility: Vendor-defined advices for specific file
systems should be supported

3.  Notification of the file systems: Advices should be passed
through to the system

4.  Asynchronous behavior: The interface should include the
possibility to choose between asynchronous and
synchronous behavior

5.  Support for directives: The new interface should support
directives in addition to advices

Requirement Analysis

24.1.2013 | André Brinkmann

•  Implementation of an advice interface between VFS layer of
the Linux kernel and file systems
–  New method advise() has been added to VFS methods
–  Interface is called from the posix_fadvise() system call
–  Whenever system call is invoked, the advice will be

redirected to the file system (if implemented)
–  File system has choice to act upon the advice or to

delegate the handling to default implementation

Implementation of Advices

24.1.2013 | André Brinkmann

•  Standard Linux implementation of posix_fadvise() handles all
advices synchronously
–  Problems for advices that may take significant amount of time to

execute, e.g., POSIX_FADV_WILLNEED and
POSIX_FADV_DONTNEED

•  Compatible extension to current interface is proposed: Use a
logical OR operation in combination with the type of the advice

Asynchronous Behaviour

24.1.2013 | André Brinkmann

•  System call provides user-space applications with a
possibility to issue directives to the Linux kernel

•  Kernel dispatches the directive to the file system
•  New method fdirective added to the VFS interface
•  Set of possible directives includes:

–  DRCTV_PREFETCH!
–  DRCTV_ASYNC_PREFETCH!
–  DRCTV_SET_STRIPE_SIZE!
–  DRCTV_SET_STRIPE_COUNT!

•  Directives are more predictable and reliable than advices!

Interface for Directives

24.1.2013 | André Brinkmann

•  Integration of advice-support itself is not always possible in
legacy applications
–  Not every language supports posix_fadvise()
–  Closed-source applications cannot be modified

•  Process-specic advice is an advice which is not applied to
an open file, but to a complete process
–  If this process creates a new child process, the advices

are inherited
–  Parent program can be written in a language which

supports the desired advice interface
•  Management of active advices can be implemented by

adding a list of advices to process control block (PCB)

Process-Specific Advices

24.1.2013 | André Brinkmann

Process-Specific Advices

24.1.2013 | André Brinkmann

Transport of Advices to NFS Server

24.1.2013 | André Brinkmann

•  Next Steps (not implemented): How could we combine
advices and NFS delegations?

•  A delegation is a promise from the server to a client that it
will not be changed as long as the client holds the delegation

•  When should a delegation be handed out to a client?
–  At the first open()
–  At the second open()
–  At the n-th open()

•  These heuristics might work as a rule-of-thumb for generic
applications, but fail for most HPC applications

Integration of Advices and Delegations

24.1.2013 | André Brinkmann

•  Improvement: Use advices for the delegation hand-out

algorithm
–  Grant delegations to clients that have signaled that a file

is important
–  Revoke or give back delegations that belong to files

which will not be used again

Integration of Advices and Delegations

24.1.2013 | André Brinkmann

•  NFS 4.1 file delegations can be applied only to whole files.
Worst case scenario:

Integration of Advices and Delegations

24.1.2013 | André Brinkmann

Multiple clients accessing the same file in parrallel

•  Solution: Create a new type of delegations that work on
byte-ranges, using the semantics of byte-range locking. Use
advices to determine which byte-range should belong to
which client

•  NFS can handle asynchronous and synchronous I/O
operations. The behavior could be switched at runtime with
an appropriate advice, per-file and per-byte range

Integration of Advices and Delegations

24.1.2013 | André Brinkmann

•  Apply client-side strategies to server-side caching:

–  Prefetch data
–  Evict unnecessary data
–  Make use of direct I/O if the clients requests it

•  Use Metadata servers to control caches of data servers

Integration of Advices and Delegations

24.1.2013 | André Brinkmann

•  NFS uses close-to-open consistency, which is not strict
enough for some applications

•  Switch between different consistency models at run-time
•  New model: delegation-only consistency
•  Configurable per file

Integration of Advices and Delegations

24.1.2013 | André Brinkmann

•  Mismatch of access pattern and storage system can have
severe impact on performance!

