THE LANDSCAPE OF LARGE SCALE
GRAPH PROCESSING:
A VIEW FROM HOLLAND

Ana Lucia Varbanescu, University of Amsterdam, The Netherlands

With data, work, and (some) slides from a whole team:
Merijn Verstraaten, Ate Penders, Yong Guo, Alexandru losup, and others.

I What to do when your graphs get out of control 2

In this talk ...

S
0 Graph Analytics = any form of graph processing

0 Platform = hardware and/or software we can tune
and change as a whole

0 (Graph) Processing system = computing system that
includes one or more platforms (for graph
processing)

Today’s headlines
S
1. Graphs and graph processing
2. Benchmarking I: Algorithms
3. Benchmarking ll: Platforms
4. Future research directions

5. Take home message

- Graphs and graph processing

Graph analytics at work

Click to LOOK INSIDE!

&K Sequence and Genome Analysis
FICORD FDITRON
& /).).4/’ o _

‘Daturn:ao-

O vertrek

“+ Meer reiso

1 Verstoringen ¥ mmmm Nieuws ¥ 9292 onderweg

| | = |

Numbers ...

Active Social Network Users - January 2014

000000000 2+
active monthly users
You Y You You Y You 1billion
@@@@@ active monthly users
0‘9 0‘& "Q 0‘& 8238, 540 million
‘Q ‘Q ‘Q ‘Q % Q active monthly users
@@ 259 million
active monthly users

Does your business still just
OOC ¢32 million focus only on LinkedIn?

active monthly users

@andyheadworth | www.sironasays.com

In April 2014 ...

MILLION MEMBERS

We now have 300 million LinkedIn members, more than half of whom live
outside ofthe U.S. That's enough to make LinkedIn the fourth largest country
in the world. In celebration, we took a look back to see how much our
membership has grown and diversified over the past five years. It's a helpful
reminder of not only where we've been, but also where we're headed as we
work to create economic opportunity for every professional in the world.

Classical analytics

1 Statistics

O “How many connections do | have?”

0 Traversing
o “How can | reach Prof. X2~
0 Querying
o “Find all professionals in Graph Processing

14
around Dresden.

0 Mining

0 “Find the most influential CS researcher in Amsterdam.”

Classical analytics
-

1 Statistics

O “How many connections do | have?”

0 Traversing
0o “How can | reach Prof. X2”

No textbook algorithms exist for some of these operations.
If they exist, they probably need changing.

—_ N o NS

14
around Dresden.
Prof.X

0 Mining

0 “Find the most influential CS researcher in Amsterdam.”

. Ana Lucia Varbanescu's Professional Network
Llnkedm M“Ps as of Novembher 28, 2013

®2013 LinkedIn - Get your network map at inmaps.linkedinlabs.com

Your network is so large...

Sony, but your network is too large to be computed, we are
working to increase the limit, stay tuned!

Large Scale, Graph Processing

0 Large-scale
O Very large data
® Partitioning and parallel processing are mandatory!
O Complex analytics
®m Absolute or approximate ...
O

0 Graph processing
O Data-driven computations

O Irregular memory accesses
® Poor data locality

O Unstructured problems
O Low computation-to-data access

Large Scale Graph Processing
B

0 Graph processing is (very) data-intensive
O 10x larger graph => 100x or 1000x slower processing

0 Graph processing becomes (more) compute-intensive

O More complex queries => 2x slower processing

0 Graph processing is (very) dataset-dependent

O Unfriendly graphs => 2x slower processing

High performance enables larger graphs and

support for more complex analytics.

More performance? Many-coresl!

RADEON

GRAPHICS

AMDZV

Top500 in November 2014

S
0 Traditional HPC is about computing ... not graphs!

Rmax Rpeak Power
Rank Site System Cores (TFlop/s) (TFlop/s) (kW)

€D National University of Defense Technology Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel 3120000 33862.7 54902.4 17808

China 195 de! Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel
cores/node! Xeon Phi 3151P

Accelerated!

