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Need for Performance Analysis Tools
Amount of parallelism in Supercomputers keeps growing

Efficient resource usage depends on software performance

Jugene (2008): 65 536 cores Juqueen (2013): 458 752 cores
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Imbalance limits parallel efficiency
Imbalance leads to wait states at synchronization points
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Goal: Locate inefficient parallelism and quantify its impact
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Two novel analysis methods

Root-cause
analysis

Critical-path
analysis
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Outline
Parallel Performance Analysis

Root-Cause Analysis
Concepts
Case study

Critical-Path Analysis
The critical path
Critical-path imbalance indicator
Analysis of MPMD programs

Implementation
Parallel trace replay
Scalability evaluation
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Performance analysis tools
Tools help understand performance, but

Profiling provides limited insights
Tracing produces too much data to analyze manually

Time profile display in TAU Event-trace timeline visualization in
Vampir
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Imbalance analysis pitfalls
Profilers underestimate impact of imbalance

Data aggregation hides dynamic imbalance effects
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Analysis solution needs to retain performance dynamics
Use automatic trace analysis
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Analysis workflow
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Parallel Performance Analysis

Root-Cause Analysis
Concepts
Case study
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The critical path
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Implementation
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Delay as root cause of wait states
A delay is some additional activity on one process that
causes a wait state at a synchronization point

time

pr
oc

es
se

s

1

2

R1

R2

S2

S1

Work

Work

Delay

Late-sender wait state

Delay on process 1 causes a late-sender wait state on process 2
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Wait-state propagation

Wait states can propagate

Account for propagation in
analysis

Extended wait-state
classification
Incorporate long-distance
effects in calculation of
delay costs
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Wait-state classification
Distinguish propagating and terminal wait states
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Assigning delay costs

Delay costs represent amount
of wait time caused by a
delay

Short-term costs represent
wait states caused directly
Long-term costs represent
wait states caused via
propagation time
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Case study: CESM sea ice model
Analysis of imbalance in CESM sea ice model
Performance data mapped onto application topology

Distribution of computation time

Distribution of late-sender waiting time

CICE setup: 2048 processes on BG/P, 1◦ dipole grid, cartesian grid decomposition
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CESM sea ice model: wait-state formation

Distribution of delay costs

25% Short-term
75% Long-term

Propagating wait states

Terminal wait states
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Critical-path analysis
Use automatic trace analysis to extract the critical path

Performance indicators show bottlenecks at single glance
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Critical path in a parallel program (shown in red)
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Critical-path profile and imbalance
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Critical-path profile shows wall-clock time consumption
Critical imbalance indicator finds inefficient parallelism

Imbalance = Tcritical − Tavg
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Example: PEPC

Analysis of plasma-physics
code PEPC using 512
processes on Blue Gene/P

Profile metrics underestimate
performance impact of
tree walk kernel due to
dynamic load imbalance
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Analysis of MPMD programs

Processes execute different activities

E.g. master-worker

Complex imbalance analysis issues

Not supported by existing tools
Imbalance quantification needs to
incorporate partition sizes
More knobs to tune

Figure 2: Task layout on the BlueGene/P torus. Cyan arrows
indicate communication from MD tasks to collector tasks, blue
arrows indicate communication from collector tasks to FFT
tasks.

is the reduction of the contributions to ρ at each point from these
multiple tasks to a single sum.

To perform the reduction we nominate a subset of the particle
tasks as “collector” tasks (see Fig. 2). Each mesh point is uniquely
assigned to a collector task that is responsible for gathering all con-
tributions to ρ for that mesh point and performing the sum. The
number and arrangement of the collector tasks is a tunable param-
eter and all communication is local.

In Stage 2 of the communication, each collector task sends mesh
information to the appropriate mesh task using MPI_Isend. We
think of this stage as a gather operation since the mesh data is being
gathered to the mesh tasks. This communication is long-range, but
can be efficiently organized.

Once the long-range portion of the potential has been calculated
we perform the communication stages again but in reverse order.
The mesh tasks scatter mesh data back to the collector tasks which
in turn send values to the neighboring particle tasks. To maximize
the overlap of communication of computation the MPI_Irecvs
on the collector tasks are posted before we start the pair calculation.
This allows data to begin moving from the mesh tasks as soon as it
is available.

