
Bi-Objective Optimization for Scheduling

in Heterogeneous Computing Systems

Tony Maciejewski,

Kyle Tarplee, Ryan Friese, and Howard Jay Siegel

Department of Electrical and Computer Engineering

Colorado State University

Fort Collins, Colorado, USA

● motivation and environment

● bi-objective optimization

● experimental setup and results

● summary

Outline

2

Motivation: Energy-Awareness

 energy consumption on high performance

computing systems – very expensive

 in general there is a correlation between increasing

compute power and increasing energy consumption

 how can we maintain or increase performance

while using less energy?

energy-aware resource allocation

faster performance greater energy

requirements

billions spent

in electricity costs

3

Heterogeneous Parallel Computing System

 interconnected set of different types of
machines with varied computational capabilities

 workload of tasks with different
computational requirements

 each task may perform differently
on each machine

furthermore: machine A can be better than
machine B for task 1 but not for task 2

 resource allocation:
assign (map) tasks to machines
to optimize some performance measure

NP-complete (cannot find optimal in reasonable time)

ex.: 5 machines and 30 tasks → 530 possible assignments

 530 nanoseconds > 1,000 years!
use heuristics to find near optimal allocation

Environment

 static and offline environment

bag of tasks (batch)

every task in the workload is known a priori

4

Task and Machine Types

 task type – similar computational requirements

 machine type – similar performance capabilities

 we use an Estimated Time to Compute (ETC) matrix

gives estimated time for executing

each task type on each machine type

 we use an Average Power Consumption (APC) matrix

gives average power consumed for executing

each task type on each machine type

 in real world: use historical data, experiments, benchmarks

 simulator uses a synthetic workload extrapolated

from real data found on openbenchmarking.org

5

Calculating Energy Consumption

 recall: Estimate Time to Compute (ETC) - the execution

time of a given task on a given machine

 recall: Average Power Consumption (APC) - the average

power consumption of a given task on a given machine

6

M1 M2

T1 8 10

T2 9 12

T3 7 11

M1 M2

T1 115 95

T2 105 87

T3 125 90

ETC values (seconds) APC values (watts)

energy of T3 on M2 = 11 seconds * 90 Watts = 990 Joules

Environment Considered

 tasks are assumed to be independent

communication is not required between the
tasks and there are no precedence constraints

 tasks are assumed to be serial

execute on a single machine

 dedicated environment

system executes a single bag of tasks

7

Outline

 motivation and environment

 bi-objective optimization

 experimental setup and results

 summary

8

Analyzing Resource Allocations

 resource allocation

exploit the heterogeneous nature of the

system to optimize some objective

 we are considering two objectives that typically conflict

makespan

 total amount of time it takes for all the tasks in the

batch to finish executing across all machines

energy consumption

 total amount of energy consumed to execute all

tasks within the batch

goal:

 evaluate trade-offs between

makespan and energy consumption

 9

Bi-Objective Optimization for Energy-Aware Schedules

 why is it important to study bi-objective optimization?

real world problems often have multiple objectives

objectives may conflict with each other

 used to understand how different

resource allocations trade-off between:

system makespan

energy consumed

 allows system administrators to gain

insights on how their systems operate

10

solutions that

are dominated

by A

Pareto Fronts

 a Pareto front contains all the solutions which

are not “dominated” by any other solution

 Pareto fronts facilitate trade-off analysis 11

energy consumed

(lower is better)

makespan

(lower is better)
A

B

C

solutions

that

dominate A

11

we have three

resource allocations

A, B, and C

 B is dominated by A

A uses less energy while
having a lower makespan

A is the better solution

 neither A nor C
dominate each other

A is better for energy

C is better for makespan

neither is better in both

Outline

 motivation and environment

 bi-objective optimization

 experimental setup and results: a genetic algorithm

approximate optimal solutions to the exact problem

 summary

12

Bi-Objective Genetic Algorithm

 genetic algorithms are search heuristics used to find

approximate solutions to optimization problems

 solutions evolve over time by passing on useful traits

 given enough time, the solutions will converge

towards the set of optimal solutions

 preferably solutions should be diverse and evenly

distributed across the Pareto front

13

13

Genetic Algorithm for Energy-Aware Scheduling

 we are adapting a genetic algorithm from

literature for use within our environment

“A Fast and Elitist Multiobjective Genetic Algorithm:

NSGA-II,” Deb et al., IEEE Transactions

on Evolutionary Computation, 2002

 a solution in our environment is a complete resource

allocation, i.e., mapping of tasks to machines

 NSGA-II builds Pareto front with solutions that are diverse

and evenly distributed

 to use with our environment, we had to design:

chromosome structure

crossover operation

mutation operation 14

14

Chromosome Structure

15

 a chromosome represents a complete resource allocation

for mapping each task to a machine (solution)

 the ith entry of the chromosome is

the machine task i is assigned to

A C B A C A B machine

task t1 t2 t3 t4 t5 t6 t7

chromosome

15

Crossover Operation

 select two random chromosomes

 find two random cuts within chromosomes

 swaps machines between these two cuts

16

A C B A C

B A C B A

A B

B A

A B C

B B A

C A A B

A C B A

parents children

16

Mutation Operation

 select a random task

 replace current machine with a new random machine

17

A C B A C A B

A C B A C C B

17

 based on Pareto dominance

 sorts solutions into domination fronts

the points in a front are determined by the number of

solutions which dominate it

this allows densely populated regions to be penalized

a

b

c
d

f
j

g

h
k

l
i

e

0

0

0 0
0

1

1

1

3

4

3

4

O1

O2 Calculated dominated fronts

NSGA-II: Fitness Function

NSGA-II: Diversity and Elitism

 for each equally dominated front

calculate the crowding distance for each solution

 for each objective function Fk, sort solutions of the

front in ascending order.

 𝑐𝑑 𝑥 =
𝐹𝑘 𝑥 𝑖+1 −𝐹𝑘 𝑥 𝑖−1

𝐹𝑘
𝑚𝑎𝑥(𝑥)−𝐹𝑘

𝑚𝑖𝑛(𝑥)𝑘 ; 𝑖 = 1,… , 𝑃𝑗 − 2

 set the crowding distance for the endpoints to infinity

in order to make sure they are preserved from

generation to generation

 select next population by picking solutions with

lower number of dominated solutions

 bigger crowding distance

19

Seeding Heuristics for Initial Population

 one chromosome is the Min Energy seed

Min Energy

 map task to machine that consumes the least energy

(energy = execution time * power consumption)

 one chromosome is the Min-Min completion time seed

Min-Min Completion Time

 two-stage heuristic assigning tasks to machines,

picking assignments with least completion time

(completion time = task start time + execution time)

 the rest of the chromosomes are created randomly

20

Evolution of Pareto Front Through 100,000 iterations

21

* each “marker” represents a

complete resource allocation

Final Pareto Front

22

m
a
k
e
s
p
a
n
 (

s
)

energy (kilojoules)

machines ordered

by completion time

machines ordered

by completion time

machines ordered

by energy

e
n
e
rg

y
 (

k
ilo

jo
u
le

s
)

e
n
e
rg

y
 (

k
ilo

jo
u
le

s
)

e
n
e
rg

y
 (

k
ilo

jo
u
le

s
)

e
n
e

rg
y
 (

k
ilo

jo
u

le
s
)

e
n
e
rg

y
 (

k
ilo

jo
u
le

s
)

c
o
m

p
le

ti
o
n
 t

im
e
 (

s
)

c
o

m
p

le
ti
o

n
 t

im
e

 (
s
)

c
o

m
p

le
ti
o

n
 t

im
e

 (
s
)

c
o
m

p
le

ti
o
n
 t

im
e
 (

s
)

c
o
m

p
le

ti
o
n
 t

im
e
 (

s
)

machines ordered

by completion time

machines ordered

by completion time

machines ordered

by completion time

machines ordered

by energy

machines ordered

by energy

machines ordered

by energy

machines ordered

by energy

Analysis of Five Solutions from the Final Pareto Front

23

Variations in Computing Environment

 to illustrate the versatility of our approach we modeled

and simulated three computing environments

 36 machines

2 machine types (18 machines per type)

