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Motivation: Energy-Awareness 

 energy consumption on high performance  

computing systems – very expensive 

 in general there is a correlation between increasing 

compute power and increasing energy consumption 

 how can we maintain or increase performance  

while using less energy? 

energy-aware resource allocation 

 

faster performance greater energy  

requirements 

billions spent  

in electricity costs 
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Heterogeneous Parallel Computing System 

 interconnected set of different types of  
machines with varied computational capabilities 

 workload of tasks with different  
computational requirements 

 each task may perform differently  
on each machine 

furthermore: machine A can be better than  
machine B for task 1 but not for task 2 

 resource allocation:  
assign (map) tasks to machines  
to optimize some performance measure 

NP-complete (cannot find optimal in reasonable time) 

ex.: 5 machines and 30 tasks →  530 possible assignments 

 530 nanoseconds  > 1,000 years! 
use heuristics to find near optimal allocation 

 

 



Environment 

 static and offline environment 

bag of tasks (batch) 

every task in the workload is known a priori 
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Task and Machine Types 

 task type – similar computational requirements 

 machine type – similar performance capabilities 

 we use an Estimated Time to Compute (ETC) matrix  

gives estimated time for executing  

each task type on each machine type 

 we use an Average Power Consumption (APC) matrix  

gives average power consumed for executing  

each task type on each machine type 

 in real world: use historical data, experiments, benchmarks  

 simulator uses a synthetic workload extrapolated  

from real data found on openbenchmarking.org 
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Calculating Energy Consumption 

 recall: Estimate Time to Compute (ETC) - the execution 

time of a given task on a given machine 

 recall: Average Power Consumption (APC) - the average 

power consumption of a given task on a given machine 
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M1 M2 

T1 8 10 

T2 9 12 

T3 7 11 

M1 M2 

T1 115 95 

T2 105 87 

T3 125 90 

ETC values (seconds) APC values (watts) 

energy of T3 on M2 = 11 seconds * 90 Watts = 990 Joules 



Environment Considered 

 tasks are assumed to be independent 

communication is not required between the  
tasks and there are no precedence constraints 

 tasks are assumed to be serial 

execute on a single machine 

 dedicated environment 

system executes a single bag of tasks 
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Analyzing Resource Allocations 

 resource allocation 

exploit the heterogeneous nature of the  

system to optimize some objective 

 we are considering two objectives that typically conflict 

makespan 

 total amount of time it takes for all the tasks in the 

batch to finish executing across all machines 

energy consumption 

 total amount of energy consumed to execute all 

tasks within the batch 

goal: 

 evaluate trade-offs between  

makespan and energy consumption 
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Bi-Objective Optimization for Energy-Aware Schedules 

 why is it important to study bi-objective optimization? 

real world problems often have multiple objectives 

objectives may conflict with each other 

 used to understand how different  

resource allocations trade-off between: 

system makespan  

energy consumed 

 allows system administrators to gain  

insights on how their systems operate 
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solutions that 

are dominated 

by A 

Pareto Fronts 

 a Pareto front contains all the solutions which  

are not “dominated” by any other solution 

 Pareto fronts facilitate trade-off analysis 11 

energy consumed 

(lower is better) 

makespan 

(lower is better) 
A 

B 

C 

solutions 

that 

dominate A 
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we have three 

resource allocations 

A, B, and C 

 B is dominated by A 

A uses less energy while  
having a lower makespan 

A is the better solution 

 neither A nor C  
dominate each other  

A is better for energy 

C is better for makespan 

neither is better in both 
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Bi-Objective Genetic Algorithm 

 genetic algorithms are search heuristics used to find 

approximate solutions to optimization problems  

 solutions evolve over time by passing on useful traits 

 given enough time, the solutions will converge  

towards the set of optimal solutions 

 preferably solutions should be diverse and evenly 

distributed across the Pareto front 

13 
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Genetic Algorithm for Energy-Aware Scheduling 

 we are adapting a genetic algorithm from  

literature for use within our environment 

“A Fast and Elitist Multiobjective Genetic Algorithm: 

NSGA-II,” Deb et al., IEEE Transactions  

on Evolutionary Computation, 2002  

 a solution in our environment is a complete resource 

allocation, i.e., mapping of tasks to machines 

 NSGA-II builds Pareto front with solutions that are diverse 

and evenly distributed  

 to use with our environment, we had to design: 

chromosome structure 

crossover operation 

mutation operation 14 
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Chromosome Structure 