NUDT
€D DOE/SC/Oak Ridge National Laboratory Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray 560640 17590.0 271125 8209
United States Gemini interconnem
Cray Inc. Accelerated!
&) DOENNSALINL Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, 1572864 17173.2 20132.7 7890
United States Custom
IBM
@) RIKEN Advanced Institute for K computer, SPARCS4 VIlifx 2.0GHz, Tofu 705024 10510.0 11280.4 12660
Computational Science (AICS) interconnect
Japan Fujitsu
@) DOE/SC/Argonne National Laboratory Mira - BlueGene/Q, Power BQC 16C 1.60GHz, 786432 8586.6 10066.3 3945
United States Custom

IBM

GraphSOO Z Top500

Machine Site of nodes cores scale | GTEPS

K computer (Fujitsu - Custom

supercomputer) RIKEN, Japan 65536 524288 17977
DOE/NNSA/LLNL Sequoia (IBM - BlueGene/
2, Power BQC 16C 1.60 GHz) LLNL, USA 65536 1048576 40 16599

DOE/SC/Argonne National Laboratory
3 Mira (IBM - BlueGene/Q, Power BQC 16C

1.60 GHz) ANL, USA 49152 786432 40 14328
JUQUEEN (IBM - BlueGene/Q, Power BQC
16C 1.60 GHz) FZJ, Germany 16384 262144 38 5848

Fermi (IBM - BlueGene/Q, Power BQC 16C

131072
196608

1.60GHz)

Blue Joule (IBM - BlueGene/Q, P
16C 1.60 GHz) 65536 36 1427
DIRAC (IBM - BlueGene/Q, Power BQC 16C University of

1.60 GHz) Edinburgh, UK 4096 65536 36 1427

Zumbrota (IBM - BlueGene/Q, Power BQC
10 16c1.60 GHz) EDF R&D 4096 65536 36 1427

Laboratory, UK

The challenges
—

0 Feasibility:
Can we use multi-core and many-core processors — to

address the performance requirements for modern
graph algorithms?

0 Usability:
Is there a systematic
solution to enable this match?

Why challenging?
N

0 Many-cores have emerged to improve

performance by using massive parallelism.

01 Performance gain in theory: oph process'mgz
— . Reﬂ\eﬂ‘ber 9r U‘QT'\OY\S
N cores => N times faster sq-driven @ e
. o Da tor memor acce
0 For this, we need: o WrreQU T locality
. . . o PoOf @
O massive (multi-layered) parallelism ured oroblems
: , . e Unstruc -to-datd
O high computation-to-data access ratio Low €O putation 1

O high data locality qccess ratio

O structured, regular access patterns

Additional challenge

T

CPU

Which one to choose 212!

- Benchmarking |: Algorithms

Can we run graph analytics on
HPC architectures, efficiently?

BFS>APSP>BC

S
0 Graph traversal (Breadth First Search, BFS)

0 Traverses all vertices “in levels”

0 All-Pairs Shortest Paths (APSP)

O Repeat BFS for each vertex

0 Betweenness Centrality (BC)
O APSP once to determine paths

O Bottom-up BFS to count paths

0 Implementation in OpenCL
O Same algorithm
0 CPU- and GPU-specific tuning applied

*Ate Penders MSc thesis
“Accelerating graph processing using modern accelerators”

Data sets & devices

Abbreviation| Vertices Edges Diameter Avg. Degree
Wikipedia Talk Network WT 2,394,385 5,021,410 Q 2,10
California Road Network CR 1,965,206 5,533,214 850 2,81
Rodinia Graph 1M TM 1,000,000, 6,000,000 36 6,00
Stanford Web Graph SW 281,903 2,312,497 740 8,20
EU Email Communication Network EU 265,214 420,045 13 1,58
Star ST 100,000 99,999 1 0,99
Chain CH 100,000 99,999 99,999 1,00
Epinions Social Network ES 75,879 508,837 13 6,70
Rodinia Graph 64K 64K 64,000 393,216 28 6,14
Wikipedia Vote Network VW 7,115 103,689 7 14,57
Rodinia Graph 4K 4K 4000 25,356 19 6,38

