
December 19, 2013

The XSEDE Global Federated File System

(GFFS) - Breaking Down Barriers to Secure

Resource Sharing

Andrew Grimshaw, University of Virginia

Co-architect XSEDE

“Perfection is achieved not when there is nothing more

to add, but when there is nothing left to take away.”

 — Antoine de Saint-Exupery

2

“The complexity of software is an essential property,

not an accidental one. Hence, descriptions of a

software entity that abstract away its complexity often

abstract away its essence.”

 — Fred Brooks – No Silver Bullet

“Give me simple abstractions and make them work

reliably”

 — Kent Blackburn

Agenda

• XSEDE Architectural Background

• Globus Online

• X-WAVE/GFFS
• Architectural themes

• The Global Namespace

• The Global Federated File System (GFFS)

• Execution Management Services*

• Demo

• Conclusion & Research Challenges

 3

XSEDE Architectural Background

4

Distinguishing characteristics: Architecture

• XSEDE is designed for innovation and evolution
– there is an architecture defined

• based on set of design principles
• rooted in the judicious use of standards and best practices
• Integrated set of replaceable components designed to work together

• Professional systems engineering approach
– responds to evolving needs of existing, emerging, and new

communities
• incremental development/deployment model

– new requirements gathering processes
• ticket mining, focus groups, usability panels, shoulder surfing

– ensure robustness and security while incorporating new and
improved technologies and services

– process control, quality assurance, baseline management,
stakeholder involvement

5

Two Approaches

• XUAS - Web/cloud - Globus

• X-WAVE/GFFS – Standards-based, integrated
architecture

• See

– Level 3 decomposition document

– https://www.ideals.illinois.edu/handle/2142/45117

– Or google search xsede level 3 architecture

• Use cases

– https://software.xsede.org/registry-dev/index.php

6

https://www.ideals.illinois.edu/handle/2142/45117

X-WAVE:

XSEDE Wide Area Virtual Environment

7

• Architectural themes

• The Global Namespace

• The Global Federated File System (GFFS)

• Execution Management Services*

*If sufficient time

An aside on distributed systems – or –

What I’ve learned in the last 34 years

8

9

Puzzle Ball

10

Back to architecture

11

What we mean by architecture

• Architecture defines the XSEDE system’s
interfaces and components and how they interact
– each component is motivated by one or more

requirements
– each component is defined in terms of required

capabilities: interfaces and qualities of service

• What is a system architecture?
– Set of design principles
– A definition of the basic interfaces/components
– A definition of how the components refer to one

another and interact in order to meet requirements
– An abstraction on top of the underlying components

12

Principles

• Leverage familiar paradigms to simplify use
– Pathnames, files and directories
– Queues
– Users/groups
– Access control lists

• Interoperation between grid middleware islands
• Keep it simple

– A small number of interfaces (types) that can be used
in many ways

• Document everything
• Diversity of Implementation

13

X-WAVE/GFFS:

The global namespace

Inspired by Plan 9

14

SEQ_3

Biochemistry Biology

Partner Institution

SEQ_2 SEQ_1

Partner Institution Research Institution

APP 2 APP 1

Cluster 1

Cluster 2

Cluster N

Processing

APP 1

APP 2

APP N

Applications

PDB

NCBI

EMBL

SEQ_1

Data

Basic idea: map resources into a global directory structure

All kinds of resources

• Compute resources
– PBS queue on Forge, SGE queue on Ranger, a PBS queue on your cluster

• Data Resources
– Your home directory at NCSA, your home directory in your lab, and instrument

in your lab, a relational database, the archive at PSC

• Identity Resources
– The XSEDE Kerberos infrastructure, your Kerberos system, your LDAP, or create

your own identities

• Scheduling resources
– Meta schedulers, global job queues, build your own job queue that sends jobs

to your cluster and your colleagues cluster

• Job resources
– Jobs are resources, you can “ls” the jobs in a queue, you can “ls” the working

directory of the job while it is running, as well as copy files in and out

• Groups/role resources
– Create and manage your own groups

16

View of portion of the Global Namespace

17

Identity resources for authorization: Access Control Lists

18

Compute resources

too

/queue/grid-
queue/jobs/mine/all/0D..status

/queues/grid-queue/resources/pbs-
astro …/activities/W-test/working-dir

This is the directory of the running job
– where ever it is

19

Then put a file system façade on top

and you have the

Global Federated File System

20

Three Examples Illustrate GFFS Typical Uses

Cases

• Accessing data at an NSF center from a home
or campus

• Accessing data on a campus machine from an
NSF center

• Directly sharing data with a collaborator at
another institution

We’ll come back to these later

21

GFFS – Basic Idea

• Access the global namespace

– Command line

– Graphical User Interface

– Map into local file system, “mount” XSEDE

• Put resources into the global namespace

– Export directories

– Clusters, supercomputers, cloud resources

– Identities

22

Accessing the GFFS

• Via a file system mount
– Global directory structure mapped directly into the local

