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In this talk …  

¨  Graph Analytics = any form of graph processing  
¨  Platform = hardware and/or software we can tune 

and change as a whole 
¨  (Graph) Processing system = computing system that 

includes one or more platforms (for graph 
processing) 



Today’s headlines 

1.  Graphs and graph processing 
2.  Benchmarking I: Algorithms 
3.  Benchmarking II: Platforms  
4.  Future research directions  
5.  Take home message  



Graphs and graph processing  



Graph analytics at work 



Numbers …  



In April 2014 …  



Classical analytics 

¨  Statistics  
¤ “How many connections do I have?”  

¨  Traversing  
¤ “How can I reach Prof. X?” 

¨  Querying 
¤ “Find all professionals in Graph Processing  
around Dresden.“ 

¨  Mining 
¤ “Find the most influential CS researcher in Amsterdam.”  

Me 

Prof.X 
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No textbook algorithms exist for some of these operations.  
If they exist, they probably need changing. 







Large Scale, Graph Processing  

¨  Large-scale  
¤  Very large data 

n  Partitioning and parallel processing are mandatory! 
¤  Complex analytics  

n  Absolute or approximate …  
¤  Data might evolve in time  

n  Fast processing or new algorithms?  
 

¨  Graph processing 
¤  Data-driven computations 
¤  Irregular memory accesses  

n  Poor data locality 
¤  Unstructured problems 
¤  Low computation-to-data access ratio 



Large Scale Graph Processing 

¨  Graph processing is (very) data-intensive 
¤  10x larger graph => 100x or 1000x slower processing 

¨  Graph processing becomes (more) compute-intensive 
¤ More complex queries => ?x slower processing  

¨  Graph processing is (very) dataset-dependent 
¤ Unfriendly graphs => ?x slower processing 

High performance enables larger graphs and  
support for more complex analytics.  



More performance? Many-cores!   



Top500 in November 2014 

¨  Traditional HPC is about computing … not graphs! 

195 cores/node!  
Accelerated! 

Accelerated! 



Ran
k	
   Machine	
  

Installa/on	
  
Site	
  

Number	
  
of	
  nodes	
  

Number	
  of	
  
cores	
  

Problem	
  
scale	
   GTEPS	
  

1	
   	
  K	
  computer	
  (Fujitsu	
  -­‐	
  Custom	
  
supercomputer)	
   RIKEN,	
  Japan	
   65536	
   524288	
   40	
   	
  17977	
  

2	
   DOE/NNSA/LLNL	
  Sequoia	
  (IBM	
  -­‐	
  BlueGene/
Q,	
  Power	
  BQC	
  16C	
  1.60	
  GHz)	
   LLNL,	
  USA	
   65536	
   1048576	
   40	
   16599	
  

3	
  
	
  DOE/SC/Argonne	
  Na/onal	
  Laboratory	
  
Mira	
  (IBM	
  -­‐	
  BlueGene/Q,	
  Power	
  BQC	
  16C	
  
1.60	
  GHz)	
   ANL,	
  USA	
   49152	
   786432	
   40	
   14328	
  

4	
   	
  JUQUEEN	
  (IBM	
  -­‐	
  BlueGene/Q,	
  Power	
  BQC	
  
16C	
  1.60	
  GHz)	
   FZJ,	
  Germany	
   16384	
   262144	
   38	
   5848	
  

5	
   	
  Fermi	
  (IBM	
  -­‐	
  BlueGene/Q,	
  Power	
  BQC	
  16C	
  
1.60	
  GHz)	
   	
  CINECA	
   8192	
   131072	
   37	
   2567	
  

6	
   	
  Tianhe-­‐2	
  (MilkyWay-­‐2)	
  (Na/onal	
  
University	
  of	
  Defense	
  Technology	
  -­‐	
  MPP)	
   	
  Changsha,	
  China	
   8192	
   196608	
   36	
   	
  2061	
  

7	
   	
  Turing	
  (IBM	
  -­‐	
  BlueGene/Q,	
  Power	
  BQC	
  16C	
  
1.60GHz)	
   	
  CNRS/IDRIS-­‐GENCI	
   4096	
   65536	
   36	
   1427	
  

8	
   	
  Blue	
  Joule	
  (IBM	
  -­‐	
  BlueGene/Q,	
  Power	
  BQC	
  
16C	
  1.60	
  GHz)	
  