1 Devices

Intel(R) Xeon(R) CPU E5620 @ 2.40GHz

GeForce GTX 480
Tesla C2050 / C2070

BFS — normalized
N

1

0.9

0.8

!
s LEI B
05 HER BRI B
04 HER BRI B
03 1 H]l BRI}
02 111 B111
0. 111 B11 1]
i 11118111}

WT CR 1M SW EU CH ST ES 64K WV 4K

B Xeon (CPU) B Tesla (GPU) [GTX (GPU)

BFS — normalized
-—

1
0.9
0.8
0.7
0.6

¥ Performance depends on the diameter and degree:
¥ Large diameter => CPU
4 High degree => GPU

1---------

WT CR 1M SW EU CH ST ES 64K WV 4K

0

B Xeon (CPU) [Tesla (GPU) [GTX (GPU)

APSP - normalized
N

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

g I’IIIIIIII
0

WT CR 1M SW EU CH ST ES 64K WV 4K

B Xeon (CPU) B Tesla (GPU) [GTX (GPU)

APSP - normalized
N

1

0.9
0.8
0.7
0.6
0
0
0
0.2 = = B |
111111111 |

WT CR 1M SW EU CH ST ES 64K WV 4K

GPUs always win due to the (enforced) high
parallelism of our solution.

0

B Xeon (CPU) [Tesla (GPU) [GTX (GPU)

BC - normalized
S

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

oL I .

WT CR 1M SW EU CH ST ES 64K WV 4K

B Xeon (CPU) B Tesla (GPU) [GTX (GPU)

BC - normalized
S

1

0.9
0.8
0.7
0.6
0.5
P Atomic operations for counting paths => variable

0. performance due to variable contention!
IR EIN LR
ol El Tl Rillll

WT CR 1M SW EU CH ST ES 64K WV 4K

B Xeon (CPU) [Tesla (GPU) [GTX (GPU)

0

Lessons learned [1]
_—

0 Graphs seem to be CPU or GPU friendly

O Data-dependent performance variations using the same
implementation
m CPU = lower parallelism, more caching

® GPU = massive parallelism, less caching

O Memory size is an issue!

=> true large scale ¢

S
N
4‘.’.01-‘&

Lessons learned [2]
N

0 Increased algorithm complexity can increase parallelism
0 E.g.: ASPS = | V| x BFS

01 Dataset representation and properties increase
parallelism

0 Synchronization is an important bottleneck
O E.g.: BC mixes compute with synchronization

0 We have no clear understanding of graph “sizes”
O # vertices or # edges?

O Diameter?
O Other properties?

Experiment 2: BFS traversals

1 Question:
O Is there a best BFS algorithm?
m On GPUs 2
m Overall 2
0 Setup:

O Run multiple BFS implementations
® Including the ones claimed to be the best @ LonestarGPU

o0 Run on different graphs
m 6 datasets

0 Run on different hardware

Normalized on naive GPU, kernel
B

1000

¥ CUDA-01
B CUDA-02
" CUDA-04
“ CUDA-08
W CUDA-16
¥ CUDA-32

100

10

¥ [lonestar]

[topology-atomic]

0.1 .
¥ [merrill]

B [worklistw]

0.01 [worklista]

“ [worklistc]

0.001 ® OpenCL CPU
A%
S

Normalized on naive GPU, kernel
B

1000

¥ CUDA-01
¥ CUDA-02
" CUDA-04
“ CUDA-08
W CUDA-16
¥ CUDA-32

100

10

¥ [lonestar]

" [topology-atomic]

0.1 .
¥ [merrill]

B [worklistw]

0.01 “ [worklista]

“ [worklistc]

0.001

Orders of magnitude performance difference.

No clear winner.

Normalized on naive GPU, full exec.
N

¥ CUDA-01
¥ CUDA-02
" CUDA-04
“ CUDA-08
W CUDA-16
¥ CUDA-32

¥ [lonestar]
[topology-atomic]

¥ [merrill]

0.1
B [worklistw]

[worklista]

" [worklistc]

0.01
[|
\\\e‘) 8 (\ed ¢ \eé o '\o\\" OpenCL CPU
29 1@ \o e wxe o g
S AN o A SN e o\
o & (o)) .
" re ‘0 ¢\) 6‘)
A 0% e N
o 0 S

Normalized on naive GPU, full exec.
N

¥ CUDA-01
¥ CUDA-02
" CUDA-04
“ CUDA-08
W CUDA-16
¥ CUDA-32

¥ [lonestar]
" [topology-atomic]

= [merrill]

0.1
B [worklistw]

" [worklista]

0.01

Adding the data transfer times narrows the

performance gaps.

