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Motivation: Energy-Awareness 

 energy consumption on high performance  

computing systems – very expensive 

 in general there is a correlation between increasing 

compute power and increasing energy consumption 

 how can we maintain or increase performance  

while using less energy? 

energy-aware resource allocation 

 

faster performance greater energy  

requirements 

billions spent  

in electricity costs 
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Heterogeneous Parallel Computing System 

 interconnected set of different types of  
machines with varied computational capabilities 

 workload of tasks with different  
computational requirements 

 each task may perform differently  
on each machine 

furthermore: machine A can be better than  
machine B for task 1 but not for task 2 

 resource allocation:  
assign (map) tasks to machines  
to optimize some performance measure 

NP-complete (cannot find optimal in reasonable time) 

ex.: 5 machines and 30 tasks →  530 possible assignments 

 530 nanoseconds  > 1,000 years! 
use heuristics to find near optimal allocation 

 

 



Environment 

 static and offline environment 

bag of tasks (batch) 

every task in the workload is known a priori 
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Task and Machine Types 

 task type – similar computational requirements 

 machine type – similar performance capabilities 

 we use an Estimated Time to Compute (ETC) matrix  

gives estimated time for executing  

each task type on each machine type 

 we use an Average Power Consumption (APC) matrix  

gives average power consumed for executing  

each task type on each machine type 

 in real world: use historical data, experiments, benchmarks  

 simulator uses a synthetic workload extrapolated  

from real data found on openbenchmarking.org 
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Calculating Energy Consumption 

 recall: Estimate Time to Compute (ETC) - the execution 

time of a given task on a given machine 

 recall: Average Power Consumption (APC) - the average 

power consumption of a given task on a given machine 
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M1 M2 

T1 8 10 

T2 9 12 

T3 7 11 

M1 M2 

T1 115 95 

T2 105 87 

T3 125 90 

ETC values (seconds) APC values (watts) 

energy of T3 on M2 = 11 seconds * 90 Watts = 990 Joules 



Environment Considered 

 tasks are assumed to be independent 

communication is not required between the  
tasks and there are no precedence constraints 

 tasks are assumed to be serial 

execute on a single machine 

 dedicated environment 

system executes a single bag of tasks 
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 summary 
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Analyzing Resource Allocations 

 resource allocation 

exploit the heterogeneous nature of the  

system to optimize some objective 

 we are considering two objectives that typically conflict 

makespan 

 total amount of time it takes for all the tasks in the 

batch to finish executing across all machines 

energy consumption 

 total amount of energy consumed to execute all 

tasks within the batch 

goal: 

 evaluate trade-offs between  

makespan and energy consumption 
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Bi-Objective Optimization for Energy-Aware Schedules 

 why is it important to study bi-objective optimization? 

real world problems often have multiple objectives 

objectives may conflict with each other 

 used to understand how different  

resource allocations trade-off between: 

system makespan  

energy consumed 

 allows system administrators to gain  

insights on how their systems operate 
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solutions that 

are dominated 

by A 

Pareto Fronts 

 a Pareto front contains all the solutions which  

are not “dominated” by any other solution 

 Pareto fronts facilitate trade-off analysis 11 

energy consumed 

(lower is better) 

makespan 

(lower is better) 
A 

B 

C 

solutions 

that 

dominate A 
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we have three 

resource allocations 

A, B, and C 

 B is dominated by A 

A uses less energy while  
having a lower makespan 

A is the better solution 

 neither A nor C  
dominate each other  

A is better for energy 

C is better for makespan 

neither is better in both 

 



Outline 

 motivation and environment 

 bi-objective optimization 

 experimental setup and results: a genetic algorithm 

approximate optimal solutions to the exact problem 

 summary 
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Bi-Objective Genetic Algorithm 

 genetic algorithms are search heuristics used to find 

approximate solutions to optimization problems  

 solutions evolve over time by passing on useful traits 

 given enough time, the solutions will converge  

towards the set of optimal solutions 

 preferably solutions should be diverse and evenly 

distributed across the Pareto front 

13 
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Genetic Algorithm for Energy-Aware Scheduling 

 we are adapting a genetic algorithm from  

literature for use within our environment 

“A Fast and Elitist Multiobjective Genetic Algorithm: 

NSGA-II,” Deb et al., IEEE Transactions  

on Evolutionary Computation, 2002  

 a solution in our environment is a complete resource 

allocation, i.e., mapping of tasks to machines 

 NSGA-II builds Pareto front with solutions that are diverse 

and evenly distributed  

 to use with our environment, we had to design: 

chromosome structure 

crossover operation 

mutation operation 14 
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Chromosome Structure 
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 a chromosome represents a complete resource allocation 

for mapping each task to a machine (solution) 

 the ith entry of the chromosome is  

the machine task i is assigned to 

 

