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Heterogeneous Parallel Computing System 

 interconnected set of different types of  

machines with varied computational capabilities 

workload of tasks with different  

computational requirements 

each task may perform differently  

on each machine 

furthermore: machine A can be better than  

machine B for task 1 but not for task 2 
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Resource Management  

assign tasks to machines  

optimize some performance measure  

possibly meet system constraint 

 in general, known NP-complete problem  

 cannot find optimal solution in reasonable time 

ex.: 5 machines and 30 tasks  

       →  530 possible assignments 

 if it only took 1 nanosecond to  

evaluate each assignment 

530 nanoseconds >  1,000 years! 

use heuristics to find  

near-optimal solutions 

 
 

 



Stochastic Model for Robustness 

 reference 

“Stochastic Robustness  

Metric and  its Use for Static  

Resource Allocations” 

by Shestak, Smith,  

Maciejewski, and Siegel 

Journal of Parallel and  

Distributed Computing  

August 2008, Vol. 68, No. 8,  

pp. 1157-1173 
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Modeling  Uncertain Task Execution Times 

execution of a given task on a given machine is data dependent 

 collect in a histogram a history samples of  

execution time of a given task on a given machine  

over different representative data sets 
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x-axis: execution time  

within 10 second  

interval bins 

y-axis: frequency =  

height of bar for  

a given interval 

 



Generating a PMF from a Histogram 

a probability mass function (PMF)  

can be generated using a histogram 

 convert the frequency to a probability to create PMF 

probability = frequency/total # samples 

example: probability of value from 10 to 19 = 6/200 = 3% 
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assume task 1 and task 2 only tasks assigned to machine A  

can find completion time PMF for machine A to do both tasks 

if tasks independent, it is  the “discrete convolution” 

(combination) of the execution time PMFs for the two tasks 

 

 

 

 

 

 

 
 

 

   

 

 

PMF for Completion Time of Machine 
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Example of Use of Stochastic Model in Allocation 

PMFs for machine completion time based on 

(1) PMFs for tasks already assigned to that machine, and 

(2) PMF for task i – which may be assigned to that machine 

8 

assign 

task i to 

machine A 

or B? 

mean → A 

sum of 

heights 

of pulses 

> deadline 

→  B 

if task i added to  

queue of  

machine B 

if task i added to queue 

of machine A 

mean 

completion time 
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Static Resource Allocation 

 determine allocation of set of tasks to machines off-line 

 know in advance which tasks are to be executed  
during a given interval of time (e.g., the next day) 

 “bag-of-tasks” 

 uses  

planning future work in production environment 

 e.g., resource manager plans when  
and where tasks will execute the next day 

predictive “what-if” studies 

 e.g., system administrator wants to quantify the  
benefit of adding more machines to the network 

post-mortem analysis of a dynamic heuristic 

 e.g., static allocation based on trace to compare 
performance to dynamic results 
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Dynamic Resource Allocation 

 tasks assigned to machines as they arrive (on-line) 

 tasks are from a known set (e.g., Digital Globe, NCAR, ORNL) 

 do not know in advance  

which tasks (from the known set) will need to be executed 

when tasks will arrive 

what data sets will be processed 

 set of machines in the computing system can change  

 can use feedback about status of machines 

 because done as tasks arrive, 
must execute faster than static heuristics 
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Outline 

● stochastic model for resource allocation 

● static resource allocation with energy minimization 

● dynamic resource allocation with energy constraint 

● conclusions 



Static Heuristics with Energy Minimization 

 reference 

“Stochastically Robust Static Resource Allocation for 

Energy Minimization with a Makespan Constraint in a 

Heterogeneous Computing Environment” 

by Apodaca, Young, Briceño, Smith, Pasricha, 

Maciejewski, Siegel, Bahirat, Khemka, Ramirez, and Zou 

9th ACS/IEEE International Conference on Computer 

Systems and Applications (AICCSA ‘11) 

December 2011 
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Architecture Model 

N heterogeneous  

compute nodes 

each compute  

node i has  

ni homogeneous  

multicore  

processors, 

1 ≤ ni  ≤ 4 

each multicore  

processor j in  

compute node i   

has ci  

homogeneous  

cores, 1 ≤ ci  ≤ 4 
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Problem Statement for Static Study 

known collection of independent tasks 

common deadline δ to complete all tasks 

uncertainty in execution time of given task on given core type 

due to data dependencies is represented as PMF 

energy used is concern because of costs  

goal: design robust resource management techniques that 

minimize expected energy used (performance measure) 

constraint on probability of finishing by deadline (robustness) 
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robust 
resource 
allocation 

nodes/cores 

performance measure 

constraint 
uncertainty 

heuristics 

tasks 



 term “robustness” usually used without explicit definition 

 

