
Energy-Aware Robust Resource Management

for Parallel Computing Systems

H. J. Siegel
Abell Endowed Chair

Distinguished Professor of

Electrical and Computer Engineering

and Professor of Computer Science

Colorado State University

Fort Collins, Colorado, USA

● stochastic model for resource allocation

● static resource allocation with energy minimization

● dynamic resource allocation with energy constraint

● conclusions

Outline

2

Heterogeneous Parallel Computing System

 interconnected set of different types of

machines with varied computational capabilities

workload of tasks with different

computational requirements

each task may perform differently

on each machine

furthermore: machine A can be better than

machine B for task 1 but not for task 2

3

Resource Management

assign tasks to machines

optimize some performance measure

possibly meet system constraint

 in general, known NP-complete problem

 cannot find optimal solution in reasonable time

ex.: 5 machines and 30 tasks

 → 530 possible assignments

 if it only took 1 nanosecond to

evaluate each assignment

530 nanoseconds > 1,000 years!

use heuristics to find

near-optimal solutions

Stochastic Model for Robustness

 reference

“Stochastic Robustness

Metric and its Use for Static

Resource Allocations”

by Shestak, Smith,

Maciejewski, and Siegel

Journal of Parallel and

Distributed Computing

August 2008, Vol. 68, No. 8,

pp. 1157-1173

4

fr
e
q
u
e
n
c
y

40

20

execution time
 10 20 30 40 50 60 70 80 90

Modeling Uncertain Task Execution Times

execution of a given task on a given machine is data dependent

 collect in a histogram a history samples of

execution time of a given task on a given machine

over different representative data sets

5

x-axis: execution time

within 10 second

interval bins

y-axis: frequency =

height of bar for

a given interval

Generating a PMF from a Histogram

a probability mass function (PMF)

can be generated using a histogram

 convert the frequency to a probability to create PMF

probability = frequency/total # samples

example: probability of value from 10 to 19 = 6/200 = 3%

6

•histogram •PMF

fr
e
q
u
e
n
c
y

40

20

execution time
 10 20 30 40 50 60 70 80 90

p
ro

b
a
b
ili

ty

execution time
 15 25 35 45 55 65 75 85

6 0.03

assume task 1 and task 2 only tasks assigned to machine A

can find completion time PMF for machine A to do both tasks

if tasks independent, it is the “discrete convolution”

(combination) of the execution time PMFs for the two tasks



PMF for Completion Time of Machine

7

=

PMF for t1 on

machine A

execution time τ1

2 3 4 5
0.1

0.2

0.3

0.4

p
ro

b
a
b
ili

ty

1

execution time τ2

PMF for t2 on

machine A

2 3 4 5
0.1

0.2

0.3

0.4

p
ro

b
a
b
ili

ty

1

PMF for completion

time of machine A

completion time τA

p
ro

b
a
b
ili

ty

2 4 6 8 10

0.1

0.2

Example of Use of Stochastic Model in Allocation

PMFs for machine completion time based on

(1) PMFs for tasks already assigned to that machine, and

(2) PMF for task i – which may be assigned to that machine

8

assign

task i to

machine A

or B?

mean → A

sum of

heights

of pulses

> deadline

→ B

if task i added to

queue of

machine B

if task i added to queue

of machine A

mean

completion time

machine A

completion time

p
ro

b
a

b
ili

ty

deadline of δ

probability of

exceeding δ

machine B

completion time

Static Resource Allocation

 determine allocation of set of tasks to machines off-line

 know in advance which tasks are to be executed
during a given interval of time (e.g., the next day)

 “bag-of-tasks”

 uses

planning future work in production environment

 e.g., resource manager plans when
and where tasks will execute the next day

predictive “what-if” studies

 e.g., system administrator wants to quantify the
benefit of adding more machines to the network

post-mortem analysis of a dynamic heuristic

 e.g., static allocation based on trace to compare
performance to dynamic results

9

Dynamic Resource Allocation

 tasks assigned to machines as they arrive (on-line)

 tasks are from a known set (e.g., Digital Globe, NCAR, ORNL)

 do not know in advance

which tasks (from the known set) will need to be executed

when tasks will arrive

what data sets will be processed

 set of machines in the computing system can change

 can use feedback about status of machines

 because done as tasks arrive,
must execute faster than static heuristics

10 10

user request

resource manager

heterogeneous

machines

11

Outline

● stochastic model for resource allocation

● static resource allocation with energy minimization

● dynamic resource allocation with energy constraint

● conclusions

Static Heuristics with Energy Minimization

 reference

“Stochastically Robust Static Resource Allocation for

Energy Minimization with a Makespan Constraint in a

Heterogeneous Computing Environment”

by Apodaca, Young, Briceño, Smith, Pasricha,

Maciejewski, Siegel, Bahirat, Khemka, Ramirez, and Zou

9th ACS/IEEE International Conference on Computer

Systems and Applications (AICCSA ‘11)