A C B A C A B machine 

task t1 t2 t3 t4 t5 t6 t7 

chromosome 
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Crossover Operation 

 select two random chromosomes 

 find two random cuts within chromosomes 

 swaps machines between these two cuts 
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A C B A C 

B A C B A 

A B 

B A 

A B C 

B B A 

C A A B 

A C B A 

parents children 
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Mutation Operation 

 select a random task 

 replace current machine with a new random machine 
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A C B A C A B 

A C B A C C B 
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 based on Pareto dominance 

 sorts solutions into domination fronts 

the points in a front are determined by the number of 

solutions which dominate it 

this allows densely populated regions to be penalized 
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O1 

O2 Calculated dominated fronts 

NSGA-II: Fitness Function 



NSGA-II: Diversity and Elitism 

 for each equally dominated front 

calculate the crowding distance for each solution 

 for each objective function Fk, sort solutions of the 

front in ascending order. 

 𝑐𝑑 𝑥 =   
𝐹𝑘 𝑥 𝑖+1 −𝐹𝑘 𝑥 𝑖−1

𝐹𝑘
𝑚𝑎𝑥(𝑥)−𝐹𝑘

𝑚𝑖𝑛(𝑥)𝑘 ; 𝑖 = 1,… , 𝑃𝑗 − 2 

 set the crowding distance for the endpoints to infinity 

in order to make sure they are preserved from 

generation to generation 

 

 select next population by picking solutions with 

lower number of dominated solutions 

 bigger crowding distance 
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Seeding Heuristics for Initial Population 

 one chromosome is the Min Energy seed 

Min Energy  

 map task to machine that consumes the least energy 

(energy = execution time * power consumption) 

 one chromosome is the Min-Min completion time seed 

Min-Min Completion Time  

 two-stage heuristic assigning tasks to machines,  

picking assignments with least completion time 

(completion time = task start time + execution time) 

 the rest of the chromosomes are created randomly 
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Evolution of Pareto Front Through 100,000 iterations 
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* each “marker” represents a  

complete resource allocation 



Final Pareto Front 
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Variations in Computing Environment 

 to illustrate the versatility of our approach we modeled  

and simulated three computing environments 

 36 machines  

2 machine types (18 machines per type) 

6 machine types (6 machines per type) 

9 machine types (4 machines per type) 

 9 machine types are based on real machines  

the 2 and 6 machine types are subsets of the 9 machine types 

 30 task types 

1000 tasks 

 Pareto fronts were generated using  

a bi-objective genetic algorithm 

 any algorithm that creates Pareto fronts could be used as well 

24 
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2 Machine Type Environment Analysis 
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6 Machine Type Environment Analysis 
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9 Machine Type Environment Analysis 



Outline 

 motivation and environment 

 bi-objective optimization 

 experimental setup and results: linear programming 

optimal solutions to an approximate problem 

 summary 
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Recall Our Problem Statement 

 static scheduling 

single bag-of-tasks 

task assigned to only one machine 

machine runs one task at a time 

 heterogeneous tasks and machines 

 desire to reduce energy consumption  

(operating cost) and makespan 

 to aid decision makers 

find high-quality schedules for  

both energy and makespan 

desire computationally efficient  

algorithms to compute Pareto fronts 
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Preliminaries 

 simplifying approx: tasks are divisible among machines 

 Ti − number of tasks of type i 

 Mj − number of machines of type j 

 xij − number of tasks of type i assigned to machine type j 

 ETCij − estimated time to compute for a  

task of type i running on a machine of type j 

 finishing time of machine type j (lower bound): 

 

 

 APCij − average power consumption for a  

task of type i running on a machine of type j 

 APCØj − idle power consumption for a machine of type j 
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Objective Functions 

 makespan (lower bound) 

 

 energy consumed by the bag-of-tasks (lower bound) 

 

 

 

 

 