operating system via FUSE mount

• XSEDE resources regardless of location can be accessed
via the file system
– Files and directories can be accessed by programs and

shell scripts as if they were local files

– Jobs can be started by copying job descriptions into
directories

– One can see the jobs running or queued by doing an “ls”.

– One can “cd” into a running job and access the working
directory where the job is running directly

23

Putting resources into the GFFS

• Exporting
directory trees

• Changes made
in native file
system visible to
GFFS

• Changes made
to files via GFFS
propagated to
native files

24

Shared storage as well

• The “rule” is – if you create a file or directory
the storage used is in the same storage
container as the parent directory

– For an export this is obvious

• To place data on a remote storage service,
mkdir (or use the GUI) and specify the target
container. All data going into that directory
will be stored on that container

25

Replication

• A directory tree of files and directories can be
replicated on another storage container

– Arbitrary k-replication – though there is a
performance and storage cost

• Consistency is eventual consistency

• Interesting research question

“How and when, and where should the system
automatically make replica’s?”

26

Three Examples Illustrate Revisted

• Accessing data at an NSF center from a home or campus
– Export directory at NSF center that you want to access
– FUSE mount the XSEDE GFFS into your local file system
– Create, Read, Update, and Delete files at the center from home

• Accessing data on a campus machine from an NSF center
– Export directory on campus file server into the GFFS
– FUSE mount the GFFS on the login node at the center, or specify state-

in/stage out in a job description
– Create, Read, Update, and Delete files at home from the center

• Directly sharing data with a collaborator at another institution
– Export directory on campus file server into the GFFS
– Give your collaborator desired level of access (RWX)
– Collaborator FUSE mounts the GFFS their desktop
– Share files.

27

December 19, 2013

Switch to brief demo

28

Conclusion

• The XSEDE X-WAVE architecture goal is to accelerate
science by lowering the barriers to collaboration
– Usability by leveraging known user interactions

– Integration of diverse resource into a shared namespace

– User control of access to their resources – whether they be
data, compute, or applications

• The GFFS allows users to securely share and easily
access data regardless of location
– A laboratory instrument

– An XSEDE file system

– Storage services

– The session directory of a running job

29

Research challenges

• Performance, Performance, Performance
• Location, Location, Location
• The trade-off between performance, availability,

cost, easy of use, security
• Leveraging commercial spaces with pay as you go

infrastructure
– Must have a way to “charge” for different qualities of

service
– Grid economies?

• The sociology of centers – how to overcome
institutional inertia?

30

X-WAVE:

Execution Management Services

32

What are Jobs in XSEDE?

• A job is a unit of work that executes a program
– Really pretty generic: much like PBS or LSF job
– Program may be sequential, threaded, hybrid GPGPU program, or

traditional parallel using MPI or OpenMP
– Programs can be command line programs or shell scripts that take zero

or more parameters

• Jobs MAY specify files to be staged in before execution and out after
execution
– This MAY include executables and libraries

• Jobs MAY specify file systems to mount, e.g., SCRATCH or GFFS
(Global Federated File System)

• Jobs MAY specify resource requirements such as operating system,
amount of memory, number of CPU’s, or other matching criteria

• Jobs MAY be parameter sweep jobs with arbitrary number of
dimensions

33

BESes: Basic Execution Services

• BESes run jobs on particular compute resources
– Manage data staging for jobs

– Monitor job progress/completion

– Maintains job state

• “Compute resources” may be workstations,
clusters, or supercomputers

• Each BES has a set of resource properties such as
operating system, memory, number of cores, etc.
that can be used to match jobs to BESes for
execution

XCG Tutorial

Grid Queues

• Work much like any other queuing system

• Grid users submit jobs to grid queue

• Maintain:
– List of (BES) compute resources available for scheduling

– Description of capabilities of each compute resource

– List of jobs and statuses

• Match jobs to available compute resources
– Ask matching resources to run jobs

• Monitor job progress/completion

• Cmd-line and GUI tools to manage jobs in queue
– qsub, qstat, qkill, qcomplete, queue manager

XCG Tutorial