•  Ideas to improve this situation:
–  Shift some responsibility to clients
–  Extend application’s hints on resource usage
–  Use reconfigurable, script based file layout descriptors

Access patterns and Data Layout

M. Grawinkel, T. Süß, G. Best, I. Popov, A. Brinkmann: Towards Dynamic
Scripted pNFS Layouts, PDSW 2013

•  NFSv4.1	 extension	 for	 parallel	 and	 direct	 data	 access	
•  Namespace	 and	 metadata	 opera:ons	 on	 MDS	
•  Direct	 data	 path	 to	 data	 servers	 (Block,	 Object,	 File	 layouts)	

NFSv4.1 / pNFS

pNFS Clients

Block /
Object /

File

Data Servers (DS)
Metadata server (MDS)

metadata
control

data

M. Grawinkel, T. Süß, G. Best, I. Popov, A. Brinkmann: Towards Dynamic
Scripted pNFS Layouts, PDSW 2013

•  File layout organized by MDS, client calls GETLAYOUT for a
file handle

•  Layout contains
–  Locations: Map of files, volumes, blocks of file
–  Parameters: iomode (R/RW), range, striping information,

access rights, ...
•  Current layouts define fixed algorithms to calculate target

resources for logical file‘s offsets

Data Access

A

B

C

Object Stores

Object Layout
A - 1
B - 2
C - 1

iomode = RW
range = 0 - 42000
block size = 64kB
algorithm = RAID5

Client

1 2
3 4

1 2
3

2 41
File

M. Grawinkel, T. Süß, G. Best, I. Popov, A. Brinkmann: Towards Dynamic
Scripted pNFS Layouts, PDSW 2013

•  Introduce scripting engine within pNFS stack
–  Layout uses script instead of fixed algorithm
–  Flexible placement strategies
–  RAID 0/1/4/5/6, Share, CRUSH, Clusterfile, ...
–  Flexible mapping to storage classes

•  Application can:
–  Provide own layout script
–  Reconfigure storage driver
–  Update layout script, parameters (LAYOUTCOMMIT)
–  Move storage resources between layouts

Scripted Layouts

M. Grawinkel, T. Süß, G. Best, I. Popov, A. Brinkmann: Towards Dynamic
Scripted pNFS Layouts, PDSW 2013

•  Lua
–  Very fast scripting language
–  Embeddable with bindings for C/C++
–  In-kernel scripting engine - lunatik-ng1

–  Stateful: Can hold functions, tables, variables
–  Callable from kernel code

•  Syscall for applications
–  Administrators / Applications can get/set (global)

variables and functions
•  Extendable by bindings

–  kernel crypto API
–  pNFS

Scripting Engine

1http://github.com/lunatik-ng/lunatik-ng

•  Calculate	 stripe	 unit	 index	 from	 file_layout:	 0.87μs	 /	 call	 (±0.03)	
•  Crea:ng	 a	 new	 file_layout	 object:	 2.18μs	 /	 call	 (±0.05)	

•  Calling	 kernel.crypto.sha1(20	 bytes):	 1.25μs	 /	 call	 (±0.02)	
•  Crea:ng	 new	 file_layout	 with	 sha1()	 calcula:on:	 3.25μs	 /	 call	

(±0.02)	

Performance Impact

function lua_create_filelayout (buf)
 rv = pnfs.new_filelayout()
 rv.stripe_type = "sparse"
 rv.stripe_unit = buf[1] + buf[3]
 rv.pattern_offset = buf[2] + buf[4]
 rv.first_stripe_index = buf[5] + buf[6]
 return rv
end!

M. Grawinkel, T. Süß, G. Best, I. Popov, A. Brinkmann: Towards Dynamic
Scripted pNFS Layouts, PDSW 2013

•  “Interpreting behavior and suggesting improvements is a
manual process that requires knowledge of the storage
system and I/O tuning expertise”1

•  Storage is too important not to think about it!
•  Changes might be easier (and much less expensive) than

to simply continue the old way!

Closing Remarks

1 P. Carns: HEC I/O Measurement and Understanding Panel Presentation. HEC
FSIO 2011 Workshop

Thank you very much for your attention!

