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Heterogeneous Parallel Computing System 

 interconnected set of different types of  

machines with varied computational capabilities 

workload of tasks with different  

computational requirements 

each task may perform differently  

on each machine 

furthermore: machine A can be better than  

machine B for task 1 but not for task 2 
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Resource Management  

assign tasks to machines  

optimize some performance measure  

possibly meet system constraint 

 in general, known NP-complete problem  

 cannot find optimal solution in reasonable time 

ex.: 5 machines and 30 tasks  

       →  530 possible assignments 

 if it only took 1 nanosecond to  

evaluate each assignment 

530 nanoseconds >  1,000 years! 

use heuristics to find  

near-optimal solutions 

 
 

 



Stochastic Model for Robustness 

 reference 

“Stochastic Robustness  

Metric and  its Use for Static  

Resource Allocations” 

by Shestak, Smith,  

Maciejewski, and Siegel 

Journal of Parallel and  

Distributed Computing  

August 2008, Vol. 68, No. 8,  

pp. 1157-1173 
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Modeling  Uncertain Task Execution Times 

execution of a given task on a given machine is data dependent 

 collect in a histogram a history samples of  

execution time of a given task on a given machine  

over different representative data sets 
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x-axis: execution time  

within 10 second  

interval bins 

y-axis: frequency =  

height of bar for  

a given interval 

 



Generating a PMF from a Histogram 

a probability mass function (PMF)  

can be generated using a histogram 

 convert the frequency to a probability to create PMF 

probability = frequency/total # samples 

example: probability of value from 10 to 19 = 6/200 = 3% 
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•histogram •PMF 
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assume task 1 and task 2 only tasks assigned to machine A  

can find completion time PMF for machine A to do both tasks 

if tasks independent, it is  the “discrete convolution” 

(combination) of the execution time PMFs for the two tasks 
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PMF for Completion Time of Machine 

7 

= 

PMF for t1 on  

machine A  

execution time τ1 

2 3 4 5 
0.1 

0.2 

0.3 

0.4 

p
ro

b
a
b
ili

ty
 

1 

execution time τ2 

PMF for t2 on  

machine A 

2 3 4 5 
0.1 

0.2 

0.3 

0.4 

p
ro

b
a
b
ili

ty
 

1 

PMF for completion 

time of machine A 

completion time τA 

p
ro

b
a
b
ili

ty
 

2 4 6 8 10 

0.1 

0.2 



Example of Use of Stochastic Model in Allocation 

PMFs for machine completion time based on 

(1) PMFs for tasks already assigned to that machine, and 

(2) PMF for task i – which may be assigned to that machine 
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Static Resource Allocation 

 determine allocation of set of tasks to machines off-line 

 know in advance which tasks are to be executed  
during a given interval of time (e.g., the next day) 

 “bag-of-tasks” 

 uses  

planning future work in production environment 

 e.g., resource manager plans when  
and where tasks will execute the next day 

predictive “what-if” studies 

 e.g., system administrator wants to quantify the  
benefit of adding more machines to the network 

post-mortem analysis of a dynamic heuristic 

 e.g., static allocation based on trace to compare 
performance to dynamic results 
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Dynamic Resource Allocation 

 tasks assigned to machines as they arrive (on-line) 

 tasks are from a known set (e.g., Digital Globe, NCAR, ORNL) 

 do not know in advance  

which tasks (from the known set) will need to be executed 

when tasks will arrive 

what data sets will be processed 

 set of machines in the computing system can change  

 can use feedback about status of machines 

 because done as tasks arrive, 
must execute faster than static heuristics 
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Outline 

● stochastic model for resource allocation 

● static resource allocation with energy minimization 

● dynamic resource allocation with energy constraint 

● conclusions 



Static Heuristics with Energy Minimization 

 reference 

“Stochastically Robust Static Resource Allocation for 

Energy Minimization with a Makespan Constraint in a 

Heterogeneous Computing Environment” 

by Apodaca, Young, Briceño, Smith, Pasricha, 

Maciejewski, Siegel, Bahirat, Khemka, Ramirez, and Zou 

9th ACS/IEEE International Conference on Computer 

Systems and Applications (AICCSA ‘11) 

December 2011 
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Architecture Model 