6 machine types (6 machines per type)

9 machine types (4 machines per type)

 9 machine types are based on real machines

the 2 and 6 machine types are subsets of the 9 machine types

 30 task types

1000 tasks

 Pareto fronts were generated using

a bi-objective genetic algorithm

 any algorithm that creates Pareto fronts could be used as well

24

25

2 Machine Type Environment Analysis

26

6 Machine Type Environment Analysis

27

9 Machine Type Environment Analysis

Outline

 motivation and environment

 bi-objective optimization

 experimental setup and results: linear programming

optimal solutions to an approximate problem

 summary

28

Recall Our Problem Statement

 static scheduling

single bag-of-tasks

task assigned to only one machine

machine runs one task at a time

 heterogeneous tasks and machines

 desire to reduce energy consumption

(operating cost) and makespan

 to aid decision makers

find high-quality schedules for

both energy and makespan

desire computationally efficient

algorithms to compute Pareto fronts

29

Preliminaries

 simplifying approx: tasks are divisible among machines

 Ti − number of tasks of type i

 Mj − number of machines of type j

 xij − number of tasks of type i assigned to machine type j

 ETCij − estimated time to compute for a

task of type i running on a machine of type j

 finishing time of machine type j (lower bound):

 APCij − average power consumption for a

task of type i running on a machine of type j

 APCØj − idle power consumption for a machine of type j

30

F
j
=

1

M
j

x
ij
ETC

ij

i

å

Objective Functions

 makespan (lower bound)

 energy consumed by the bag-of-tasks (lower bound)

 note that energy is a function of makespan when

we have non-zero idle power consumption

31

E
LB

= execution energy + idle energy

= x
ij
APC

ij
ETC

ij

j

å
i

å + M
j
APC

Øj
(MS

LB
- F

j
)

j

å
i

å

= x
ij
ETC

ij
(APC

ij
- APC

Øj
) + M

j
APC

Øj
MS

LB

j

å
j

å
i

å

j
j

LB FMS max

Linear Bi-Objective Optimization Problem

minimize
x

ij
, MS

LB

E
LB

MS
LB

æ

è

ç
ç

ö

ø

÷
÷

subject to:

"
i
 x

ij
=T

i

j

å task constraint

"
j
 F

j
£ MS

LB
 makespan constraint

"
ij
 x

ij
³ 0 assignments must be non-negative

32

Linear Programming Lower Bound Generation

 solve for xij∈ℝ to obtain a lower bound

generally infeasible solution to

the actual scheduling problem

a lower bound for each objective function (tight in practice)

 solve for xij∈ℤ to obtain a tighter lower bound

requires branch and bound (or similar)

 typically this is computationally prohibitive

still making the assumption that tasks

are divisible among machines

7

Recovering a Feasible Allocation: Round Near

34

 find ẋij∈ℤ that is “near” to xij while

maintaining the task assignment constraint

 for task type (each row in x) do

let n = Ti−∑j floor(xij)

let fj = frac(xij) be the fractional part of xij

let set K be the indices of the n largest fj

ẋij = ceil(xij) if j∈K else floor(xij)

xi = 3 0 6 5 0

ẋi = 3 0 6 5 0

xi = 3 0 6.6 5.4 0

ẋi = 3 0 7 5 0

xi = 3 2.3 6.3 5.4 0

ẋi = 3 2 6 6 0

xi = 3.9 2.2 6.4 5.3 4.2

ẋi = 4 2 7 5 4

Recovering a Feasible Allocation: Local Assignment

35

 given integer number of tasks for each machine type

 assign tasks to actual machines within a

homogeneous machine type via a greedy algorithm

 for each machine type (column in ẋ)