Lessons learned [1]

SN

0 Large variability in performance depending on the
graph.
O Fastest to slowest ratio varies.

0 The relative performance of one BFS
implementation varies for different graphs.
O Fastest on one graph CAN BE slowest on another graph.

0 Data representation and data structures make the
difference

O List of edges vs adjacency lists
O Lock-free frontier

Lessons learned [2]
N

0 Two disjoined classes of algorithms
o GPU-optimized
O Portable to CPU (= naive)

0 A naive CPU implementation can be competitive
with some of the GPU implementations.

0 On small graphs (GPUs are underutilized)

0 When data transfer is an issue.

1 Better CPU solutions do exist ...

o

Take home message f

0 Large scale graph processing IS high performance
computing
0 Due to/for data scale *and* analysis complexity

0 HPC hardware (many-core processors) are feasible
for graph processing
O yet performance is (for now) unpredictable

0 Performance is dependent on all three “axes”

0 Performance = f (dataset, algorithm, hardware)

P-A-D triangle

S
Algorithm

In progress
Algorithms for different
data types and graph

Overstudied
Performance is enabled
Portability is disabled

—
Datase " Platform

Understudied

No systematic findings yet

Intuitive correlations

Must be correlated with the algorithm

- Benchmarking ll: Platforms

Graph processing @ scale
-

0 The characteristics of graph processing
O Poor locality
O Unstructured computation
O Variable parallelism

O Low computer-to-memory ratio

0 @ Scale

O Distributed processing is mandatory

o Parallel processing is very useful

Implementing graph applications is already difficult. Dealing with large

scale systems on top (below, in fact) them is even harder.

Graph processing systems
N

0 Provide simplified ways to develop graph processing
applications

O Typical scenario: analytics on single- or multi-node platfoms

O Heterogeneity is becoming popular

0 Target *productivity® and *performance™
O Productivity => ease-of-implementation, development time
O Performance => optimized back-ends / engines /runtimes

O Portability comes “for free”

01 Both commercial and academic, many open-source

Graph processing systems

Performance

* Systems for graph processing
* Separate users from backends Cus’rom
* Think Giraph, Totem, Medusq,

Dedicated
Systems

Specify application

Choose the hardware

Implement & optimize

Think Graph500

Generic

* Use existing large scale

distributed systems
ANA - * Mapping is difficult

N

F >
* Parallelism is “free” Development
Effort

* Think MapReduce

- GPU-enabled dedicated systems

MapGraph™
B

0 GPU-only graph processing
o CPU, single- and multi-GPU versions

01 Vertex-centric APl based on Gather-Apply-Scatter
(GAS @ Graphlab)

O Gather: reads the vertex’s neighborhood.
O Apply: updates the vertex based on the gather result.
O Scatter: pushes updates to the vertex’s neighborhood.
m Users write functions for the G-A-S phases
0 Two data structures (user-defined)
O VertexLlist: data for each vertex.

O Edgelist: data for each edge

*http:/ /mapgraph.io/index.html

Medusa™

0 GPU-only graph processing
O Single-node, multiple GPUs

00 Programmability-driven, based on BSP

O EMV (edge-message-vertex) model
m Extension of the Vertex-centric Pregel-like model

0 GPU-specific back-end optimization
0 Simple API that hides GPU programming

0 Define data structures
o0 Define operations for edges, messages, vertices
0 Compose the algorithm from these operations
O Run (iteratively) over the graph
*https: / /code.google.com/p /medusa-gpu/

Totem™

0 Heterogeneous CPU+GPUs graph processing
o C+CUDA for specifying applications
O (Thin) APl for heterogeneity
O Based on BSP (and close to Pregel)