In benchmark calculations on Dawn using 144,384 processors
(9,216 mesh tasks and 135,168 particle tasks, of which 22,400 are
collector tasks) we observe that when work is properly balanced
between the particle and mesh tasks there is a pronounced asym-
metry in the communication times between the particle and mesh
tasks. Although the mesh tasks spend roughly 15% of total run-
time waiting for data to arrive, the particle tasks spend under 2% of
the total runtime sending it. Asynchronous communication allows
the particle tasks to continue with other work while the commu-
nication proceeds. Hence, we have successfully accomplished the
goal of minimizing communication time on the particle tasks by
overlapping the communication of mesh data with the explicit pair
computation.

This success demonstrates the effectiveness of the direct mem-
ory access (DMA) engine that was added to the BG/P design as
an improvement over BG/L[23]. The DMA is directly coupled to
the L3 (shared) cache on each node and is responsible for sending
and receiving data to and from the torus network. The CPU is thus
relieved of these tasks and is free to continue on to other compu-
tations. From comparisons with benchmark simulations performed
on BG/L, it is clear that there is a significant benefit from the DMA.

The two-stage approach just described has at least two advan-
tages over a single stage method in which each particle task simply
sends all of the mesh points it populates to the appropriate mesh
tasks and the reduction of partial sums is performed on the mesh
tasks. The first advantage is a reduction of communication band-
width from the particle to the mesh tasks. Although the number of
mesh points to which an particle task contributes varies with ng , for
our typical problems of interest it is roughly 2–5 times the number
that lie strictly within its computational domain. Hence a single
stage solution would require 2–5 times the network bandwidth to
complete communication in the same time. In the two-stage ap-
proach the mesh points are gathered and reduced locally so a larger
number of torus links can be active increasing the aggregate band-
width available to communicate mesh points. A second advantage
is that the number of collector tasks can be tuned to optimize total
communication cost. Changing the number of collector tasks al-
lows trade offs between the number of messages sent to each mesh
task in Stage 2 (with corresponding changes in message size) and
the bandwidth available for the reduction in Stage 1.

4.3 Layout
For a 3D torus network, the assignment of MPI tasks onto com-

pute nodes at specific torus coordinates can significantly impact
parallel efficiency at full machine scale. It is necessary to opti-
mize communication both within the short-range and long-range
subcommunicators, as well as between the two. For the latter, we
focused on splitting the torus into separate sections for the particle
and mesh tasks such that communication between the “collector”
tasks described in section 4.2 and the mesh tasks takes place along a
single torus dimension to reduce contention and avoid bottlenecks,
as illustrated in Figure 2. The tasks are then ordered within each
subcommunicator to provide nearest neighbor communication for
spatially adjacent particle tasks and reduce transpose communica-
tion times for the mesh tasks.

For a system of 1.2 billion particles on a 64 × 32 × 16 Blue
Gene/P partition (32,768 nodes, 131,072 tasks), we see a signif-
icant decrease in communication times using a custom task map
constructed as described above compared with the default (TXYZ)
layout. The total run time decreased by 36% when the custom map-
ping was used, with the greatest improvement being seen in the
intra-particle task communication times, which decreased by a fac-
tor of 3, likely due to the poor correspondence of the default map-
ping to the simulation box shape. Communication within the 3D
FFT was decreased by over a factor of 2, and communication be-
tween the particle and mesh tasks was more than 50% faster. These
results highlight the need to carefully understand and optimize the
communication patterns on large torus networks.

4.4 FFT Implementation
As described in Section 2.1, the long-range interaction term in

Eqn. 3 involves the use of a 3D Fourier transform between the
real-space (real-valued) density and the k-space (complex-valued)
density. To obtain optimal 3D FFT performance in the massively-
parallel regime a custom real-to-complex 3D Fast Fourier Trans-
form implementation (bigFFT) was developed using a 2D decom-

Heterogeneous decomposition in
ddcMDD.

Image from Richards et al.: Beyond
Homogeneous Decomposition, SC’10
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the particle tasks to continue with other work while the commu-
nication proceeds. Hence, we have successfully accomplished the
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the L3 (shared) cache on each node and is responsible for sending
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relieved of these tasks and is free to continue on to other compu-
tations. From comparisons with benchmark simulations performed
on BG/L, it is clear that there is a significant benefit from the DMA.

