
Energy-Aware Robust Resource Management

for Parallel Computing Systems

H. J. Siegel
Abell Endowed Chair

Distinguished Professor of

Electrical and Computer Engineering

and Professor of Computer Science

Colorado State University

Fort Collins, Colorado, USA

● stochastic model for resource allocation

● static resource allocation with energy minimization

● dynamic resource allocation with energy constraint

● conclusions

Outline

2

Heterogeneous Parallel Computing System

 interconnected set of different types of

machines with varied computational capabilities

workload of tasks with different

computational requirements

each task may perform differently

on each machine

furthermore: machine A can be better than

machine B for task 1 but not for task 2

3

Resource Management

assign tasks to machines

optimize some performance measure

possibly meet system constraint

 in general, known NP-complete problem

 cannot find optimal solution in reasonable time

ex.: 5 machines and 30 tasks

 → 530 possible assignments

 if it only took 1 nanosecond to

evaluate each assignment

530 nanoseconds > 1,000 years!

use heuristics to find

near-optimal solutions

Stochastic Model for Robustness

 reference

“Stochastic Robustness

Metric and its Use for Static

Resource Allocations”

by Shestak, Smith,

Maciejewski, and Siegel

Journal of Parallel and

Distributed Computing

August 2008, Vol. 68, No. 8,

pp. 1157-1173

4

fr
e
q
u
e
n
c
y

40

20

execution time
 10 20 30 40 50 60 70 80 90

Modeling Uncertain Task Execution Times

execution of a given task on a given machine is data dependent

 collect in a histogram a history samples of

execution time of a given task on a given machine

over different representative data sets

5

x-axis: execution time

within 10 second

interval bins

y-axis: frequency =

height of bar for

a given interval

Generating a PMF from a Histogram

a probability mass function (PMF)

can be generated using a histogram

 convert the frequency to a probability to create PMF

probability = frequency/total # samples

example: probability of value from 10 to 19 = 6/200 = 3%

6

•histogram •PMF

fr
e
q
u
e
n
c
y

40

20

execution time
 10 20 30 40 50 60 70 80 90

p
ro

b
a
b
ili

ty

execution time
 15 25 35 45 55 65 75 85

6 0.03

assume task 1 and task 2 only tasks assigned to machine A

can find completion time PMF for machine A to do both tasks

if tasks independent, it is the “discrete convolution”

(combination) of the execution time PMFs for the two tasks

PMF for Completion Time of Machine

7

=

PMF for t1 on

machine A

execution time τ1

2 3 4 5
0.1

0.2

0.3

0.4

p
ro

b
a
b
ili

ty

1

execution time τ2

PMF for t2 on

machine A

2 3 4 5
0.1

0.2

0.3

0.4

p
ro

b
a
b
ili

ty

1

PMF for completion

time of machine A

completion time τA

p
ro

b
a
b
ili

ty

2 4 6 8 10

0.1

0.2

Example of Use of Stochastic Model in Allocation

PMFs for machine completion time based on

(1) PMFs for tasks already assigned to that machine, and

(2) PMF for task i – which may be assigned to that machine

8

assign

task i to

machine A

or B?

mean → A

sum of

heights

of pulses

> deadline

→ B

if task i added to

queue of

machine B

if task i added to queue

of machine A

mean

completion time

machine A

completion time

p
ro

b
a

b
ili

ty

deadline of δ

probability of

exceeding δ

machine B

completion time

Static Resource Allocation

 determine allocation of set of tasks to machines off-line

 know in advance which tasks are to be executed
during a given interval of time (e.g., the next day)

 “bag-of-tasks”

 uses

planning future work in production environment

 e.g., resource manager plans when
and where tasks will execute the next day

predictive “what-if” studies

 e.g., system administrator wants to quantify the
benefit of adding more machines to the network

post-mortem analysis of a dynamic heuristic

 e.g., static allocation based on trace to compare
performance to dynamic results

9

Dynamic Resource Allocation

 tasks assigned to machines as they arrive (on-line)

 tasks are from a known set (e.g., Digital Globe, NCAR, ORNL)

 do not know in advance

which tasks (from the known set) will need to be executed

when tasks will arrive

what data sets will be processed

 set of machines in the computing system can change

 can use feedback about status of machines

 because done as tasks arrive,
must execute faster than static heuristics

10 10

user request

resource manager

heterogeneous

machines

11

Outline

● stochastic model for resource allocation

● static resource allocation with energy minimization

● dynamic resource allocation with energy constraint

● conclusions

Static Heuristics with Energy Minimization

 reference

“Stochastically Robust Static Resource Allocation for

Energy Minimization with a Makespan Constraint in a

Heterogeneous Computing Environment”

by Apodaca, Young, Briceño, Smith, Pasricha,

Maciejewski, Siegel, Bahirat, Khemka, Ramirez, and Zou

9th ACS/IEEE International Conference on Computer

Systems and Applications (AICCSA ‘11)