0 Partitions data (edge-based) between CPUs and GPUs
O Based on processing capacity
O Minimizing the overhead of communication

m Buffer schemes, aggregation, smart partitioning

0 A user-defined vertex-centric kernel runs simultaneously
on each partition (CPUs, GPUs)

O Vertices are processed in parallel within each partition

O Messages can be combined
*http: / /netsyslab.ece.ubc.ca /wiki/index.php /Totem

- Experiments™

*Yong Guo et. al, “An Empirical Performance Evaluation of GPU-
Enabled Graph-Processing Systems”, CCGrid 2015

Setup: Algorithms & Systems

0 Algorithms
o BFS (traversal)
O PageRank

0 Weakly connected components

0 Hardware: GPU-enabled nodes in DAS4
0 GTX480 (most results), GTX580, and K20

01 Processing systems:
O Totem - GPU-only and Hybrid
0 Medusa — single- and multi-GPU
0 MapGraph — single-GPU

Setup: datasets
N

Graphs \Y E d D | MaxD
Amazon (D) 262,111 1234877 18 5 5
WikiTalk (D) 2,388,953 5018 445 0.1 2 | 100,022
Citation (D) 3,764,117 16 511,742 0.1 4 770
KGS (U) 293 290 22390820 260 76 18969
Dotal eague (U) 61,171 101740632 | 27190 | 1663 17,004
Scale-22 (U) 2,394 536 128 304030 22 54 | 163499
Scale-23 (U) 4611439 258672163 12 56 | 257910
Scale-24 (U) 8,870.942 520,760,132 0.7 59 | 406417
Scale-25 (U) 17062472 | 1047207019 04 61 | 639,144

V and E are the vertex count and edge count of the graphs. d is the link density
(x10~%). D is the average vertex out-degree. Max D is the largest out-degree.
(D) and (U) stands for the omginal directivity of the graph. For each ornginal
undirected graph, we transfer it to directed graph (see Section II-B1).

Setup: datasets

2,388,953 5018.445 i 100,022
3,764,117 16,511,742 i 770

293290 22 390,820 18,969
61,171 101,740,632 17,004
2,394 536 128 304 030 163,499

AlC-20

V and E are the vertex count and edge count of the graphs. d is the link density
(x10~%). D is the average vertex out-degree. Max D is the largest out-degree.
(D) and (U) stands for the omginal directivity of the graph. For each omnginal
undirected graph, we transfer it to directed graph (see Section II-B1).

BFS [algorithm]

Totem is the worst perfomer.

Medusa and MapGraph cannot handle large graphs.

BFS [full]

4
o

" [swy)

™ Al
o o

~— ~—

awll) UoINd8Xg

10’

Totem becomes the best performer !

WCC [algorithm]

Strong c;IepenoIency on the grc-uph.
No best/worst performer.

More crashes of MapGraph.

PageRank [algorithm]

104 T T T T T T
M] T-G 1.
T-H KXX MG £
£10° ¢
()]
=
5102 F
£
=
S. 1l
210
10°

'4/;7 h//A,.
Most compute-intensive.
Totem performs worst.

For large graphs, Totem-GPU is worse than hybrid.

Multi-GPU scalability

I I
3000

T-G —©&— T-H-GPU ~—F—
TH —a— M —o—

A
2 2000
2 \g\em:j:x
£ 3
£ 1000
)
<
0

Platforms can use multiple GPUs efficiently.

Load balancing matters.

GPU versions

GTX 580 E=58

No guaranteed gain for newer GPUs
Larger graphs seem to benefit more from K20m.

Lessons learned
B

0 Brave attempts to enable the use of GPUs *inside™
graph processing systems
01 Every system has its own quirks

O Lower level programming allows more optimizations,
better performance.

O Higher level APIs allow more productivity.