Daresbury	
  
Laboratory,	
  UK	
   4096	
   65536	
   36	
   1427	
  

9	
   	
  DIRAC	
  (IBM	
  -­‐	
  BlueGene/Q,	
  Power	
  BQC	
  16C	
  
1.60	
  GHz)	
  

	
  University	
  of	
  
Edinburgh,	
  UK	
   4096	
   65536	
   36	
   1427	
  

10	
   	
  Zumbrota	
  (IBM	
  -­‐	
  BlueGene/Q,	
  Power	
  BQC	
  
16C	
  1.60	
  GHz)	
   	
  EDF	
  R&D	
   4096	
   65536	
   36	
   1427	
  

Graph500 ≠ Top500 ! 

Number 1 in Top500 



The challenges   

¨  Feasibility:  
Can we use multi-core and many-core processors – to 
address the performance requirements for modern 
graph algorithms?  
 
¨  Usability:  
Is there a systematic  
solution to enable this match? 



Why challenging? 

¨  Many-cores have emerged to improve 
performance by using massive parallelism. 

¨  Performance gain in theory:  
   N cores => N times faster  
¨  For this, we need: 

¤ massive (multi-layered) parallelism  
¤  high computation-to-data access ratio 
¤  high data locality 
¤  structured, regular access patterns 

Remember graph processing?  

•  Data-driven computations 

•  Irregular memory accesses  

•  Poor data locality 

•  Unstructured problems 

•  Low computation-to-data  

access ratio 



Additional challenge 
19 

Control 

ALU ALU 

ALU ALU 

Cache 

CPU 

GPU 

Which one to choose ?!?! 



Can we run graph analytics on  
HPC architectures, efficiently? 
 

Benchmarking I: Algorithms 



BFSèAPSPèBC 

¨  Graph traversal (Breadth First Search, BFS)  
¤  Traverses all vertices “in levels”   

¨  All-Pairs Shortest Paths (APSP) 
¤  Repeat BFS for each vertex 

¨  Betweenness Centrality (BC) 
¤ APSP once to determine paths   
¤  Bottom-up BFS to count paths  

¨  Implementation in OpenCL 
¤  Same algorithm 
¤ CPU- and GPU-specific tuning applied 

*Ate Penders MSc thesis  
“Accelerating graph processing using modern accelerators” 



Data sets & devices 

¨  Devices   

Abbreviation Vertices Edges Diameter Avg. Degree 

Wikipedia Talk Network  WT 2,394,385 5,021,410 9 2,10  
California Road Network  CR 1,965,206 5,533,214 850 2,81  
Rodinia Graph 1M  1M 1,000,000 6,000,000 36 6,00  
Stanford Web Graph  SW 281,903 2,312,497 740 8,20  
EU Email Communication Network  EU 265,214 420,045 13 1,58  
Star  ST 100,000 99,999 1 0,99 
Chain  CH 100,000 99,999 99,999 1,00 
Epinions Social Network  ES 75,879 508,837 13 6,70  
Rodinia Graph 64K  64K 64,000 393,216 28 6,14  
Wikipedia Vote Network  VW 7,115 103,689 7 14,57  
Rodinia Graph 4K  4K 4000 25,356 19 6,38  

Intel(R) Xeon(R) CPU E5620 @ 2.40GHz"
GeForce GTX 480"
Tesla C2050 / C2070"
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Performance depends on the diameter and degree: 
Large diameter => CPU 
High degree => GPU 



APSP - normalized 
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BC - normalized 
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Lessons learned [1] 

¨  Graphs seem to be CPU or GPU friendly  
¤ Data-dependent performance variations using the same 

implementation  
n CPU = lower parallelism, more caching  
n GPU = massive parallelism, less caching  

¤ Memory size is an issue!  
=> true large scale ?  



Lessons learned [2] 

¨  Increased algorithm complexity can increase parallelism 
¤  E.g.: ASPS = |V| x BFS 

¨  Dataset representation and properties increase 
parallelism 

¨  Synchronization is an important bottleneck   
¤  E.g.: BC mixes compute with synchronization 

¨  We have no clear understanding of graph “sizes”  
¤ # vertices or # edges?  
¤ Diameter?  
¤ Other properties? 



Experiment 2: BFS traversals 

¨  Question:  
¤  Is there a best BFS algorithm?  

n On GPUs ? 
n Overall ?  