December 2011

12

Architecture Model

N heterogeneous

compute nodes

each compute

node i has

ni homogeneous

multicore

processors,

1 ≤ ni ≤ 4

each multicore

processor j in

compute node i

has ci

homogeneous

cores, 1 ≤ ci ≤ 4

13

Problem Statement for Static Study

known collection of independent tasks

common deadline δ to complete all tasks

uncertainty in execution time of given task on given core type

due to data dependencies is represented as PMF

energy used is concern because of costs

goal: design robust resource management techniques that

minimize expected energy used (performance measure)

constraint on probability of finishing by deadline (robustness)

14

robust
resource
allocation

nodes/cores

performance measure

constraint
uncertainty

heuristics

tasks

 term “robustness” usually used without explicit definition

 The three robustness Questions

1. what behavior makes the system robust?

 finishing all tasks by the common deadline δ

2. what uncertainty is the system robust against?

 each task’s execution times may vary

substantially based on input data

3. how do we quantify robustness?

 the probability that a given resource allocation

will complete all tasks by the common deadline δ

Robustness Definition

15

Energy Model – Hierarchy

nodes shut off when all internal multicore processors are idle

when one or more internal multicore processors are on,

however, a node incurs power overhead (e.g., for disks, fans)

multicore processors shut off when all internal cores are idle

when one or more internal cores are on,

however, a multicore processor incurs power

overhead (e.g., for L3 cache)

each core executes continuous sequence of tasks

shut down core/processor/node ASAP

16

Energy Model – DVFS

each core uses Dynamic Voltage and Frequency Scaling (DVFS)

 five P-states (performance states)

P0 highest power to P4 lowest power

higher power consumption → faster execution

typically – lower power P-state → less energy but more time

 depends on ratio of overhead energy to CPU energy

 type of task: memory-intensive, CPU-intensive

execution time PMF for each task - each core type - each P-state

 for each P-state for each core type, average scalar value

for power consumption (energy per second)

cores can switch states independently - negligible overhead

17

given a resource allocation (including P-state assignments)

 let Dijk be the finishing time distribution PMF for all tasks

assigned to core k in multicore processor j in compute node i

 let p(Dijk, δ) be probability of finishing before δ given Dijk

 sum of pulses < δ in PMF

overall system robustness ψ

probability of all tasks finishing by δ

Formal Definition of Robustness for Static Study

18

()δD=ψ ijk
Ni

i
nj

i
ck

,p
1 1 1

∏ ∏ ∏
≤≤ ≤≤ ≤≤

completion time

p
ro

b
a

b
ili

ty
 deadline of δ

Heuristics for Static Study

 recall - goal: design robust resource management techniques

minimize expected energy used (performance measure)

constraint on probability of finishing by deadline (robustness)

 the robustness constraint is R%

this could be specified by the system administrator

simulation study: we use robustness constraint to be 90%

heuristics from the paper

Min-Min

Genetic Algorithm (GA)

Tree Search

Tabu

19

Genetic Algorithm (GA) – Chromosome

chromosome structure – represents possible solution (allocation)

number of genes (length) = number of tasks to be mapped

tth entry is a four-tuple (i, j, k, π)

denotes mapping task t to node i,

multicore processor j, core k, in P-state π

order of task execution within a core does not matter

20

1 2 3 4 …

2 1 2 3 …

4 2 1 1 …

2 2 3 1 …

0 4 2 1 …

task

node

processor

core

P-state

Genetic Algorithm (GA) - Population

 fixed size population of chromosomes – collection of solutions

Genitor-style GA (steady-state GA)

population ordered by fitness value as follows:

chromosomes that meet robustness constraint in

increasing order of expected energy (lower better)

rest in decreasing order of robustness (higher better)

 initial population generation

five seeds based on Min-Min

 greedy heuristic

 run for a fixed P-state

 done 5 times, 1 per P-state

rest simple greedy heuristic

that meets constraint

21

GA – Crossover Operation

 randomly select a pair of “parents” for crossover

with a probability pc

 choose two points x & y such that x < y ≤ number of tasks

 swap genes in range [x, y] between chromosomes

 generates two offspring

22

offspring a offspring b

 parent a parent b

GA – Task-Assignment Mutation Operation

each chromosome has probability ptm of being mutated

each gene within selected chromosome

has probability ptmg of being mutated

 change assignment to random core, in random P-state

23

1 2 3 4 …

2 1 2 3 …

4 2 1 1 …

2 2 3 1 …

0 4 2 1 …

task

node

processor

core

P-state

4
3
1
0

GA – P-State Mutation Operation

each chromosome has probability ppm of being mutated

each gene within selected chromosome

has probability ppmg of being mutated

change P-state of random task to random P-state

24

1 2 3 4 …

2 1 2 3 …

4 2 1 1 …

2 2 3 1 …

0 4 2 1 …

task

node

processor

core

P-state

0

GA – Procedure Overview

generate initial population (size denoted S)