The two-stage approach just described has at least two advan-
tages over a single stage method in which each particle task simply
sends all of the mesh points it populates to the appropriate mesh
tasks and the reduction of partial sums is performed on the mesh
tasks. The first advantage is a reduction of communication band-
width from the particle to the mesh tasks. Although the number of
mesh points to which an particle task contributes varies with ng , for
our typical problems of interest it is roughly 2–5 times the number
that lie strictly within its computational domain. Hence a single
stage solution would require 2–5 times the network bandwidth to
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Performance impact indicators
Denote allocation-time costs of imbalance

Map wait time onto critical-path activites with excess time
Distinguish intra-partition and inter-partition imbalance costs

High intra-partition costs,
low inter-partition costs

Very high inter-partition costs,
low intra-partition costs
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Example: ddcMD

ddcMD molecular dynamics
simulation on Blue Gene/P

Particle and mesh forces
calculated in different
partitions

Fixed partition sizes:
3840+256 processes

Tune mesh size to adjust
load balance

Figure 2: Task layout on the BlueGene/P torus. Cyan arrows
indicate communication from MD tasks to collector tasks, blue
arrows indicate communication from collector tasks to FFT
tasks.

is the reduction of the contributions to ρ at each point from these
multiple tasks to a single sum.

To perform the reduction we nominate a subset of the particle
tasks as “collector” tasks (see Fig. 2). Each mesh point is uniquely
assigned to a collector task that is responsible for gathering all con-
tributions to ρ for that mesh point and performing the sum. The
number and arrangement of the collector tasks is a tunable param-
eter and all communication is local.

In Stage 2 of the communication, each collector task sends mesh
information to the appropriate mesh task using MPI_Isend. We
think of this stage as a gather operation since the mesh data is being
gathered to the mesh tasks. This communication is long-range, but
can be efficiently organized.

Once the long-range portion of the potential has been calculated
we perform the communication stages again but in reverse order.
The mesh tasks scatter mesh data back to the collector tasks which
in turn send values to the neighboring particle tasks. To maximize
the overlap of communication of computation the MPI_Irecvs
on the collector tasks are posted before we start the pair calculation.
This allows data to begin moving from the mesh tasks as soon as it
is available.

In benchmark calculations on Dawn using 144,384 processors
(9,216 mesh tasks and 135,168 particle tasks, of which 22,400 are
collector tasks) we observe that when work is properly balanced
between the particle and mesh tasks there is a pronounced asym-
metry in the communication times between the particle and mesh
tasks. Although the mesh tasks spend roughly 15% of total run-
time waiting for data to arrive, the particle tasks spend under 2% of
the total runtime sending it. Asynchronous communication allows
the particle tasks to continue with other work while the commu-
nication proceeds. Hence, we have successfully accomplished the
goal of minimizing communication time on the particle tasks by
overlapping the communication of mesh data with the explicit pair
computation.

This success demonstrates the effectiveness of the direct mem-
ory access (DMA) engine that was added to the BG/P design as
an improvement over BG/L[23]. The DMA is directly coupled to
the L3 (shared) cache on each node and is responsible for sending
and receiving data to and from the torus network. The CPU is thus
relieved of these tasks and is free to continue on to other compu-
tations. From comparisons with benchmark simulations performed
on BG/L, it is clear that there is a significant benefit from the DMA.

The two-stage approach just described has at least two advan-
tages over a single stage method in which each particle task simply
sends all of the mesh points it populates to the appropriate mesh
tasks and the reduction of partial sums is performed on the mesh
tasks. The first advantage is a reduction of communication band-
width from the particle to the mesh tasks. Although the number of
mesh points to which an particle task contributes varies with ng , for
our typical problems of interest it is roughly 2–5 times the number
that lie strictly within its computational domain. Hence a single
stage solution would require 2–5 times the network bandwidth to
complete communication in the same time. In the two-stage ap-
proach the mesh points are gathered and reduced locally so a larger
number of torus links can be active increasing the aggregate band-
width available to communicate mesh points. A second advantage
is that the number of collector tasks can be tuned to optimize total
communication cost. Changing the number of collector tasks al-
lows trade offs between the number of messages sent to each mesh
task in Stage 2 (with corresponding changes in message size) and
the bandwidth available for the reduction in Stage 1.