01 Data pre-processing and data structure are crucial
to both performance and capability.

0 No clear winner, performance-wise.

- Distributed /Large Scale platforms

Graph processing systems

Performance

* Systems for graph processing
* Separate users from backends Cus’rom
* Think Giraph, Totem, Medusq,

Dedicated
Systems

Specify application

Choose the hardware

Implement & optimize

Think Graph500

Generic

* Use existing large scale

distributed systems
ANA - * Mapping is difficult

N

F >
* Parallelism is “free” Development
Effort

* Think MapReduce

Hadoop (Generic)

S
11 The most popular MapReduce implementation

0 Generic system for large-scale computation

1 Pros:

O Easy to understand model
O Multitude of tools and storage systems

1 Cons:

O Express the graph application in the form of
MapReduce

O Costly disk and network operations
O No specific graph processing optimizations

i iErlEE

Hadoop?2 with YARN (Generic)

0 Next generation of Hadoop
O Supports old MapReduce jobs
O Designed to facilitate multiple programming models

(frameworks, e.g., Spark)

0 Separates resource management (YARN) and
job management

O MapReduce manages jobs using resources provided by
YARN

Stratosphere (Generic)

]
0 Now Apache Flink

11 Nephele resource manager
O Scalable parallel engine
O Jobs are represented as DAGs
O Supports data flow in-memory, via network, or on files

0 PACT job model

O 5 second-order functions (MapReduce has 2):
Map, Reduce, Match, Cross, and CogGroup

O Code annotations for compile-time plans
O Compiled as DAGs for Nephele

StratoSphere

Above the Qouds

Pregel graph-processing model

S .
0 Proposed a vertex-centric approach to graph
processing
O Graph-to-graph transformations

1 Front-end:

O Write the computation that runs on all vertices

O Each vertex can vote to halt
m All vertexes halt => terminate

0 Can add/remove edges and vertices

0 Back-end:
O Uses the BSP model

O Message passing between nodes
m Combiners, aggregators

O Checkpointing for fault-tolerance

T@ﬂmﬁbhﬂ ur sechshundert jﬁlyrigm@hlftirr h«f‘g}ini«lirht@mvl m@sibm)&glnu@nimbtm in@mﬁm.

Processing Mode!:

NI “active” node wil be executed
Whale grocesaing corngleted when
a. Nomore active node

b No mooe - transil mescuges

Superstep execution:

1. Recvive message from inbox

2. Modify node and arc
propertics

3. Halt sedf [uentil e message
received)

4, Seed ressaages to ather nodes
(cousng them active)

5. Femowe existing of creute new
arcs

H

Load and Chedkpoint

can be combined

Apache Giraph (Dedicated)

S
0 Based on the Pregel model
0 Uses YARN as back-end (yet another framework)

0 In-memory
O Limitations in terms of partition sizes

O Spilling to disk is work in progress

HS DA A
0 Enables ,-‘.:,-:g‘g‘:.‘..‘»
| J D DTS Ay
O lterative data processin AN O
O Message passing, aggregators, combiners S '.:.:
AR TS
A P A CHE
G| RAP

GraphLab (Dedicated)

0 Distributed programming model for machine learning

O Provides an AP| for graph processing, C++ based (now Python)

GraphlLab API (C++)

MPI/TCP-IP PThreads Hadoop/HDFS

Linux Cluster Services (Amazon AWS)

0 All in-memory
0 Supports asynchronous processing

-
0 GraphChi is its single-node version, a\/ .
Dato as GraphLab company Gl’@@h Lap

Neo4) (Dedicated)

S
01 Very popular graph database

O Graphs are represented as relationships and
annotated vertices

0 Single-node system
O Uses parallel processing
O Additional caching and query optimizations

o All in-memory

0 The most widely used solutions for medium-scale
problems

® Neoy)

the graph database

- Experiments™

*Y. Guo, M. Biczak, A. L. Varbanescu, A. losup, C. Martella, and T. L. Willke.
How Well do Graph-Processing Platforms Perform? An Empirical
Performance Evaluation and Analysis, IPDPS 2014

Platforms we have evaluated

1 Distributed or non-distributed

0 Dedicated or generic

DY I
@ —/a/a/o p | STE
==
po
[GIRAPH *® Neoy;
I @ the graph database
=
I Eoleslan Ig b\
@ StratoSphere I
Abowve the Qouds
| Distributed Non-distributed

Distributed (Generic) (Dedicated) (Dedicated)

Setup
N

1 Benchmarking-like experiment
o 6 algorithms
O 7 data-sets
O 7 platforms

0 Implement all algorithms on all platforms

01 Run and compare ...

0 Performance

0 Estimate usability™

Hardware

0 DAS4: a multi-cluster Dutch grid /cloud
O Intel Xeon 2.4 GHz CPU (dual quad-core, 12 MB cache)
0 Memory 24 GB
0 1 Gbit/s Ethernet network
0 Size
0 Most experiments take 20 working machines

o Up to 50 working machines
0 HDFS used as distributed file system

~ e
DAS “73.

