Bi-Objective Optimization for Scheduling
In Heterogeneous Computing Systems

Tony Maciejewski,
Kyle Tarplee, Ryan Friese, and Howard Jay Siegel
Department of Electrical and Computer Engineering

Colorado State University
Fort Collins, Colorado, USA

Outline

motivation and environment
bi-objective optimization
experimental setup and results
summary




Motivation: Energy-Awareness

e energy consumption on high performance
computing systems — very expensive

e in general there is a correlation between increasing
compute power and increasing energy consumption

e how can we maintain or increase performance
while using less energy?

energy-aware resource allocation =
Wﬂ!"/’

faster performance greater energy ~ billions spent
requirements In electricity costs
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Heterogeneous Parallel Computing System
e interconnected set of different types of I
machines with varied computational capabilities , Q |
o workload of tasks with different Y

computational requirements

e each task may perform differently
on each machine

furthermore: machine A can be better than
machine B for task 1 but not for task 2

e resource allocation:
assign (map) tasks to machines
to optimize some performance measure

NP-complete (cannot find optimal in reasonable time)

eX.: 5 machines and 30 tasks — 530 possible aSS|gnments

= 530 nanoseconds > 1,000 years!
use heuristics to find near optimal allocation




Environment

e static and offline environment
“ bag of tasks (batch)
“ every task in the workload is known a priori




Task and Machine Types

e task type — similar computational requirements
e machine type — similar performance capabilities

e Wwe use an Estimated Time to Compute (ETC) matrix

gives estimated time for executing
each task type on each machine type

e we use an Average Power Consumption (APC) matrix

gives average power consumed for executing
each task type on each machine type

e in real world: use historical data, experiments, benchmarks

e simulator uses a synthetic workload extrapolated
from real data found on openbenchmarking.org




Calculating Energy Consumption

e recall: Estimate Time to Compute (ETC) - the execution
time of a given task on a given machine

e recall: Average Power Consumption (APC) - the average
power consumption of a given task on a given machine

ETC values (seconds) APC values (watts)
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M1 | M2 M1 | M2
T1 | 8 | 10 T1 | 115 | 95
T2 | 9 | 12 T2 | 105 | 87
T3 [ 7 | @ T3 | 125 | @0

/

energy of T3 on M2 =11 seconds * 90 Watts = 990 Joules
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Environment Considered

e tasks are assumed to be independent

communication Is not required between the
tasks and there are no precedence constraints

e tasks are assumed to be serial
execute on a single machine
e dedicated environment
system executes a single bag of tasks
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Analyzing Resource Allocations

e resource allocation

exploit the heterogeneous nature of the
system to optimize some objective

e We are considering two objectives that typically conflict
makespan

» total amount of time it takes for all the tasks in the
batch to finish executing across all machines

energy consumption

m total amount of energy consumed to execute all
tasks within the batch

goal:

e evaluate trade-offs between
makespan and energy consumption
9




Bi-Objective Optimization for Energy-Aware Schedules

e Why is it important to study bi-objective optimization?
real world problems often have multiple objectives
objectives may conflict with each other

e Used to understand how different
resource allocations trade-off between:

system makespan
energy consumed

e allows system administrators to gain
Insights on how their systems operate
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Pareto Fronts

we have three

resource allocations

A, B,and C

makespan
(lower is better)

e Pareto fronts facilitate trade-off analysis
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A

solutions that
are dominated
by A

oB

solutions
that
dominate A

energy consumed
(lower is better)

e a Pareto front contains all the solutions which
are not “dominated” by any other solution

e B is dominated by A

A uses less energy while
having a lower makespan

A IS the better solution

e neither A nor C
dominate each other

A Is better for energy
C Is better for makespan
neither is better in both
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Bi-Objective Genetic Algorithm

e genetic algorithms are search heuristics used to find
approximate solutions to optimization problems

e solutions evolve over time by passing on useful traits

e given enough time, the solutions will converge
towards the set of optimal solutions

e preferably solutions should be diverse and evenly
distributed across the Pareto front
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Genetic Algorithm for Energy-Aware Scheduling

e We are adapting a genetic algorithm from
literature for use within our environment