N heterogeneous  

compute nodes 

each compute  

node i has  

ni homogeneous  

multicore  

processors, 

1 ≤ ni  ≤ 4 

each multicore  

processor j in  

compute node i   

has ci  

homogeneous  

cores, 1 ≤ ci  ≤ 4 
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Problem Statement for Static Study 

known collection of independent tasks 

common deadline δ to complete all tasks 

uncertainty in execution time of given task on given core type 

due to data dependencies is represented as PMF 

energy used is concern because of costs  

goal: design robust resource management techniques that 

minimize expected energy used (performance measure) 

constraint on probability of finishing by deadline (robustness) 
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 term “robustness” usually used without explicit definition 

 

 The three robustness Questions 

1. what behavior makes the system robust? 

 finishing all tasks by the common deadline δ 

2. what uncertainty is the system robust against? 

 each task’s execution times may vary  

substantially based on input data 

3. how do we quantify robustness? 

 the probability that a given resource allocation  

will complete all tasks by the common deadline δ 

 

Robustness Definition 
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Energy Model – Hierarchy 

nodes shut off when all internal multicore processors are idle 

when one or more internal multicore processors are on, 

however, a node incurs power overhead (e.g., for disks, fans) 

multicore processors shut off when all internal cores are idle 

when one or more internal cores are on,  

however, a multicore processor incurs power  

overhead (e.g., for L3 cache) 

each core executes continuous sequence of tasks  

shut down core/processor/node ASAP 
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Energy Model – DVFS 

each core uses Dynamic Voltage and Frequency Scaling (DVFS) 

 five P-states (performance states)  

P0 highest power to P4 lowest power 

higher power consumption → faster execution 

typically – lower power P-state → less energy but more time 

 depends on ratio of overhead energy to CPU energy 

 type of task: memory-intensive, CPU-intensive 

execution time PMF for each task - each core type - each P-state 

 for each P-state for each core type, average scalar value  

for power consumption (energy per second) 

cores can switch states independently - negligible overhead 
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given a resource allocation (including P-state assignments) 

 let Dijk be the finishing time distribution PMF for all tasks 

assigned to core k in multicore processor j in compute node i 

 let p(Dijk, δ) be probability of finishing before δ given Dijk 

 sum of pulses < δ in PMF 

overall system robustness ψ 

probability of all tasks finishing by δ  

 

 

 

 

Formal Definition of Robustness for Static Study 
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Heuristics for Static Study 

 recall - goal: design robust resource management techniques 

minimize expected energy used (performance measure) 

constraint on probability of finishing by deadline (robustness) 

 the robustness constraint is R% 

this could be specified by the system administrator 

simulation study: we use robustness constraint to be 90% 

heuristics from the paper 

Min-Min 

Genetic Algorithm (GA) 

Tree Search 

Tabu 
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Genetic Algorithm (GA) – Chromosome 

chromosome structure – represents possible solution (allocation) 

number of genes (length) = number of tasks to be mapped 

tth entry is a four-tuple (i, j, k, π)  

denotes mapping task t to node i, 

multicore processor j, core k, in P-state π 

order of task execution within a core does not matter 
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Genetic Algorithm (GA) - Population 

 fixed size population of chromosomes – collection of solutions 

Genitor-style GA (steady-state GA) 

population ordered by fitness value as follows: 

chromosomes that meet robustness constraint in  

increasing order of expected energy (lower better) 

rest in decreasing order of robustness (higher better) 

 initial population generation 

five seeds based on Min-Min  

 greedy heuristic 

 run for a fixed P-state 

 done 5 times, 1 per P-state 

rest simple greedy heuristic  

that meets constraint 
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GA – Crossover Operation 

 randomly select a pair of “parents” for crossover  

with a probability pc 

 choose two points x & y such that x < y ≤ number of tasks 

 swap genes in range [x, y] between chromosomes 

 generates two offspring 
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GA – Task-Assignment Mutation Operation 

each chromosome has probability ptm of being mutated 

each gene within selected chromosome  

has probability ptmg of being mutated 

 change assignment to random core, in random P-state 
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GA – P-State Mutation Operation 

each chromosome has probability ppm of being mutated 

each gene within selected chromosome  

has probability ppmg of being mutated 

change P-state of random task to random P-state 
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GA – Procedure Overview 

generate initial population (size denoted S) 

 repeat for a given number of iterations 

 do S times: choose two random chromosomes, and with 

probability pc produce two offspring via crossover 

 insert offspring in ordered population and trim to size S 

 for each chromosome in population, make offspring via 

task-assignment mutation with probability ptm 

 insert offspring in ordered population and trim to size S 

 for each chromosome in population, make offspring via 

P-state mutation with probability ppm 

 insert offspring in ordered population and trim to size S 

 return best chromosome encountered 
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4000 tasks 

 total of 25 compute nodes  

 total of 63 multicore processors  

(randomly varied 1 to 4 per node) 

 total of 178 cores (randomly varied 1 to 4 per processor) 

average overhead  ~50% of total energy (varied across nodes) 