 The three robustness Questions 

1. what behavior makes the system robust? 

 finishing all tasks by the common deadline δ 

2. what uncertainty is the system robust against? 

 each task’s execution times may vary  

substantially based on input data 

3. how do we quantify robustness? 

 the probability that a given resource allocation  

will complete all tasks by the common deadline δ 

 

Robustness Definition 
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Energy Model – Hierarchy 

nodes shut off when all internal multicore processors are idle 

when one or more internal multicore processors are on, 

however, a node incurs power overhead (e.g., for disks, fans) 

multicore processors shut off when all internal cores are idle 

when one or more internal cores are on,  

however, a multicore processor incurs power  

overhead (e.g., for L3 cache) 

each core executes continuous sequence of tasks  

shut down core/processor/node ASAP 
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Energy Model – DVFS 

each core uses Dynamic Voltage and Frequency Scaling (DVFS) 

 five P-states (performance states)  

P0 highest power to P4 lowest power 

higher power consumption → faster execution 

typically – lower power P-state → less energy but more time 

 depends on ratio of overhead energy to CPU energy 

 type of task: memory-intensive, CPU-intensive 

execution time PMF for each task - each core type - each P-state 

 for each P-state for each core type, average scalar value  

for power consumption (energy per second) 

cores can switch states independently - negligible overhead 
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given a resource allocation (including P-state assignments) 

 let Dijk be the finishing time distribution PMF for all tasks 

assigned to core k in multicore processor j in compute node i 

 let p(Dijk, δ) be probability of finishing before δ given Dijk 

 sum of pulses < δ in PMF 

overall system robustness ψ 

probability of all tasks finishing by δ  

 

 

 

 

Formal Definition of Robustness for Static Study 
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Heuristics for Static Study 

 recall - goal: design robust resource management techniques 

minimize expected energy used (performance measure) 

constraint on probability of finishing by deadline (robustness) 

 the robustness constraint is R% 

this could be specified by the system administrator 

simulation study: we use robustness constraint to be 90% 

heuristics from the paper 

Min-Min 

Genetic Algorithm (GA) 

Tree Search 

Tabu 
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Genetic Algorithm (GA) – Chromosome 

chromosome structure – represents possible solution (allocation) 

number of genes (length) = number of tasks to be mapped 

tth entry is a four-tuple (i, j, k, π)  

denotes mapping task t to node i, 

multicore processor j, core k, in P-state π 

order of task execution within a core does not matter 
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Genetic Algorithm (GA) - Population 

 fixed size population of chromosomes – collection of solutions 

Genitor-style GA (steady-state GA) 

population ordered by fitness value as follows: 

chromosomes that meet robustness constraint in  

increasing order of expected energy (lower better) 

rest in decreasing order of robustness (higher better) 

 initial population generation 

five seeds based on Min-Min  

 greedy heuristic 

 run for a fixed P-state 

 done 5 times, 1 per P-state 

rest simple greedy heuristic  

that meets constraint 
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GA – Crossover Operation 

 randomly select a pair of “parents” for crossover  

with a probability pc 

 choose two points x & y such that x < y ≤ number of tasks 

 swap genes in range [x, y] between chromosomes 

 generates two offspring 
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offspring a offspring b 

  parent a parent b 



GA – Task-Assignment Mutation Operation 

each chromosome has probability ptm of being mutated 

each gene within selected chromosome  

has probability ptmg of being mutated 

 change assignment to random core, in random P-state 
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GA – P-State Mutation Operation 

each chromosome has probability ppm of being mutated 

each gene within selected chromosome  

has probability ppmg of being mutated 

change P-state of random task to random P-state 

 

24 

1 2 3 4 … 

2 1 2 3 … 

4 2 1 1 … 

2 2 3 1 … 

0 4 2 1 … 

task  

node 

processor 

core 

P-state 

0 

 



GA – Procedure Overview 

generate initial population (size denoted S) 

 repeat for a given number of iterations 

 do S times: choose two random chromosomes, and with 

probability pc produce two offspring via crossover 

 insert offspring in ordered population and trim to size S 

 for each chromosome in population, make offspring via 

task-assignment mutation with probability ptm 

 insert offspring in ordered population and trim to size S 

 for each chromosome in population, make offspring via 

P-state mutation with probability ppm 

 insert offspring in ordered population and trim to size S 

 return best chromosome encountered 
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4000 tasks 

 total of 25 compute nodes  

 total of 63 multicore processors  

(randomly varied 1 to 4 per node) 

 total of 178 cores (randomly varied 1 to 4 per processor) 

average overhead  ~50% of total energy (varied across nodes) 