Datasets

]

Graphs #V #E d D | Directivity

(D G1 | Amazon 262,111 1,234,877 1.8 4.7 directed
(D G2 | WikiTalk 2,388,953 5,018,445 0.1 2.1 directed
G3 | KGS 293,290 16,558,839 38.5 112.9 undirected

(D G4 | Citation 3,764,117 16,511,742 0.1 4.4 directed
G5 | Dotaleague 61,171 50,870,316 | 2,719.0 | 1,663.2 undirected

@ Go Synth 2,394,536 64,152,015 2.2 53.6 undirected
(D G7 | Friendster 65,608,366 | 1,806,067,135 0.1 55.1 | undirected

. .
L ,SNAP °° GR The Game Trace Archive
S e @ O

https:/ /snap.stanford.edu/ http: / /www.graph500.org/ http: / /gta.st.ewi.tudelft.nl/

Graph-Processing Algorithms
N

0 Literature survey
o 10 top research conferences: SIGMOD, VLDB, HPDC ...
0 2009-2013, 124 articles

Graph Statistics Diameter, PageRank 16.1
Graph Traversal BFS, SSSP, DFS 46.3
Connected Component Reachability, BiCC 13.4
Community Detection Clustering, Nearest Neighbor 5.4
Graph Evolution Forest Fire Model, PAM 4.0
Other Sampling, Partitioning 14.8

BFS: results for all-2-all
B

10 Giraph | YARN =] g
Stratosphere_To0J GraphLab N I 1 1 hour
Hadoop mEEE Neodj b 4

— 103 VA 15 minS

D,

()

£

SRToallnrt T NS NI I N/ B N/EER 1/ 1

= 7 R 4 1 min

>

(&)

(O)

X

L

No platform runs fastest for all graphs, but Hadoop is the worst performer.
Not all platforms can process all graphs, but Hadoop processes everything.

15 min

(/11

Citation =X

Dotaleague

T

Friendster

Amazon []
WikiTalk XX

thms, all data sets

results for

AR~
| TSITIIIIIIIIIIIS:

7///////////////////////////
‘\\\\\‘\\\\\\\\\\\\

N‘N‘M‘M‘N‘M‘NCN‘NCNON‘MON‘M‘N‘N"

V///////////////////////////
s\\\-\~\~\-\\\-

'V‘VCV‘VCV‘V‘V‘V‘V‘V‘V‘V‘V‘V‘VCVCV‘V

BN R XX KX KR KX KK EEKXHKD
OO,

STAT

ori

(S) awiy uonnoax3

Giraph
all al

or number of

BFS CONN COMM EVO
Algorithms

K
3
&
-
(@)

G
| -
()}
o

e
o
O

=

O
(72)

o
)

=
>~
| -
o)
£
()}
(S

=

e
o
O
| .
(0))

9
o)

e
3
()}

=

e
(o))
c

=
(o)
—

(Vp)

Giraph may crash when

Horizontal scalability:

BFS on Friendster (31 GB)
N

Hadoop ——

Stratosphere ——
8000 F GraphLab —8—

GraphLab(mp) —-——

Giraph

D
()
_g 6000
c
2
3 4000
()
x
LLi
2000
0 P il ¥ s S
20 25 30 35 40 45 50
machines

Using more computing machines can reduce execution time

Tuning needed for horizontal scalability, e.g.,

Overhead (BFS, Dotaleague)

I I
400 l . l

Corﬁputatio;l Time '-
Overhead Time []

W
o
o

200

Execution time [s]

100

We need new metrics, to capture meaning of computation time (more later)
In some systems, overhead is by and large wasted time (e.g., in Hadoop)

Additional Overheads:Data ingestion
—

0 Data ingestion
O Batch system: one ingestion, multiple processing

O Transactional system: one ingestion, one processing

0 Data ingestion matters even for batch systems

Amazon Dotaleague Friendster

Productivity
B

Hadoop(Java) | Stratosphere(Java) | Giraph(Java) | GraphLab(C++) | Neo4j(Java)
BFS 1d, 110 loc 1d, 150 loc 1d, 45 loc 1d, 120 loc 1 h, 38 loc
CONN 1.5d, 110 loc 1d, 160 loc 1d, 80 loc 0.5 d, 130 loc 1d, 100 loc

0 Low throughput in terms of LOC for all models

0 Days to hours development time for the simpler
applications

We need better productivity metrics!