 repeat for a given number of iterations

 do S times: choose two random chromosomes, and with

probability pc produce two offspring via crossover

 insert offspring in ordered population and trim to size S

 for each chromosome in population, make offspring via

task-assignment mutation with probability ptm

 insert offspring in ordered population and trim to size S

 for each chromosome in population, make offspring via

P-state mutation with probability ppm

 insert offspring in ordered population and trim to size S

 return best chromosome encountered

25

4000 tasks

 total of 25 compute nodes

 total of 63 multicore processors

(randomly varied 1 to 4 per node)

 total of 178 cores (randomly varied 1 to 4 per processor)

average overhead ~50% of total energy (varied across nodes)

90% probability constraint on finishing by deadline (robustness)

GA parameters, determined by experimentation:

pc = 0.005, ptm = 0.25, ptmg = 0.001,

ppm = 0.025, ppmg = 0.0005

population size: 100

50 different simulation trials were run for each heuristic

different PMFs for task execution times

Simulation Setup for Static Study

26

● box and whiskers: min, 1st quartile, median, 3rd quartile, max

● Min-Min in P-states 3 and 4 did not meet robustness constraint

● red: heuristic execution times

Results Static Study – Expected Energy

27

8hrs 23hrs 12hrs
2min

GA lowest

Results Static Study – Robustness

28

GA lowest

expected

energy

● robustness constraint (90%) shown as red dashed line

● no need to have robustness over 90%

Results Static Study – Discussion

 recall goal: design robust resource management techniques that

minimize expected energy used (performance measure)

constraint on probability of finishing by deadline (robustness)

 in general, lower performance P-states result in

lower total expected energy (good) BUT lower robustness (bad)

use combination

GA had lowest expected energy consumption

and exactly met robustness constraint

GA execution time per trial was 8 hours

not a problem because done off-line for

static production environment

29

30

Outline

● stochastic model for resource allocation

● static resource allocation with energy minimization

● dynamic resource allocation with energy constraint

● conclusions

Dynamic Heuristics with Energy Minimization

 reference

“Deadline and Energy Constrained

Dynamic Resource Allocation in a

Heterogeneous Computing Environment”

by Young, Apodaca, Briceño, Smith,

Pasricha, Maciejewski, Siegel, Khemka,

Bahirat, Ramirez, and Zou

Journal of Supercomputing

February 2013, Vol. 63, No. 2,

pp. 326-347

31

Problem Statement for Dynamic Study

multi-core architecture similar to static study

cores always on

 idle: P4

 overhead power constant therefore not considered

dynamic resource allocation

goal: given a set of independent tasks with individual deadlines,

design robust resource management techniques that

complete as many tasks as possible by

their individual deadlines (performance measure)

subject to a constraint on total energy consumption

32

System Model for Dynamic Study

dynamic, immediate-mode scheduler

each task scheduled when it arrives

collection of known task types

 task type execution time per type of core represented by a PMF

can be found from historical data, experiments

 task arrivals modeled as two-phase Poisson process

oversubscribed: tasks arrive at a faster rate (λfast)

undersubscribed: tasks arrive at a slower rate (λslow)

33

Completion Time PMF for Currently Executing Task

34

assume currently executing task tc is assigned to core j

 for task tc

start with execution time PMF for that task on core j

shift PMF to begin at core j ready time

drop pulses less than current time t

renormalize PMF

time
tc completion time PMF ready time

time

tc exec. time PMF
0

t

0 exec.

Completion Time PMF for a Task ti

 to get task ti completion time PMF convolve

resulting completion time PMF for currently executing task tc

execution time PMFs for all tasks queued

ahead of task ti on core j

execution time PMF for task ti on core j

35

 core j queue

core j

executing

tc ti t3 t2 t1 ··· ti tc t3 t2 t1 ···

Expected Number of On-time Completions

 in resulting task ti completion time PMF

sum pulses ≤ task ti individual deadline Di

this is probability task ti will complete by its deadline

 sum “probability task will complete by its deadline”

over all tasks – currently executing or queued

“expected number of on-time completions”

this is the measure of robustness

36

p
ro

b
a

b
ili

ty

time

Di

ti completion time PMF

Robustness Definition for Dynamic Study

 The three robustness Questions

1. what makes the system robust?

 complete all tasks by their individual deadlines

2. what uncertainties are the system robust against?

 each task’s execution times may vary

substantially based on input data

3. how is robustness quantified?

 number of “expected on-time completions”