¨  Setup: 
¤ Run multiple BFS implementations  

n  Including the ones claimed to be the best @ LonestarGPU 
¤ Run on different graphs  

n 6 datasets  
¤ Run on different hardware  
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No clear winner. 
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Normalized on naïve GPU, full exec. 
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Normalized on naïve GPU, full exec. 
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Lessons learned [1] 

¨  Large variability in performance depending on the 
graph.  
¤ Fastest to slowest ratio varies. 

¨  The relative performance of one BFS 
implementation varies for different graphs.  
¤ Fastest on one graph CAN BE slowest on another graph. 

¨  Data representation and data structures make the 
difference 
¤ List of edges vs adjacency lists  
¤ Lock-free frontier  

 



Lessons learned [2] 

¨  Two disjoined classes of algorithms  
¤ GPU-optimized  
¤ Portable to CPU (= naïve)  

¨  A naive CPU implementation can be competitive 
with some of the GPU implementations. 
¤ On small graphs (GPUs are underutilized) 
¤ When data transfer is an issue.  

¨  Better CPU solutions do exist …  



Summary 



Take home message 

¨  Large scale graph processing IS high performance 
computing 
¤ Due to/for data scale *and* analysis complexity  

¨  HPC hardware (many-core processors) are feasible 
for graph processing 
¤ yet performance is (for now) unpredictable  

¨  Performance is dependent on all three “axes” 
¤ Performance = f (dataset, algorithm, hardware) 

 



P-A-D triangle 

Algorithm 

Dataset Platform 

Overstudied 
Performance is enabled 
Portability is disabled 

In progress  
Algorithms for different 
data types and graphs 

Understudied 
No systematic findings yet 
Intuitive correlations 
Must be correlated with the algorithm  



Benchmarking II: Platforms 



Graph processing @ scale 

¨  The characteristics of graph processing 
¤ Poor locality  
¤ Unstructured computation  
¤ Variable parallelism  
¤ Low computer-to-memory ratio 

¨  @ Scale  
¤ Distributed processing is mandatory  
¤ Parallel processing is very useful 

Implementing graph applications is already difficult. Dealing with large 
scale systems on top (below, in fact) them is even harder. 



Graph processing systems  

¨  Provide simplified ways to develop graph processing 
applications 
¤  Typical scenario: analytics on single- or multi-node platfoms 
¤ Heterogeneity is becoming popular 

  

¨  Target *productivity* and *performance*  
¤  Productivity => ease-of-implementation, development time 
¤  Performance => optimized back-ends / engines /runtimes 
¤  Portability comes “for free” 

  

¨  Both commercial and academic, many open-source 



Graph processing systems 

Custom 

            Generic 

Dedicated  
Systems 

•  Specify application 

•  Choose the hardware  

•  Implement & optimize 

•  Think Graph500 

•  Use existing large scale 

distributed systems  

•  Mapping is difficult 

•  Parallelism is “free” 

•  Think MapReduce  

•  Systems for graph processing  

•  Separate users from backends 

•  Think Giraph, Totem, Medusa, ....  

Performance 

Development  
Effort 



GPU-enabled dedicated systems  



MapGraph* 

¨  GPU-only graph processing 
¤ CPU, single- and multi-GPU versions  

¨  Vertex-centric API based on Gather-Apply-Scatter 
(GAS @ GraphLab) 
¤ Gather: reads the vertex’s neighborhood. 
¤ Apply: updates the vertex based on the gather result. 
¤ Scatter: pushes updates to the vertex’s neighborhood. 

n Users write functions for the G-A-S phases 

¨  Two data structures (user-defined) 
¤ VertexList: data for each vertex. 
¤ EdgeList: data for each edge 

*http://mapgraph.io/index.html 



Medusa* 

¨  GPU-only graph processing 
¤ Single-node, multiple GPUs 

¨  Programmability-driven, based on BSP 
¤ EMV (edge-message-vertex) model  

n Extension of the Vertex-centric Pregel-like model  
¤ GPU-specific back-end optimization  

¨  Simple API that hides GPU programming  
¤ Define data structures  
¤ Define operations for edges, messages, vertices  
¤ Compose the algorithm from these operations  
¤ Run (iteratively) over the graph 