 

 note that energy is a function of makespan when  

we have non-zero idle power consumption 
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Linear Bi-Objective Optimization Problem 

minimize
x
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Linear Programming Lower Bound Generation 

 solve for xij∈ℝ to obtain a lower bound 

generally infeasible solution to  

the actual scheduling problem 

a lower bound for each objective function (tight in practice) 

 solve for xij∈ℤ to obtain a tighter lower bound 

requires branch and bound (or similar) 

 typically this is computationally prohibitive 

still making the assumption that tasks  

are divisible among machines 
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Recovering a Feasible Allocation: Round Near 
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 find ẋij∈ℤ that is “near” to xij while  

maintaining the task assignment constraint 

 for task type (each row in x) do 

let n = Ti−∑j floor(xij) 

let fj = frac(xij) be the fractional part of xij 

let set K be the indices of the n largest fj 

ẋij = ceil(xij) if j∈K else floor(xij) 

xi = 3 0 6 5 0 

ẋi = 3 0 6 5 0 

xi = 3 0 6.6 5.4 0 

ẋi = 3 0 7 5 0 

xi = 3 2.3 6.3 5.4 0 

ẋi = 3 2 6 6 0 

xi = 3.9 2.2 6.4 5.3 4.2 

ẋi = 4 2 7 5 4 



Recovering a Feasible Allocation: Local Assignment 
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 given integer number of tasks for each machine type 

 assign tasks to actual machines within a  

homogeneous machine type via a greedy algorithm 

 for each machine type (column in ẋ)  

do longest processing time algorithm 

while any tasks are unassigned 

 assign longest task (irrevocably) to machine  

that has the earliest finish time 

 update machine finish time 



Pareto Front Generation Procedure 

 step 1 weighted sum scalarization 

step 1.1 find the utopia (ideal) and nadir (non-ideal) points 

step 1.2 sweep   between 0 and 1  

 at each step solve the linear programming problem 

 

 

step 1.3 remove duplicates 

 linear objective functions and convex constraints  

convex, lower bounds on Pareto front 

 step 2 round each solution 

 step 3 remove duplicates 

 step 4 locally assign each solution 

 step 5 remove duplicates and dominated solutions 

 full allocation is an upper bound on the true Pareto front 
36 
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Simulation Results 

 simulation setup 

ETC matrix derived from actual systems 

9 machine types, 36 machines, 4 machines per type 

30 task types, 1100 tasks, 11-75 tasks per type 

 compared to  NSGA-II 

basic seed 

 min energy, min-min completion time, and random 

full allocation seed 

 all solutions from upper bound Pareto front 
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Pareto Fronts 
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Pareto Fronts (Zoomed) 
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Lower Bound to Full Allocation, No Idle Power 
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Linear Programming Based Bounds 
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LP-Based Possible Improvement 
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Comparison to Min Execution Time Lower Bound 

 assign each task the min execution time machine, 

divide by number of machines and number of tasks 
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Effect of Idle Power 
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Complexity 
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 let the ETC matrix be T×M 

 linear programming lower bound 

average complexity (T+M)2 (TM+1) 

 rounding step: T(M log M) 

 local assignment step: 

number of tasks for machine type j is nj = ∑i xij 

worst cast complexity is M maxj (nj log nj + nj log Mj) 

 complexity of all steps is dominated by either  

linear programming solver 

local assignment 

 complexity of linear programming solver is independent of 

the number tasks and machines (depends only on the 

number of task types and machine types) 



Impact of Number of Tasks 
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number of task types, machines, and machine types held constant 



Impact of Number of Machines 
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number of tasks, task types, and machine types held constant 



Impact of Number of Task Types 
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number of tasks, machines, and machine types held constant 



Contributions of Linear Programming Approach 

 this linear programming approach to Pareto front  

generation is efficient, accurate, and practical 

tight lower bounds on the energy and makespan 

quickly recovers near optimal feasible solutions 

high quality bi-objective Pareto fronts 

 

 bounds are tight when 

a small percentage of tasks are divided 

a large number of tasks assigned to each  

machine type and individual machine 

 

 asymptotic solution quality and runtime are very reasonable 
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What if you only want one solution on the front? 

 How does the linear programming approach compare to a 

typical greedy scheduling algorithm? 

 

 used COIN-OR linear programming solver (third party 

library in C++) with lower bound, rounding, and local 

assignment phases all implemented in C++ 

 

 compare to min-min completion time algorithm in C++ 

finds minimum completion time allocation across all 

task types and machine types  

store best machine assignment for each task type, 

update only those that are assigned last iteration in 

each pass 
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Makespan Comparison 
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Makespan Improvement Comparison 
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Execution Time Comparison 
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 summary 
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Summary – Main Points to Remember 

 multiple objective problems are very common and extremely 

important in every day applications 

today’s example: minimize makespan while minimizing 

energy consumed 

 Pareto fronts allow users to analyze the performance  

trade-offs between makespan and energy consumed 

 we use Pareto fronts to perform “what-if” analyses to 

determine the effect of adding or removing machines 

 hard problems can not be solved exactly – you have the 

choice to approximate either the problem or the solution 

today’s example: GA is an approximate solution to the 

exact problem and LP is an exact solution to an 

approximated problem 
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Questions? 
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