Lessons learned®
N

0 Performance is function of
(Dataset, Algorithm, Platform, Deployment)

O Previous performance studies may lead to tunnel vision
0 Platforms have their own drawbacks
(crashes, long execution time, tuning, etc.)
O Best-performing is not only low response time
O Ease-of-use of a platform is very important
0 Some platforms can scale up reasonably with cluster
size (horizontally) or number of cores (vertically)

O Strong vs weak scaling still a challenge

m workload scaling tricky

*All results and details:
http://www.pds.ewi.tudelft.nl/fileadmin/pds/reports/2013/PDS-2013-004-4.pdf

P-A-D triangle revisited

S
Algorithm

In progress
Algorithms for different
data types and graph

Overstudied
Performance is enabled
ilitv is disabled

In distributed systems,
deployment matters, too!

Datase

Understudied

No systematic findings yet

Intuitive correlations

Must be correlated with the algorithm

- Future directions

Graphalytics™
=

1 Benchmarking graph processing systems
O Selection of datasets

® Synthetic, with real profiles OraC|e I_a bS

m Real-life
O Selection of algorithms

®m Problem-based
m Code-based

X

O Selection of metrics l;:«l

O Selection of systems UNIVERSITY OF AMsTERDAM LR€search
m All of them. %

O Reporting the results TU Delft :,

. .
Goal-oriented The graph & RDF

L D B @ benchmark reference
*http:/ /graphalytics.ewi.tudelft.nl

Heterogeneous computing
N

0 Build *the first* multi-node heterogeneous graph
processing system
O Model performance
m Are GPUs always useful in a distributed setup?
® Which partition goes where?
O Implementation

® Based on existing distributed systems

m Add graph-specific scheduling and resource allocation

Graph-centric framework
N

0 Understand graph features

0 What makes a graph “special”

0 Select the best algorithm for a given graph

Input

Graph

— Sample

1|

—>| Characterization

Hardware

Application

Best performing

Algorithms | hardware-software

mix

End goal: Graphitti

Operations

Graph
Operations

I |

1.Understand the hardware

HW

modeling 2.Understand the application

Generic parameterized Fully Parallel
hardware model workload model

3. Match hardware to application

Parallel,
optimized

Hardware configuration Parallelized workload &
partitioned dataset

End goal: Graphitti

Operations

Graph
Operations

...

GPW
Modeling

Generic parameterized Fully Parallel
hardware model workload model
b

Parallel,
optimized
code

Hardware configuration Parallelized workload &
partitioned dataset

o

Take home message f

0 Graph processing is a hot topic for both software
and hardware developers

01 Challenges in scale and irregularity
0 Existing graph processing systems : 80+

1 Choose which one to use

0 Quick-Pick: choose a platform where your graph fits
and you can program.

O Systematic: meta-benchmarking, a.k.a., Graphalytics

Take home message f

0 Comprehensive and systematic performance study
of graph processing systems is difficult.

0 Main challenges

O fairness of comparison

o n 1
O lopment tim AR\ : y,
deve opme € ° \ \ 9 /é’o'lllm I /""?ﬂ

H Lqrge-scqle systems are

promising, but adoption remains low.

0 GPU-enabled systems show promising performance,
but ... no dedicated distributed GPU-enabled
graph processing systems — YET!

Future research directions
I
0 Improved benchmarking
0 Heterogeneous computing
0 Workload characterization

0 Smart resource allocation

Questions ¢
—

ay

A.LVarbanescu@uva.nl
Online: graphalytics.ewi.tudelft.nl