37

Start-Time Cancellation

 if start-time cancellation is used:

ready-to-execute task is cancelled if it has a probability

of completing by its deadline below a threshold

 tunable parameter by experimentation

 30% in this simulation study

to calculate ti completion time PMF

 omit any task queued ahead of task ti whose

probability of meeting its deadline < threshold

 just prediction that it will be cancelled

a task cannot be stopped once execution started

38

tc ti ··· t3 t2 t1

 core j queue

core j

executing

Heuristics for Dynamic Study

 recall goal: set of independent tasks with individual deadlines

complete as many tasks as possible by

their individual deadlines (performance measure)

subject to a constraint on total energy consumption

assign each task to a node, multi-core processor, core, and

P-state when it arrives (immediate mode)

can use filters to add energy and/or robustness awareness

may leave tasks unassigned or cancel a task

heuristics from the paper

Lightest Load

Minimum Expected Completion Time

Shortest Queue

Random (for comparison)

39

Heuristic: Lightest Load

attempt to balance energy and robustness

by minimizing a “load” L

 for a given task, consider its L value for each core and P-state

Enex: expected energy consumed for the assignment

product of the expected execution time

and the power consumption

p: probability of the task completing by its deadline

 for the assignment

L = (100 – p) × Enex

smaller is better

when p = 100 then Enex is effectively ignored

 frequently occurs during end of undersubscribed periods

assign incoming task to the core/P-state

combination with the smallest L value

40

Energy Filter Based on Estimated Remaining

 restrict potential core/P-state assignments to those

≤ energy threshold Enthresh(t) at time step t

discard task if no assignment meets threshold

Enmul(t):

three fixed values: for different levels of average queue depth

found empirically using a subset of simulation trials

 trem(t): time remaining in the 12−hour simulation trial

Enrem(t): estimated energy remaining in 12-hour interval

energy constraint minus

(expected for queued plus “simulated actual” for completed)

ctot: total number of cores in the system

 tavg: average task execution time

Enthresh(t) = Enmul(t) × Enrem(t)/[(trem(t)/tavg) × ctot]

41

tasks/core

total # tasks

fair share

per task

Robustness Filter

based on the task’s contribution to the total robustness measure

 restrict potential assignments using a robustness

threshold pthresh on the probability of the task

completing by its individual deadline

limits assignments to those that will increase the

expected number of on-time completions (robustness)

by at least the threshold

threshold found empirically (simulation study: pthresh = 30%)

discard task if no assignment meets threshold

42

p
ro

b
a

b
ili

ty

time

Di

ti completion time PMF

Simulation Setup for Dynamic Study

12-hour trial window, ~1,650 tasks, 100 task types

 total of 25 compute nodes

 total of 63 multicore processors

(varied 1 to 4 per node)

 total of 178 cores

(varied 1 to 4 per processor)

 variations among 50 simulation trials:

task-type mix

task arrival times

task “simulated actual” execution times (sample PMFs)

 individual deadline = arrival time + average execution time of its

task type over all machines & P-states + average over all tasks

tight deadlines

43

Results: Impact of Filters and Cancellation

 randomly assign incoming task to a random core and P-state

 “robustness filter” and “energy + robustness filter”

and “start time cancellation” improve over random assignment

44

Random

 Results: Random versus Heuristic

heuristics better than Random

45

Random Lightest Load Lightest Load

Results: Dynamic Study Discussion

46

heuristics performed comparably

 filters together better than none

 filters more impact than heuristic

choice or cancellation

 “robustness filter” little impact

probability task meeting

its individual deadline

eliminating mappings that

would not have been chosen

 “energy filter” ensures energy left for tasks that arrive later

start-time cancellation has limited impact

heuristic already considers task execution times

difficult for start-time cancellation to predict perfectly

Lightest Load Lightest Load

● stochastic model for resource allocation

● static resource allocation with energy minimization

● dynamic resource allocation with energy constraint

● conclusions

47

Outline

48

Current and Future Research

explore stochastic robustness allocation heuristics for different

static and dynamic

performance measure, constraints

workload and platform characteristics

use energy or power as performance metric or constraint

consider that cost of power may vary during day

 impact of DVFS for memory vs. compute intensive tasks

study interaction of energy and time-dependent utility functions

combine multiple uncertainties in single robustness measure

combining PMFs/probabilities when not independent (ex. DAG)

how to be robust with respect to inaccuracies in the PMFs

model conflicts due to resource sharing in multi-core systems

 thermal-aware resource management

multi-objective optimization of energy/power and QoS

The Three Robustness Questions

1. what behavior of the system makes it robust?

2. what uncertainties is the system robust against?

3. how is robustness of the system quantified?

presented a stochastic model for robust resource allocation

used stochastic robustness in energy-aware resource allocation

 listed areas for future research

 for more information and references to other relevant research

www.engr.colostate.edu/~hj/Robust_Papers.pdf

Concluding Remarks

49