do longest processing time algorithm

while any tasks are unassigned

 assign longest task (irrevocably) to machine

that has the earliest finish time

 update machine finish time

Pareto Front Generation Procedure

 step 1 weighted sum scalarization

step 1.1 find the utopia (ideal) and nadir (non-ideal) points

step 1.2 sweep  between 0 and 1

 at each step solve the linear programming problem

step 1.3 remove duplicates

 linear objective functions and convex constraints

convex, lower bounds on Pareto front

 step 2 round each solution

 step 3 remove duplicates

 step 4 locally assign each solution

 step 5 remove duplicates and dominated solutions

 full allocation is an upper bound on the true Pareto front
36

min
a

DE
LB

E
LB

+
1-a

DMS
LB

MS
LB

Simulation Results

 simulation setup

ETC matrix derived from actual systems

9 machine types, 36 machines, 4 machines per type

30 task types, 1100 tasks, 11-75 tasks per type

 compared to NSGA-II

basic seed

 min energy, min-min completion time, and random

full allocation seed

 all solutions from upper bound Pareto front

37

Pareto Fronts

38

Pareto Fronts (Zoomed)

39

Lower Bound to Full Allocation, No Idle Power

40

Linear Programming Based Bounds

41

LP-Based Possible Improvement

42

Comparison to Min Execution Time Lower Bound

 assign each task the min execution time machine,

divide by number of machines and number of tasks

43

Effect of Idle Power

44

Complexity

45

 let the ETC matrix be T×M

 linear programming lower bound

average complexity (T+M)2 (TM+1)

 rounding step: T(M log M)

 local assignment step:

number of tasks for machine type j is nj = ∑i xij

worst cast complexity is M maxj (nj log nj + nj log Mj)

 complexity of all steps is dominated by either

linear programming solver

local assignment

 complexity of linear programming solver is independent of

the number tasks and machines (depends only on the

number of task types and machine types)

Impact of Number of Tasks

46

number of task types, machines, and machine types held constant

Impact of Number of Machines

47

number of tasks, task types, and machine types held constant

Impact of Number of Task Types

48

number of tasks, machines, and machine types held constant

Contributions of Linear Programming Approach

 this linear programming approach to Pareto front

generation is efficient, accurate, and practical

tight lower bounds on the energy and makespan

quickly recovers near optimal feasible solutions

high quality bi-objective Pareto fronts

 bounds are tight when

a small percentage of tasks are divided

a large number of tasks assigned to each

machine type and individual machine

 asymptotic solution quality and runtime are very reasonable

49

What if you only want one solution on the front?

 How does the linear programming approach compare to a

typical greedy scheduling algorithm?

 used COIN-OR linear programming solver (third party

library in C++) with lower bound, rounding, and local

assignment phases all implemented in C++

 compare to min-min completion time algorithm in C++

finds minimum completion time allocation across all

task types and machine types

store best machine assignment for each task type,

update only those that are assigned last iteration in

each pass

50

Makespan Comparison

51

Makespan Improvement Comparison

52

Execution Time Comparison

53

Outline

 motivation and environment

 bi-objective optimization

 experimental setup and results

 summary

54

Summary – Main Points to Remember

 multiple objective problems are very common and extremely

important in every day applications

today’s example: minimize makespan while minimizing

energy consumed

 Pareto fronts allow users to analyze the performance

trade-offs between makespan and energy consumed

 we use Pareto fronts to perform “what-if” analyses to

determine the effect of adding or removing machines

 hard problems can not be solved exactly – you have the

choice to approximate either the problem or the solution

today’s example: GA is an approximate solution to the

exact problem and LP is an exact solution to an

approximated problem

55

Questions?

56