“A Fast and Elitist Multiobjective Genetic Algorithm:
NSGA-Il,” Deb et al., IEEE Transactions
on Evolutionary Computation, 2002

e a solution in our environment is a complete resource
allocation, i.e., mapping of tasks to machines

e NSGA-II builds Pareto front with solutions that are diverse
and evenly distributed

e to use with our environment, we had to design:
chromosome structure
crossover operation
mutation operation
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Chromosome Structure

e a chromosome represents a complete resource allocation
for mapping each task to a machine (solution)

e the i entry of the chromosome is
the machine task i is assigned to

chromosome

task |
as {, L Lt ot i
machine A A C B A C B
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Crossover Operation

e select two random chromosomes
e find two random cuts within chromosomes
e swaps machines between these two cuts

parents Children

‘slBl Al ClA
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Mutation Operation

e select a random task
e replace current machine with a new random machine

17




NSGA-II: Fithess Function

e based on Pareto dominance
e sorts solutions into domination fronts

the points in a front are determined by the number of
solutions which dominate it

this allows densely populated regions to be penalized

O, OW! 4 —— Calculated dominated fronts




NSGA-II: Diversity and Elitism

e for each equally dominated front
calculate the crowding distance for each solution

= for each objective function F,, sort solutions of the
front in ascending order.

Fr(x[iy1))=Fr(*[i-1]) _ .
mcd(x) = . =1, ..,
( ) Zk Flznax(x)_F’Inm(x)
m set the crowding distance for the endpoints to infinity
In order to make sure they are preserved from

generation to generation

Pl -2

e select next population by picking solutions with
lower number of dominated solutions
» bigger crowding distance )

s
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Seeding Heuristics for Initial Population

e one chromosome is the Min Energy seed
Min Energy

= map task to machine that consumes the least energy
(energy = execution time * power consumption)

e one chromosome is the Min-Min completion time seed
Min-Min Completion Time

m two-stage heuristic assigning tasks to machines,
picking assignments with least completion time
(completion time = task start time + execution time)

e the rest of the chromosomes are created randomly
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Evolution of Pareto Front Through 100,000 iterations
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Final Pareto Front
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Analysis of Five Solutions from the Final Pareto Front

energy (kilojoules)

0
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Variations in Computing Environment

e to illustrate the versatility of our approach we modeled
and simulated three computing environments

e 36 machines

2 machine types (18 machines per type)

6 machine types (6 machines per type)

9 machine types (4 machines per type)
e 9 machine types are based on real machines

the 2 and 6 machine types are subsets of the 9 machine types
e 30 task types

1000 tasks

e Pareto fronts were generated using
a bi-objective genetic algorithm

e any algorithm that creates Pareto fronts could be used as well &
sy
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2 Machine Type Environment Analysis
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6 Machine Type Environment Analysis
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9 Machine Type Environment Analysis
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Recall Our Problem Statement

e static scheduling
single bag-of-tasks
task assigned to only one machine
machine runs one task at a time

e heterogeneous tasks and machines

e desire to reduce energy consumption
(operating cost) and makespan

e to aid decision makers

find high-quality schedules for
both energy and makespan

desire computationally efficient
algorithms to compute Pareto fronts

29




Preliminaries

e simplifying approx: tasks are divisible among machines
e T. — number of tasks of type |

e M; - number of machines of type |

e X; — number of tasks of type | assigned to machine type |

o ETC; — estimated time to compute for a
task of type 1 running on a machine of type |

e finishing time of machine type j (lower bound):
_ 1o
= —a x,.jETCI.j
Jo
e APC; — average power consumption for a
task of type 1 running on a machine of type |

* APCg; — idle power consumption for a machine of type |
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Objective Functions

e makespan (lower bound)
MS g = maxF
J
e energy consumed by the bag-of-tasks (lower bound)

E

LB

Xecution energy +idle energy

a x,APC,ETC,+Q & M,APC,(MS,, - F)
J i J
a
J

[
- Qo - Qo CD

x,ETC,(APC, - APC,)+Q M. APC,MS,

U]
J

e note that energy is a function of makespan when
we have non-zero idle power consumption

31




Linear Bi-Objective Optimization Problem

e E 0
inimi7aC IB =
minimize _
x,.j,MSLB 8 MSLB

o
subject to:

" a x, =T, task constraint
j
" F £MS . makespan constraint
J J LB

"X 20 assignments must be non-negative

32




Linear Programming Lower Bound Generation

* solve for x;€R to obtain a lower bound

generally infeasible solution to
the actual scheduling problem

a lower bound for each objective function (tight in practice)
* solve for x;€Z to obtain a tighter lower bound
requires branch and bound (or similar)
m typically this is computationally prohibitive

still making the assumption that tasks
are divisible among machines

Machine 1
Machine 2
Machine 3




Recovering a Feasible Allocation: Round Near

o find x;€Z that is "near” to x; while
maintaining the task assignment constraint
e for task type (each row in x) do
“let n = T;—2, floor(x;)
“ let f; = frac(x;) be the fractional part of x;
- Iet set K be the indices of the n largest f;
= cell(x;) If JeK else floor(x”)