15 

 a chromosome represents a complete resource allocation 

for mapping each task to a machine (solution) 

 the ith entry of the chromosome is  

the machine task i is assigned to 

 

A C B A C A B machine 

task t1 t2 t3 t4 t5 t6 t7 

chromosome 
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Crossover Operation 

 select two random chromosomes 

 find two random cuts within chromosomes 

 swaps machines between these two cuts 
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A C B A C 

B A C B A 

A B 

B A 

A B C 

B B A 

C A A B 

A C B A 

parents children 
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Mutation Operation 

 select a random task 

 replace current machine with a new random machine 
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A C B A C A B 

A C B A C C B 
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 based on Pareto dominance 

 sorts solutions into domination fronts 

the points in a front are determined by the number of 

solutions which dominate it 

this allows densely populated regions to be penalized 
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O1 

O2 Calculated dominated fronts 

NSGA-II: Fitness Function 



NSGA-II: Diversity and Elitism 

 for each equally dominated front 

calculate the crowding distance for each solution 

 for each objective function Fk, sort solutions of the 

front in ascending order. 

 𝑐𝑑 𝑥 =   
𝐹𝑘 𝑥 𝑖+1 −𝐹𝑘 𝑥 𝑖−1

𝐹𝑘
𝑚𝑎𝑥(𝑥)−𝐹𝑘

𝑚𝑖𝑛(𝑥)𝑘 ; 𝑖 = 1,… , 𝑃𝑗 − 2 

 set the crowding distance for the endpoints to infinity 

in order to make sure they are preserved from 

generation to generation 

 

 select next population by picking solutions with 

lower number of dominated solutions 

 bigger crowding distance 
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Seeding Heuristics for Initial Population 

 one chromosome is the Min Energy seed 

Min Energy  

 map task to machine that consumes the least energy 

(energy = execution time * power consumption) 

 one chromosome is the Min-Min completion time seed 

Min-Min Completion Time  

 two-stage heuristic assigning tasks to machines,  

picking assignments with least completion time 

(completion time = task start time + execution time) 

 the rest of the chromosomes are created randomly 
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Evolution of Pareto Front Through 100,000 iterations 
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* each “marker” represents a  

complete resource allocation 



Final Pareto Front 
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Analysis of Five Solutions from the Final Pareto Front 
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Variations in Computing Environment 

 to illustrate the versatility of our approach we modeled  

and simulated three computing environments 

 36 machines  

2 machine types (18 machines per type) 

6 machine types (6 machines per type) 

9 machine types (4 machines per type) 

 9 machine types are based on real machines  

the 2 and 6 machine types are subsets of the 9 machine types 

 30 task types 

1000 tasks 

 Pareto fronts were generated using  

a bi-objective genetic algorithm 

 any algorithm that creates Pareto fronts could be used as well 
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2 Machine Type Environment Analysis 
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6 Machine Type Environment Analysis 
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9 Machine Type Environment Analysis 
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Recall Our Problem Statement 

 static scheduling 

single bag-of-tasks 

task assigned to only one machine 

machine runs one task at a time 

 heterogeneous tasks and machines 

 desire to reduce energy consumption  

(operating cost) and makespan 

 to aid decision makers 

find high-quality schedules for  

both energy and makespan 

desire computationally efficient  

algorithms to compute Pareto fronts 
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Preliminaries 

 simplifying approx: tasks are divisible among machines 

 Ti − number of tasks of type i 

 Mj − number of machines of type j 

 xij − number of tasks of type i assigned to machine type j 

 ETCij − estimated time to compute for a  

task of type i running on a machine of type j 

 finishing time of machine type j (lower bound): 

 

 

 APCij − average power consumption for a  

task of type i running on a machine of type j 

 APCØj − idle power consumption for a machine of type j 
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Objective Functions 

 makespan (lower bound) 

 

 energy consumed by the bag-of-tasks (lower bound) 

 

 

 

 

 

 

 note that energy is a function of makespan when  

we have non-zero idle power consumption 
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Linear Bi-Objective Optimization Problem 
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Linear Programming Lower Bound Generation 

 solve for xij∈ℝ to obtain a lower bound 

generally infeasible solution to  

the actual scheduling problem 

a lower bound for each objective function (tight in practice) 

 solve for xij∈ℤ to obtain a tighter lower bound 

requires branch and bound (or similar) 

 typically this is computationally prohibitive 

still making the assumption that tasks  

are divisible among machines 
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Recovering a Feasible Allocation: Round Near 