December 2011

12

Architecture Model

N heterogeneous

compute nodes

each compute

node i has

ni homogeneous

multicore

processors,

1 ≤ ni ≤ 4

each multicore

processor j in

compute node i

has ci

homogeneous

cores, 1 ≤ ci ≤ 4

13

Problem Statement for Static Study

known collection of independent tasks

common deadline δ to complete all tasks

uncertainty in execution time of given task on given core type

due to data dependencies is represented as PMF

energy used is concern because of costs

goal: design robust resource management techniques that

minimize expected energy used (performance measure)

constraint on probability of finishing by deadline (robustness)

14

robust
resource
allocation

nodes/cores

performance measure

constraint
uncertainty

heuristics

tasks

 term “robustness” usually used without explicit definition

 The three robustness Questions

1. what behavior makes the system robust?

 finishing all tasks by the common deadline δ

2. what uncertainty is the system robust against?

 each task’s execution times may vary

substantially based on input data

3. how do we quantify robustness?

 the probability that a given resource allocation

will complete all tasks by the common deadline δ

Robustness Definition

15

Energy Model – Hierarchy

nodes shut off when all internal multicore processors are idle

when one or more internal multicore processors are on,

however, a node incurs power overhead (e.g., for disks, fans)

multicore processors shut off when all internal cores are idle

when one or more internal cores are on,

however, a multicore processor incurs power

overhead (e.g., for L3 cache)

each core executes continuous sequence of tasks

shut down core/processor/node ASAP

16

Energy Model – DVFS

each core uses Dynamic Voltage and Frequency Scaling (DVFS)

 five P-states (performance states)

P0 highest power to P4 lowest power

higher power consumption → faster execution

typically – lower power P-state → less energy but more time

 depends on ratio of overhead energy to CPU energy

 type of task: memory-intensive, CPU-intensive

execution time PMF for each task - each core type - each P-state

 for each P-state for each core type, average scalar value

for power consumption (energy per second)

cores can switch states independently - negligible overhead

17

given a resource allocation (including P-state assignments)

 let Dijk be the finishing time distribution PMF for all tasks

assigned to core k in multicore processor j in compute node i

 let p(Dijk, δ) be probability of finishing before δ given Dijk

 sum of pulses < δ in PMF

overall system robustness ψ

probability of all tasks finishing by δ

Formal Definition of Robustness for Static Study

18

()δD=ψ ijk
Ni

i
nj

i
ck

,p
1 1 1

∏ ∏ ∏
≤≤ ≤≤ ≤≤

completion time

p
ro

b
a

b
ili

ty
 deadline of δ

Heuristics for Static Study

 recall - goal: design robust resource management techniques

minimize expected energy used (performance measure)

constraint on probability of finishing by deadline (robustness)

 the robustness constraint is R%

this could be specified by the system administrator

simulation study: we use robustness constraint to be 90%

heuristics from the paper

Min-Min

Genetic Algorithm (GA)

Tree Search

Tabu

19

Genetic Algorithm (GA) – Chromosome

chromosome structure – represents possible solution (allocation)

number of genes (length) = number of tasks to be mapped

tth entry is a four-tuple (i, j, k, π)

denotes mapping task t to node i,

multicore processor j, core k, in P-state π

order of task execution within a core does not matter

20

1 2 3 4 …

2 1 2 3 …

4 2 1 1 …

2 2 3 1 …

0 4 2 1 …

task

node

processor

core

P-state

Genetic Algorithm (GA) - Population

 fixed size population of chromosomes – collection of solutions

Genitor-style GA (steady-state GA)

population ordered by fitness value as follows:

chromosomes that meet robustness constraint in

increasing order of expected energy (lower better)

rest in decreasing order of robustness (higher better)

 initial population generation

five seeds based on Min-Min

 greedy heuristic

 run for a fixed P-state

 done 5 times, 1 per P-state

rest simple greedy heuristic

that meets constraint

21

GA – Crossover Operation

 randomly select a pair of “parents” for crossover

with a probability pc

 choose two points x & y such that x < y ≤ number of tasks

 swap genes in range [x, y] between chromosomes

 generates two offspring

22

offspring a offspring b

 parent a parent b

GA – Task-Assignment Mutation Operation

each chromosome has probability ptm of being mutated

each gene within selected chromosome

has probability ptmg of being mutated

 change assignment to random core, in random P-state

23

1 2 3 4 …

2 1 2 3 …

4 2 1 1 …

2 2 3 1 …

0 4 2 1 …

task

node

processor

core

P-state

4
3
1
0

GA – P-State Mutation Operation

each chromosome has probability ppm of being mutated

each gene within selected chromosome

has probability ppmg of being mutated

change P-state of random task to random P-state

24

1 2 3 4 …

2 1 2 3 …

4 2 1 1 …

2 2 3 1 …

0 4 2 1 …

task

node

processor

core

P-state

0

GA – Procedure Overview

generate initial population (size denoted S)