-mm-m -ﬂ

X, = 3 X, = 3
-mmm
Xi= 3 Xx.= 4
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Recovering a Feasible Allocation: Local Assignment

e given integer number of tasks for each machine type

e assign tasks to actual machines within a
homogeneous machine type via a greedy algorithm

e for each machine type (column in x)
do longest processing time algorithm

while any tasks are unassigned

m assign longest task (irrevocably) to machine
that has the earliest finish time

= update machine finish time

35




Pareto Front Generation Procedure

e step 1 weighted sum scalarization
step 1.1 find the utopia (ideal) and nadir (non-ideal) points
step 1.2 sweep ( between O and 1

= at each step solve the linear programming problem
min%ELB + D;Sa MS, .
LB LB

step 1.3 remove duplicates
e |linear objective functions and convex constraints

convex, lower bounds on Pareto front
e step 2 round each solution
e step 3 remove duplicates
e step 4 locally assign each solution
e step 5 remove duplicates and dominated solutions

e full allocation is an upper bound on the true Pareto front
36




Simulation Results

e simulation setup
ETC matrix derived from actual systems
9 machine types, 36 machines, 4 machines per type
30 task types, 1100 tasks, 11-75 tasks per type
e compared to NSGA-II
basic seed
= Min energy, min-min completion time, and random
full allocation seed
= all solutions from upper bound Pareto front
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Pareto Fronts
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Pareto Fronts (Zoomed)
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Lower Bound to Full Allocation, No Idle Power
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Linear Programming Based Bounds
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LP-Based Possible Improvement

Relative Increase in Makespan
LP-Based Lower Bound to Upper Bound
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Comparison to Min Execution Time Lower Bound

e assign each task the min execution time machine,
divide by number of machines and number of tasks

2000+ + . m LP-based lower bound
<+ | m min execution time lower bound

—
o
o
o
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4
+

:"'-—‘—

100 400 700 1000 1300 1600 1900
tasks
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Effect of Idle Power
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Complexity

e let the ETC matrix be TxM
e [inear programming lower bound
average complexity (T+M)? (TM+1)
e rounding step: T(M log M)
e local assignment step:
number of tasks for machine type jis n;= 3 x;
worst cast complexity is M max; (n; log n; + n, log M)
e complexity of all steps is dominated by either
linear programming solver
local assignment

e complexity of linear programming solver is independent of
the number tasks and machines (depends only on the

number of task types and machine types)
45




Impact of Number of Tasks

run time [ms]
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Impact of Number of Machines

run time [ms]
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Impact of Number of Task Types

run time [ms]
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Contributions of Linear Programming Approach

e this linear programming approach to Pareto front
generation is efficient, accurate, and practical

tight lower bounds on the energy and makespan
quickly recovers near optimal feasible solutions
high quality bi-objective Pareto fronts

e bounds are tight when
a small percentage of tasks are divided

a large number of tasks assigned to each
machine type and individual machine

e asymptotic solution quality and runtime are very reasonal
)
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What if you only want one solution on the front?

e How does the linear programming approach compare to a
typical greedy scheduling algorithm?

e used COIN-OR linear programming solver (third party
library in C++) with lower bound, rounding, and local
assignment phases all implemented in C++

e compare to min-min completion time algorithm in C++

finds minimum completion time allocation across all
task types and machine types

store best machine assignment for each task type,
update only those that are assigned last iteration In
each pass
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Makespan Comparison
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Makespan Improvement Comparison

Relative Increase in Makespan
Min Min CT —» LP-Based Full Allocation
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Execution Time Comparison
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Summary — Main Points to Remember

e multiple objective problems are very common and extremely
Important in every day applications

today’s example: minimize makespan while minimizing
energy consumed

m Pareto fronts allow users to analyze the performance
trade-offs between makespan and energy consumed

= we use Pareto fronts to perform “what-if” analyses to
determine the effect of adding or removing machines

e hard problems can not be solved exactly — you have the
choice to approximate either the problem or the solution

today’s example: GA is an approximate solution to the
exact problem and LP is an exact solution to an
approximated problem
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Questions?
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