90% probability constraint on finishing by deadline (robustness) 

GA parameters, determined by experimentation:  

pc = 0.005, ptm = 0.25, ptmg  = 0.001,  

ppm = 0.025, ppmg = 0.0005 

population size: 100 

50 different simulation trials were run for each heuristic 

different PMFs for task execution times 

Simulation Setup for Static Study  
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● box and whiskers: min, 1st quartile, median, 3rd quartile, max 

● Min-Min in P-states 3 and 4 did not meet robustness constraint 

● red: heuristic execution times 
 

Results Static Study – Expected Energy 
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Results Static Study – Robustness 

28 

GA lowest 

expected 

energy 

 

● robustness constraint (90%) shown as red dashed line 

● no need to have robustness over 90% 

 
 



Results Static Study – Discussion 

 recall goal: design robust resource management techniques that 

minimize expected energy used (performance measure) 

constraint on probability of finishing by deadline (robustness) 

 in general, lower performance P-states result in  

lower total expected energy (good) BUT lower robustness (bad) 

use combination 

GA  had lowest expected energy consumption  

and exactly met robustness constraint 

GA execution time per trial was 8 hours 

not a problem because done off-line for  

static production environment  
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Outline 

● stochastic model for resource allocation 

● static resource allocation with energy minimization 

● dynamic resource allocation with energy constraint 

● conclusions 



Dynamic Heuristics with Energy Minimization 

 reference 

“Deadline and Energy Constrained  

Dynamic Resource Allocation in a  

Heterogeneous Computing Environment” 

by Young, Apodaca, Briceño, Smith,  

Pasricha, Maciejewski, Siegel, Khemka,  

Bahirat, Ramirez, and Zou 

Journal of Supercomputing 

February 2013, Vol. 63, No. 2, 

pp. 326-347 
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Problem Statement for Dynamic Study 

multi-core architecture similar to static study 

cores always on 

 idle: P4 

 overhead power constant therefore not considered 

dynamic resource allocation 

goal: given a set of independent tasks with individual deadlines, 

design robust resource management techniques that 

complete as many tasks as possible by  

their individual deadlines (performance measure) 

subject to a constraint on total energy consumption 
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System Model for Dynamic Study 

dynamic, immediate-mode scheduler 

each task scheduled when it arrives 

collection of known task types 

 task type execution time per type of core represented by a PMF 

can be found from historical data, experiments 

 task arrivals modeled as two-phase Poisson process 

oversubscribed: tasks arrive at a faster rate (λfast) 

undersubscribed: tasks arrive at a slower rate (λslow) 
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Completion Time PMF for Currently Executing Task 
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assume currently executing task tc is assigned to core j 

 for task tc 

start with execution time PMF for that task on core j 

shift PMF to begin at core j ready time 

drop pulses less than current time t 

renormalize PMF 

 

time 
tc completion time PMF ready time 

time 

tc exec. time PMF 
0 

t 

0 exec. 



Completion Time PMF for a Task ti 

 to get task ti completion time PMF convolve  

resulting completion time PMF for currently executing task tc 

execution time PMFs for all tasks queued  

ahead of task ti on core j 

execution time PMF for task ti on core j 
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    core j queue 

core j 

executing 

tc ti t3  t2  t1 ··· ti tc t3  t2  t1 ··· 



Expected Number of On-time Completions 

 in resulting task ti completion time PMF 

sum pulses ≤ task ti individual deadline Di 

this is probability task ti will complete by its deadline 

 

 

 

 

 

 

 sum “probability task will complete by its deadline” 

over all tasks – currently executing or queued 

“expected number of on-time completions” 

this is the measure of robustness 
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Robustness Definition for Dynamic Study 

 

 The three robustness Questions 

1. what makes the system robust? 

 complete all tasks by their individual deadlines 

2. what uncertainties are the system robust against? 

 each task’s execution times may vary  

substantially based on input data 

3. how is robustness quantified? 

 number of “expected on-time completions”  
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Start-Time Cancellation 

 if start-time cancellation is used: 

ready-to-execute task is cancelled if it has a probability  

of completing by its deadline below a threshold  

 tunable parameter by experimentation 

 30% in this simulation study  

to calculate ti completion time PMF   

 omit any task queued ahead of task ti whose  

probability of meeting its deadline <  threshold  

 just prediction that it will be cancelled 

 

 