 repeat for a given number of iterations

 do S times: choose two random chromosomes, and with

probability pc produce two offspring via crossover

 insert offspring in ordered population and trim to size S

 for each chromosome in population, make offspring via

task-assignment mutation with probability ptm

 insert offspring in ordered population and trim to size S

 for each chromosome in population, make offspring via

P-state mutation with probability ppm

 insert offspring in ordered population and trim to size S

 return best chromosome encountered

25

4000 tasks

 total of 25 compute nodes

 total of 63 multicore processors

(randomly varied 1 to 4 per node)

 total of 178 cores (randomly varied 1 to 4 per processor)

average overhead ~50% of total energy (varied across nodes)

90% probability constraint on finishing by deadline (robustness)

GA parameters, determined by experimentation:

pc = 0.005, ptm = 0.25, ptmg = 0.001,

ppm = 0.025, ppmg = 0.0005

population size: 100

50 different simulation trials were run for each heuristic

different PMFs for task execution times

Simulation Setup for Static Study

26

● box and whiskers: min, 1st quartile, median, 3rd quartile, max

● Min-Min in P-states 3 and 4 did not meet robustness constraint

● red: heuristic execution times

Results Static Study – Expected Energy

27

8hrs 23hrs 12hrs
2min

GA lowest

Results Static Study – Robustness

28

GA lowest

expected

energy

● robustness constraint (90%) shown as red dashed line

● no need to have robustness over 90%

Results Static Study – Discussion

 recall goal: design robust resource management techniques that

minimize expected energy used (performance measure)

constraint on probability of finishing by deadline (robustness)

 in general, lower performance P-states result in

lower total expected energy (good) BUT lower robustness (bad)

use combination

GA had lowest expected energy consumption

and exactly met robustness constraint

GA execution time per trial was 8 hours

not a problem because done off-line for

static production environment

29

30

Outline

● stochastic model for resource allocation

● static resource allocation with energy minimization

● dynamic resource allocation with energy constraint

● conclusions

Dynamic Heuristics with Energy Minimization

 reference

“Deadline and Energy Constrained

Dynamic Resource Allocation in a

Heterogeneous Computing Environment”

by Young, Apodaca, Briceño, Smith,

Pasricha, Maciejewski, Siegel, Khemka,

Bahirat, Ramirez, and Zou

Journal of Supercomputing

February 2013, Vol. 63, No. 2,

pp. 326-347

31

Problem Statement for Dynamic Study

multi-core architecture similar to static study

cores always on

 idle: P4

 overhead power constant therefore not considered

dynamic resource allocation

goal: given a set of independent tasks with individual deadlines,

design robust resource management techniques that

complete as many tasks as possible by

their individual deadlines (performance measure)

subject to a constraint on total energy consumption

32

System Model for Dynamic Study

dynamic, immediate-mode scheduler

each task scheduled when it arrives

collection of known task types

 task type execution time per type of core represented by a PMF

can be found from historical data, experiments

 task arrivals modeled as two-phase Poisson process

oversubscribed: tasks arrive at a faster rate (λfast)

undersubscribed: tasks arrive at a slower rate (λslow)

33

Completion Time PMF for Currently Executing Task

34

assume currently executing task tc is assigned to core j

 for task tc

start with execution time PMF for that task on core j

shift PMF to begin at core j ready time

drop pulses less than current time t

renormalize PMF

time
tc completion time PMF ready time

time

tc exec. time PMF
0

t

0 exec.

Completion Time PMF for a Task ti

 to get task ti completion time PMF convolve

resulting completion time PMF for currently executing task tc

execution time PMFs for all tasks queued

ahead of task ti on core j

execution time PMF for task ti on core j

35

 core j queue

core j

executing

tc ti t3 t2 t1 ··· ti tc t3 t2 t1 ···

Expected Number of On-time Completions

 in resulting task ti completion time PMF

sum pulses ≤ task ti individual deadline Di

this is probability task ti will complete by its deadline

 sum “probability task will complete by its deadline”

over all tasks – currently executing or queued

“expected number of on-time completions”

this is the measure of robustness

36

p
ro

b
a

b
ili

ty

time

Di

ti completion time PMF

Robustness Definition for Dynamic Study

 The three robustness Questions

1. what makes the system robust?

 complete all tasks by their individual deadlines

2. what uncertainties are the system robust against?

 each task’s execution times may vary

substantially based on input data

3. how is robustness quantified?

 number of “expected on-time completions”