34 

 find ẋij∈ℤ that is “near” to xij while  

maintaining the task assignment constraint 

 for task type (each row in x) do 

let n = Ti−∑j floor(xij) 

let fj = frac(xij) be the fractional part of xij 

let set K be the indices of the n largest fj 

ẋij = ceil(xij) if j∈K else floor(xij) 

xi = 3 0 6 5 0 

ẋi = 3 0 6 5 0 

xi = 3 0 6.6 5.4 0 

ẋi = 3 0 7 5 0 

xi = 3 2.3 6.3 5.4 0 

ẋi = 3 2 6 6 0 

xi = 3.9 2.2 6.4 5.3 4.2 

ẋi = 4 2 7 5 4 



Recovering a Feasible Allocation: Local Assignment 

35 

 given integer number of tasks for each machine type 

 assign tasks to actual machines within a  

homogeneous machine type via a greedy algorithm 

 for each machine type (column in ẋ)  

do longest processing time algorithm 

while any tasks are unassigned 

 assign longest task (irrevocably) to machine  

that has the earliest finish time 

 update machine finish time 



Pareto Front Generation Procedure 

 step 1 weighted sum scalarization 

step 1.1 find the utopia (ideal) and nadir (non-ideal) points 

step 1.2 sweep   between 0 and 1  

 at each step solve the linear programming problem 

 

 

step 1.3 remove duplicates 

 linear objective functions and convex constraints  

convex, lower bounds on Pareto front 

 step 2 round each solution 

 step 3 remove duplicates 

 step 4 locally assign each solution 

 step 5 remove duplicates and dominated solutions 

 full allocation is an upper bound on the true Pareto front 
36 
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Simulation Results 

 simulation setup 

ETC matrix derived from actual systems 

9 machine types, 36 machines, 4 machines per type 

30 task types, 1100 tasks, 11-75 tasks per type 

 compared to  NSGA-II 

basic seed 

 min energy, min-min completion time, and random 

full allocation seed 

 all solutions from upper bound Pareto front 
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Pareto Fronts 
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Pareto Fronts (Zoomed) 
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Lower Bound to Full Allocation, No Idle Power 
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Linear Programming Based Bounds 
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LP-Based Possible Improvement 
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Comparison to Min Execution Time Lower Bound 

 assign each task the min execution time machine, 

divide by number of machines and number of tasks 
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Effect of Idle Power 
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Complexity 
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 let the ETC matrix be T×M 

 linear programming lower bound 

average complexity (T+M)2 (TM+1) 

 rounding step: T(M log M) 

 local assignment step: 

number of tasks for machine type j is nj = ∑i xij 

worst cast complexity is M maxj (nj log nj + nj log Mj) 

 complexity of all steps is dominated by either  

linear programming solver 

local assignment 

 complexity of linear programming solver is independent of 

the number tasks and machines (depends only on the 

number of task types and machine types) 



Impact of Number of Tasks 
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number of task types, machines, and machine types held constant 



Impact of Number of Machines 
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number of tasks, task types, and machine types held constant 



Impact of Number of Task Types 
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number of tasks, machines, and machine types held constant 



Contributions of Linear Programming Approach 

 this linear programming approach to Pareto front  

generation is efficient, accurate, and practical 

tight lower bounds on the energy and makespan 

quickly recovers near optimal feasible solutions 

high quality bi-objective Pareto fronts 

 

 bounds are tight when 

a small percentage of tasks are divided 

a large number of tasks assigned to each  

machine type and individual machine 

 

 asymptotic solution quality and runtime are very reasonable 
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What if you only want one solution on the front? 

 How does the linear programming approach compare to a 

typical greedy scheduling algorithm? 

 

 used COIN-OR linear programming solver (third party 

library in C++) with lower bound, rounding, and local 

assignment phases all implemented in C++ 

 

 compare to min-min completion time algorithm in C++ 

finds minimum completion time allocation across all 

task types and machine types  

store best machine assignment for each task type, 

update only those that are assigned last iteration in 

each pass 
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Makespan Comparison 
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Makespan Improvement Comparison 
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Execution Time Comparison 
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Summary – Main Points to Remember 

 multiple objective problems are very common and extremely 

important in every day applications 

today’s example: minimize makespan while minimizing 

energy consumed 

 Pareto fronts allow users to analyze the performance  

trade-offs between makespan and energy consumed 

 we use Pareto fronts to perform “what-if” analyses to 

determine the effect of adding or removing machines 

 hard problems can not be solved exactly – you have the 

choice to approximate either the problem or the solution 

today’s example: GA is an approximate solution to the 

exact problem and LP is an exact solution to an 

approximated problem 
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Questions? 
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