4.3 Layout
For a 3D torus network, the assignment of MPI tasks onto com-

pute nodes at specific torus coordinates can significantly impact
parallel efficiency at full machine scale. It is necessary to opti-
mize communication both within the short-range and long-range
subcommunicators, as well as between the two. For the latter, we
focused on splitting the torus into separate sections for the particle
and mesh tasks such that communication between the “collector”
tasks described in section 4.2 and the mesh tasks takes place along a
single torus dimension to reduce contention and avoid bottlenecks,
as illustrated in Figure 2. The tasks are then ordered within each
subcommunicator to provide nearest neighbor communication for
spatially adjacent particle tasks and reduce transpose communica-
tion times for the mesh tasks.

For a system of 1.2 billion particles on a 64 × 32 × 16 Blue
Gene/P partition (32,768 nodes, 131,072 tasks), we see a signif-
icant decrease in communication times using a custom task map
constructed as described above compared with the default (TXYZ)
layout. The total run time decreased by 36% when the custom map-
ping was used, with the greatest improvement being seen in the
intra-particle task communication times, which decreased by a fac-
tor of 3, likely due to the poor correspondence of the default map-
ping to the simulation box shape. Communication within the 3D
FFT was decreased by over a factor of 2, and communication be-
tween the particle and mesh tasks was more than 50% faster. These
results highlight the need to carefully understand and optimize the
communication patterns on large torus networks.

4.4 FFT Implementation
As described in Section 2.1, the long-range interaction term in

Eqn. 3 involves the use of a 3D Fourier transform between the
real-space (real-valued) density and the k-space (complex-valued)
density. To obtain optimal 3D FFT performance in the massively-
parallel regime a custom real-to-complex 3D Fast Fourier Trans-
form implementation (bigFFT) was developed using a 2D decom-

D. Richards et al.: Beyond Homogeneous
Decomposition, SC’10
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is the reduction of the contributions to ρ at each point from these
multiple tasks to a single sum.

To perform the reduction we nominate a subset of the particle
tasks as “collector” tasks (see Fig. 2). Each mesh point is uniquely
assigned to a collector task that is responsible for gathering all con-
tributions to ρ for that mesh point and performing the sum. The
number and arrangement of the collector tasks is a tunable param-
eter and all communication is local.

In Stage 2 of the communication, each collector task sends mesh
information to the appropriate mesh task using MPI_Isend. We
think of this stage as a gather operation since the mesh data is being
gathered to the mesh tasks. This communication is long-range, but
can be efficiently organized.

Once the long-range portion of the potential has been calculated
we perform the communication stages again but in reverse order.
The mesh tasks scatter mesh data back to the collector tasks which
in turn send values to the neighboring particle tasks. To maximize
the overlap of communication of computation the MPI_Irecvs
on the collector tasks are posted before we start the pair calculation.
This allows data to begin moving from the mesh tasks as soon as it
is available.

In benchmark calculations on Dawn using 144,384 processors
(9,216 mesh tasks and 135,168 particle tasks, of which 22,400 are
collector tasks) we observe that when work is properly balanced
between the particle and mesh tasks there is a pronounced asym-
metry in the communication times between the particle and mesh
tasks. Although the mesh tasks spend roughly 15% of total run-
time waiting for data to arrive, the particle tasks spend under 2% of
the total runtime sending it. Asynchronous communication allows
the particle tasks to continue with other work while the commu-
nication proceeds. Hence, we have successfully accomplished the
goal of minimizing communication time on the particle tasks by
overlapping the communication of mesh data with the explicit pair
computation.

This success demonstrates the effectiveness of the direct mem-
ory access (DMA) engine that was added to the BG/P design as
an improvement over BG/L[23]. The DMA is directly coupled to
the L3 (shared) cache on each node and is responsible for sending
and receiving data to and from the torus network. The CPU is thus
relieved of these tasks and is free to continue on to other compu-
tations. From comparisons with benchmark simulations performed
on BG/L, it is clear that there is a significant benefit from the DMA.

The two-stage approach just described has at least two advan-
tages over a single stage method in which each particle task simply
sends all of the mesh points it populates to the appropriate mesh
tasks and the reduction of partial sums is performed on the mesh
tasks. The first advantage is a reduction of communication band-
width from the particle to the mesh tasks. Although the number of
mesh points to which an particle task contributes varies with ng , for
our typical problems of interest it is roughly 2–5 times the number
that lie strictly within its computational domain. Hence a single
stage solution would require 2–5 times the network bandwidth to
complete communication in the same time. In the two-stage ap-
proach the mesh points are gathered and reduced locally so a larger
number of torus links can be active increasing the aggregate band-
width available to communicate mesh points. A second advantage
is that the number of collector tasks can be tuned to optimize total
communication cost. Changing the number of collector tasks al-
lows trade offs between the number of messages sent to each mesh
task in Stage 2 (with corresponding changes in message size) and
the bandwidth available for the reduction in Stage 1.