37

Start-Time Cancellation

 if start-time cancellation is used:

ready-to-execute task is cancelled if it has a probability

of completing by its deadline below a threshold

 tunable parameter by experimentation

 30% in this simulation study

to calculate ti completion time PMF

 omit any task queued ahead of task ti whose

probability of meeting its deadline < threshold

 just prediction that it will be cancelled

a task cannot be stopped once execution started

38

tc ti ··· t3 t2 t1

 core j queue

core j

executing

Heuristics for Dynamic Study

 recall goal: set of independent tasks with individual deadlines

complete as many tasks as possible by

their individual deadlines (performance measure)

subject to a constraint on total energy consumption

assign each task to a node, multi-core processor, core, and

P-state when it arrives (immediate mode)

can use filters to add energy and/or robustness awareness

may leave tasks unassigned or cancel a task

heuristics from the paper

Lightest Load

Minimum Expected Completion Time

Shortest Queue

Random (for comparison)

39

Heuristic: Lightest Load

attempt to balance energy and robustness

by minimizing a “load” L

 for a given task, consider its L value for each core and P-state

Enex: expected energy consumed for the assignment

product of the expected execution time

and the power consumption

p: probability of the task completing by its deadline

 for the assignment

L = (100 – p) × Enex

smaller is better

when p = 100 then Enex is effectively ignored

 frequently occurs during end of undersubscribed periods

assign incoming task to the core/P-state

combination with the smallest L value

40

Energy Filter Based on Estimated Remaining

 restrict potential core/P-state assignments to those

≤ energy threshold Enthresh(t) at time step t

discard task if no assignment meets threshold

Enmul(t):

three fixed values: for different levels of average queue depth

found empirically using a subset of simulation trials

 trem(t): time remaining in the 12−hour simulation trial

Enrem(t): estimated energy remaining in 12-hour interval

energy constraint minus

(expected for queued plus “simulated actual” for completed)

ctot: total number of cores in the system

 tavg: average task execution time

Enthresh(t) = Enmul(t) × Enrem(t)/[(trem(t)/tavg) × ctot]

41

tasks/core

total # tasks

fair share

per task

Robustness Filter

based on the task’s contribution to the total robustness measure

 restrict potential assignments using a robustness

threshold pthresh on the probability of the task

completing by its individual deadline

limits assignments to those that will increase the

expected number of on-time completions (robustness)

by at least the threshold

threshold found empirically (simulation study: pthresh = 30%)

discard task if no assignment meets threshold

42

p
ro

b
a

b
ili

ty

time

Di

ti completion time PMF

Simulation Setup for Dynamic Study

12-hour trial window, ~1,650 tasks, 100 task types

 total of 25 compute nodes

 total of 63 multicore processors

(varied 1 to 4 per node)

 total of 178 cores

(varied 1 to 4 per processor)

 variations among 50 simulation trials:

task-type mix

task arrival times

task “simulated actual” execution times (sample PMFs)

 individual deadline = arrival time + average execution time of its

task type over all machines & P-states + average over all tasks

tight deadlines

43

Results: Impact of Filters and Cancellation

 randomly assign incoming task to a random core and P-state

 “robustness filter” and “energy + robustness filter”

and “start time cancellation” improve over random assignment

44

Random

 Results: Random versus Heuristic

heuristics better than Random

45

Random Lightest Load Lightest Load

Results: Dynamic Study Discussion

46

heuristics performed comparably

 filters together better than none

 filters more impact than heuristic

choice or cancellation

 “robustness filter” little impact

probability task meeting

its individual deadline

eliminating mappings that

would not have been chosen

 “energy filter” ensures energy left for tasks that arrive later

start-time cancellation has limited impact

heuristic already considers task execution times

difficult for start-time cancellation to predict perfectly

Lightest Load Lightest Load

● stochastic model for resource allocation

● static resource allocation with energy minimization

● dynamic resource allocation with energy constraint

● conclusions

47

Outline

48

Current and Future Research

explore stochastic robustness allocation heuristics for different

static and dynamic

performance measure, constraints

workload and platform characteristics

use energy or power as performance metric or constraint

consider that cost of power may vary during day

 impact of DVFS for memory vs. compute intensive tasks

study interaction of energy and time-dependent utility functions

combine multiple uncertainties in single robustness measure

combining PMFs/probabilities when not independent (ex. DAG)

how to be robust with respect to inaccuracies in the PMFs

model conflicts due to resource sharing in multi-core systems

 thermal-aware resource management

multi-objective optimization of energy/power and QoS

The Three Robustness Questions

1. what behavior of the system makes it robust?

2. what uncertainties is the system robust against?

3. how is robustness of the system quantified?

presented a stochastic model for robust resource allocation

used stochastic robustness in energy-aware resource allocation

 listed areas for future research

 for more information and references to other relevant research

www.engr.colostate.edu/~hj/Robust_Papers.pdf

Concluding Remarks

49