 

a task cannot be stopped once execution started 
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Heuristics for Dynamic Study 

 recall goal: set of independent tasks with individual deadlines 

complete as many tasks as possible by  

their individual deadlines (performance measure) 

subject to a constraint on total energy consumption 

assign each task to a node, multi-core processor, core, and  

P-state when it arrives (immediate mode) 

can use filters to add energy and/or robustness awareness 

may leave tasks unassigned or cancel a task  

heuristics from the paper 

Lightest Load 

Minimum Expected Completion Time 

Shortest Queue 

Random (for comparison) 
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Heuristic: Lightest Load 

attempt to balance energy and robustness 

by minimizing a “load” L 

 for a given task, consider its L value for each core and P-state 

Enex: expected energy consumed for the assignment  

product of the expected execution time  

and the power consumption 

p: probability of the task completing by its deadline  

    for the assignment  

L = (100 – p) × Enex 

smaller is better 

when p = 100 then Enex is effectively ignored  

 frequently occurs during end of undersubscribed periods 

assign incoming task to the core/P-state  

combination with the smallest L value 
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Energy Filter Based on Estimated Remaining 

 restrict potential core/P-state assignments to those  

≤ energy threshold Enthresh(t) at time step t 

discard task if no assignment meets threshold 

Enmul(t):  

three fixed values: for different levels of average queue depth 

found empirically using a subset of simulation trials 

 trem(t): time remaining in the 12−hour simulation trial 

Enrem(t): estimated energy remaining in 12-hour interval 

energy constraint minus 

(expected for queued plus “simulated actual” for completed) 

ctot: total number of cores in the system 

 tavg: average task execution time 

 
Enthresh(t) = Enmul(t) × Enrem(t)/[(trem(t)/tavg) × ctot] 

 
41 

# tasks/core 

total # tasks 

fair share 

per task 



Robustness Filter 

based on the task’s contribution to the total robustness measure 

 restrict potential assignments using a robustness  

threshold pthresh on the probability of the task  

completing by its individual deadline  

limits assignments to those that will increase the  

expected number of on-time completions (robustness)  

by at least the threshold 

threshold found empirically (simulation study: pthresh = 30%) 

discard task if no assignment meets threshold 
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Simulation Setup for Dynamic Study 

12-hour trial window, ~1,650 tasks, 100 task types 

 total of 25 compute nodes 

 total of 63 multicore processors  

(varied 1 to 4 per node) 

 total of 178 cores  

(varied 1 to 4 per processor) 

 variations among 50 simulation trials: 

task-type mix 

task arrival times 

task “simulated actual” execution times (sample PMFs) 

 individual deadline = arrival time + average execution time of its 

task type over all machines & P-states + average over all tasks 

tight deadlines 
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Results: Impact of Filters and Cancellation 

 randomly assign incoming task to a random core and P-state 

 “robustness filter” and “energy + robustness filter”  

and “start time cancellation” improve over random assignment 
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Random 



 Results: Random versus Heuristic 

 

heuristics better than Random 
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Random Lightest Load Lightest Load 



Results: Dynamic Study Discussion 
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heuristics performed comparably  

 filters together better than none 

 filters more impact than heuristic  

choice or cancellation 

 “robustness filter” little impact  

probability task meeting  

its individual deadline  

eliminating mappings that 

would not have been chosen 

 “energy filter” ensures energy left for tasks that arrive later 

start-time cancellation has limited impact 

heuristic already considers task execution times 

difficult for start-time cancellation to predict perfectly 

 

 

Lightest Load Lightest Load 



● stochastic model for resource allocation 

● static resource allocation with energy minimization 

● dynamic resource allocation with energy constraint 

● conclusions 
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Current and Future Research 

explore stochastic robustness allocation heuristics for different  

static and dynamic 

performance measure, constraints 

workload and platform characteristics 

use energy or power as performance metric or constraint 

consider that cost of power may vary during day 

 impact of DVFS for memory vs. compute intensive tasks 

study interaction of energy and time-dependent utility functions 

combine multiple uncertainties in single robustness measure 

combining PMFs/probabilities when not independent (ex. DAG) 

how to be robust with respect to inaccuracies in the PMFs 

model conflicts due to resource sharing in multi-core systems 

 thermal-aware resource management 

multi-objective optimization of energy/power and QoS 

 



The Three Robustness Questions 

1. what behavior of the system makes it robust? 

2. what uncertainties is the system robust against? 

3. how is robustness of the system quantified?  
 

presented a stochastic model for robust resource allocation 

used stochastic robustness in energy-aware resource allocation 

 listed areas for future research  

 for more information and references to other relevant research 

www.engr.colostate.edu/~hj/Robust_Papers.pdf 

Concluding Remarks 
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