4.3 Layout
For a 3D torus network, the assignment of MPI tasks onto com-

pute nodes at specific torus coordinates can significantly impact
parallel efficiency at full machine scale. It is necessary to opti-
mize communication both within the short-range and long-range
subcommunicators, as well as between the two. For the latter, we
focused on splitting the torus into separate sections for the particle
and mesh tasks such that communication between the “collector”
tasks described in section 4.2 and the mesh tasks takes place along a
single torus dimension to reduce contention and avoid bottlenecks,
as illustrated in Figure 2. The tasks are then ordered within each
subcommunicator to provide nearest neighbor communication for
spatially adjacent particle tasks and reduce transpose communica-
tion times for the mesh tasks.

For a system of 1.2 billion particles on a 64 × 32 × 16 Blue
Gene/P partition (32,768 nodes, 131,072 tasks), we see a signif-
icant decrease in communication times using a custom task map
constructed as described above compared with the default (TXYZ)
layout. The total run time decreased by 36% when the custom map-
ping was used, with the greatest improvement being seen in the
intra-particle task communication times, which decreased by a fac-
tor of 3, likely due to the poor correspondence of the default map-
ping to the simulation box shape. Communication within the 3D
FFT was decreased by over a factor of 2, and communication be-
tween the particle and mesh tasks was more than 50% faster. These
results highlight the need to carefully understand and optimize the
communication patterns on large torus networks.

4.4 FFT Implementation
As described in Section 2.1, the long-range interaction term in

Eqn. 3 involves the use of a 3D Fourier transform between the
real-space (real-valued) density and the k-space (complex-valued)
density. To obtain optimal 3D FFT performance in the massively-
parallel regime a custom real-to-complex 3D Fast Fourier Trans-
form implementation (bigFFT) was developed using a 2D decom-

D. Richards et al.: Beyond Homogeneous
Decomposition, SC’10
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Example: ddcMD

ddcMD molecular dynamics
simulation on Blue Gene/P

Particle and mesh forces
calculated in different
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Fixed partition sizes:
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load balance

Figure 2: Task layout on the BlueGene/P torus. Cyan arrows
indicate communication from MD tasks to collector tasks, blue
arrows indicate communication from collector tasks to FFT
tasks.
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ddcMD: mesh size tuning
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Implementation
Integrated in Scalasca trace analysis toolset

Highly scalable parallel trace analysis
So far only for wait-state detection
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Parallel trace replay

Application
run

Local
event traces

Parallel
analysis

Analysis
report

Application records timestamped communication events
One trace file per process

Analysis processes traverse traces in parallel
Exchange information at original synchronization points

trace rank i

SENDENTER EXIT

trace rank j

RECVENTER EXIT
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Trace analysis extensions
Use multiple replay passes
Backward replay lets data travel from effect to cause

trace rank i

SENDENTER EXIT

trace rank j

RECVENTER EXIT

backward replay
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Delay detection via backward replay
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Critical-path extraction in backward replay
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Scalability

 10

 100

 1000

 256  512  1024  2048  4096  8192  16384  32768  65536  131072  262144

W
al

l t
im

e 
(s

)

Processes

Uninstrumented program execution
Wait-state analysis only (trace replay)

Scalability of root-cause and critical-path analysis for the Sweep3D
benchmark on Blue Gene/P

Slide 30 September 26, 2013 David Böhme
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Summary
Two novel methods to locate and quantify imbalance
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Thank you
Further reading:

D. Böhme, B. R. de Supinski, M. Geimer, M. Schulz, and F. Wolf:
Scalable Critical-Path Based Performance Analysis. IPDPS 2012.

D. Böhme, M. Geimer, and F. Wolf: Characterizing Load and
Communication Imbalance in Large-Scale Parallel Applications.
IPDPS PhD Forum 2012.

D. Böhme, M. Geimer, F. Wolf, and L. Arnold: Identifying the root
causes of wait states in large-scale parallel applications. ICPP 2010.
Best paper award.

D. Böhme, M.-A. Hermanns, M. Geimer, and F. Wolf: Performance
simulation of non-blocking communication in message-passing
applications. PROPER 2009.
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SPECMPI case studies
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