90% probability constraint on finishing by deadline (robustness) 

GA parameters, determined by experimentation:  

pc = 0.005, ptm = 0.25, ptmg  = 0.001,  

ppm = 0.025, ppmg = 0.0005 

population size: 100 

50 different simulation trials were run for each heuristic 

different PMFs for task execution times 

Simulation Setup for Static Study  
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● box and whiskers: min, 1st quartile, median, 3rd quartile, max 

● Min-Min in P-states 3 and 4 did not meet robustness constraint 

● red: heuristic execution times 
 

Results Static Study – Expected Energy 
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Results Static Study – Robustness 
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● robustness constraint (90%) shown as red dashed line 

● no need to have robustness over 90% 

 
 



Results Static Study – Discussion 

 recall goal: design robust resource management techniques that 

minimize expected energy used (performance measure) 

constraint on probability of finishing by deadline (robustness) 

 in general, lower performance P-states result in  

lower total expected energy (good) BUT lower robustness (bad) 

use combination 

GA  had lowest expected energy consumption  

and exactly met robustness constraint 

GA execution time per trial was 8 hours 

not a problem because done off-line for  

static production environment  
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Outline 

● stochastic model for resource allocation 

● static resource allocation with energy minimization 

● dynamic resource allocation with energy constraint 

● conclusions 



Dynamic Heuristics with Energy Minimization 

 reference 

“Deadline and Energy Constrained  

Dynamic Resource Allocation in a  

Heterogeneous Computing Environment” 

by Young, Apodaca, Briceño, Smith,  

Pasricha, Maciejewski, Siegel, Khemka,  

Bahirat, Ramirez, and Zou 

Journal of Supercomputing 

February 2013, Vol. 63, No. 2, 

pp. 326-347 
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Problem Statement for Dynamic Study 

multi-core architecture similar to static study 

cores always on 

 idle: P4 

 overhead power constant therefore not considered 

dynamic resource allocation 

goal: given a set of independent tasks with individual deadlines, 

design robust resource management techniques that 

complete as many tasks as possible by  

their individual deadlines (performance measure) 

subject to a constraint on total energy consumption 
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System Model for Dynamic Study 

dynamic, immediate-mode scheduler 

each task scheduled when it arrives 

collection of known task types 

 task type execution time per type of core represented by a PMF 

can be found from historical data, experiments 

 task arrivals modeled as two-phase Poisson process 

oversubscribed: tasks arrive at a faster rate (λfast) 

undersubscribed: tasks arrive at a slower rate (λslow) 
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Completion Time PMF for Currently Executing Task 
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assume currently executing task tc is assigned to core j 

 for task tc 

start with execution time PMF for that task on core j 

shift PMF to begin at core j ready time 

drop pulses less than current time t 

renormalize PMF 

 

time 
tc completion time PMF ready time 

time 

tc exec. time PMF 
0 

t 

0 exec. 



Completion Time PMF for a Task ti 

 to get task ti completion time PMF convolve  

resulting completion time PMF for currently executing task tc 

execution time PMFs for all tasks queued  

ahead of task ti on core j 

execution time PMF for task ti on core j 
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Expected Number of On-time Completions 

 in resulting task ti completion time PMF 

sum pulses ≤ task ti individual deadline Di 

this is probability task ti will complete by its deadline 

 

 

 

 

 

 

 sum “probability task will complete by its deadline” 

over all tasks – currently executing or queued 

“expected number of on-time completions” 

this is the measure of robustness 
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Robustness Definition for Dynamic Study 

 

 The three robustness Questions 

1. what makes the system robust? 

 complete all tasks by their individual deadlines 

2. what uncertainties are the system robust against? 

 each task’s execution times may vary  

substantially based on input data 

3. how is robustness quantified? 

 number of “expected on-time completions”  
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Start-Time Cancellation 

 if start-time cancellation is used: 

ready-to-execute task is cancelled if it has a probability  

of completing by its deadline below a threshold  

 tunable parameter by experimentation 

 30% in this simulation study  

to calculate ti completion time PMF   

 omit any task queued ahead of task ti whose  

probability of meeting its deadline <  threshold  

 just prediction that it will be cancelled 

 

 

 

a task cannot be stopped once execution started 
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Heuristics for Dynamic Study 

 recall goal: set of independent tasks with individual deadlines 

complete as many tasks as possible by  

their individual deadlines (performance measure) 

subject to a constraint on total energy consumption 

assign each task to a node, multi-core processor, core, and  

P-state when it arrives (immediate mode) 

can use filters to add energy and/or robustness awareness 

may leave tasks unassigned or cancel a task  

heuristics from the paper 

Lightest Load 

Minimum Expected Completion Time 

Shortest Queue 

Random (for comparison) 
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Heuristic: Lightest Load 

attempt to balance energy and robustness 

by minimizing a “load” L 

 for a given task, consider its L value for each core and P-state 

Enex: expected energy consumed for the assignment  

product of the expected execution time  

and the power consumption 

p: probability of the task completing by its deadline  

    for the assignment  

L = (100 – p) × Enex 

smaller is better 

when p = 100 then Enex is effectively ignored  

 frequently occurs during end of undersubscribed periods 

assign incoming task to the core/P-state  

combination with the smallest L value 
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Energy Filter Based on Estimated Remaining 

 restrict potential core/P-state assignments to those  

≤ energy threshold Enthresh(t) at time step t 

discard task if no assignment meets threshold 

Enmul(t):  

three fixed values: for different levels of average queue depth 

found empirically using a subset of simulation trials 

 trem(t): time remaining in the 12−hour simulation trial 

Enrem(t): estimated energy remaining in 12-hour interval 

energy constraint minus 

(expected for queued plus “simulated actual” for completed) 

ctot: total number of cores in the system 

 tavg: average task execution time 

 
Enthresh(t) = Enmul(t) × Enrem(t)/[(trem(t)/tavg) × ctot] 
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Robustness Filter 

based on the task’s contribution to the total robustness measure 

 restrict potential assignments using a robustness  

threshold pthresh on the probability of the task  

completing by its individual deadline  

limits assignments to those that will increase the  

expected number of on-time completions (robustness)  

by at least the threshold 

threshold found empirically (simulation study: pthresh = 30%) 

discard task if no assignment meets threshold 
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Simulation Setup for Dynamic Study 

12-hour trial window, ~1,650 tasks, 100 task types 

 total of 25 compute nodes 

 total of 63 multicore processors  

(varied 1 to 4 per node) 

 total of 178 cores  

(varied 1 to 4 per processor) 

 variations among 50 simulation trials: 

task-type mix 

task arrival times 

task “simulated actual” execution times (sample PMFs) 

 individual deadline = arrival time + average execution time of its 

task type over all machines & P-states + average over all tasks 

tight deadlines 
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Results: Impact of Filters and Cancellation 

 randomly assign incoming task to a random core and P-state 

 “robustness filter” and “energy + robustness filter”  

and “start time cancellation” improve over random assignment 
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Random 



 Results: Random versus Heuristic 

 

heuristics better than Random 

45 

Random Lightest Load Lightest Load 



Results: Dynamic Study Discussion 
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heuristics performed comparably  

 filters together better than none 

 filters more impact than heuristic  

choice or cancellation 

 “robustness filter” little impact  

probability task meeting  

its individual deadline  

eliminating mappings that 

would not have been chosen 

 “energy filter” ensures energy left for tasks that arrive later 

start-time cancellation has limited impact 

heuristic already considers task execution times 

difficult for start-time cancellation to predict perfectly 

 

 

Lightest Load Lightest Load 



● stochastic model for resource allocation 

● static resource allocation with energy minimization 

● dynamic resource allocation with energy constraint 

● conclusions 
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Current and Future Research 

explore stochastic robustness allocation heuristics for different  

static and dynamic 

performance measure, constraints 

workload and platform characteristics 

use energy or power as performance metric or constraint 

consider that cost of power may vary during day 

 impact of DVFS for memory vs. compute intensive tasks 

study interaction of energy and time-dependent utility functions 

combine multiple uncertainties in single robustness measure 

combining PMFs/probabilities when not independent (ex. DAG) 

how to be robust with respect to inaccuracies in the PMFs 

model conflicts due to resource sharing in multi-core systems 

 thermal-aware resource management 

multi-objective optimization of energy/power and QoS 

 



The Three Robustness Questions 

1. what behavior of the system makes it robust? 

2. what uncertainties is the system robust against? 

3. how is robustness of the system quantified?  
 

presented a stochastic model for robust resource allocation 

used stochastic robustness in energy-aware resource allocation 

 listed areas for future research  

 for more information and references to other relevant research 

www.engr.colostate.edu/~hj/Robust_Papers.pdf 

Concluding Remarks 
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