 *https://code.google.com/p/medusa-gpu/ 



Totem*  

¨  Heterogeneous CPU+GPUs graph processing  
¤ C+CUDA for specifying applications  
¤  (Thin) API for heterogeneity 
¤  Based on BSP (and close to Pregel) 

¨  Partitions data (edge-based) between CPUs and GPUs 
¤  Based on processing capacity  
¤ Minimizing the overhead of communication  

n  Buffer schemes, aggregation, smart partitioning 

¨  A user-defined vertex-centric kernel runs simultaneously 
on each partition (CPUs, GPUs) 
¤ Vertices are processed in parallel within each partition  
¤ Messages can be combined   

*http://netsyslab.ece.ubc.ca/wiki/index.php/Totem 



*Yong Guo et. al, “An Empirical Performance Evaluation of GPU-
Enabled Graph-Processing Systems”, CCGrid 2015 

Experiments* 



Setup: Algorithms & Systems  

¨  Algorithms  
¤ BFS (traversal) 
¤ PageRank  
¤ Weakly connected components  

¨  Hardware: GPU-enabled nodes in DAS4 
¤ GTX480 (most results), GTX580, and K20 

¨  Processing systems: 
¤ Totem - GPU-only and Hybrid  
¤ Medusa – single- and multi-GPU 
¤ MapGraph – single-GPU 



Setup: datasets 



Setup: datasets 

CSR-represented graphs fit in memory (GTX480) 
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Strong dependency on the graph.  
Totem is the worst perfomer.  

Medusa and MapGraph cannot handle large graphs.  



BFS [full]  
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Totem becomes the best performer !  



WCC [algorithm] 
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Strong dependency on the graph.  
No best/worst performer. 

More crashes of MapGraph. 



PageRank [algorithm] 
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Most compute-intensive. 
Totem performs worst.  

For large graphs, Totem-GPU is worse than hybrid. 



Multi-GPU scalability 

Platforms can use multiple GPUs efficiently. 
Load balancing matters.   



GPU versions  

No guaranteed gain for newer GPUs 
Larger graphs seem to benefit more from K20m. 



Lessons learned 

¨  Brave attempts to enable the use of GPUs *inside* 
graph processing systems 

¨  Every system has its own quirks  
¤ Lower level programming allows more optimizations, 

better performance. 
¤ Higher level APIs allow more productivity.  

¨  Data pre-processing and data structure are crucial 
to both performance and capability. 

¨  No clear winner, performance-wise. 

 



Distributed/Large Scale platforms 



Graph processing systems 

Custom 

            Generic 

Dedicated  
Systems 

•  Specify application 

•  Choose the hardware  

•  Implement & optimize 

•  Think Graph500 

•  Use existing large scale 

distributed systems  

•  Mapping is difficult 

•  Parallelism is “free” 

•  Think MapReduce  

•  Systems for graph processing  

•  Separate users from backends 

•  Think Giraph, Totem, Medusa, ....  

Performance 

Development  
Effort 



Hadoop (Generic) 

¨  The most popular MapReduce implementation 
¤ Generic system for large-scale computation  

¨  Pros:  
¤ Easy to understand model  
¤ Multitude of tools and storage systems  

¨  Cons:  
¤ Express the graph application in the form of 

MapReduce  
¤ Costly disk and network operations  
¤ No specific graph processing optimizations  



Hadoop2 with YARN (Generic) 

¨  Next generation of Hadoop 
¤ Supports old MapReduce jobs 
¤ Designed to facilitate multiple programming models 

(frameworks, e.g., Spark) 

¨  Separates resource management (YARN) and  
job management 
¤ MapReduce manages jobs using resources provided by 

YARN 



Stratosphere (Generic) 

¨  Now Apache Flink  
¨  Nephele resource manager  

¤ Scalable parallel engine  
¤ Jobs are represented as DAGs  
¤ Supports data flow in-memory, via network, or on files 

¨  PACT job model 
¤ 5 second-order functions (MapReduce has 2):  

Map, Reduce, Match, Cross, and CogGroup  
¤ Code annotations for compile-time plans  
¤ Compiled as DAGs for Nephele  



Pregel graph-processing model 

¨  Proposed a vertex-centric approach to graph 
processing 
¤ Graph-to-graph transformations  

¨  Front-end:  
¤ Write the computation that runs on all vertices  
¤  Each vertex can vote to halt  

n  All vertexes halt => terminate 
¤ Can add/remove edges and vertices  

¨  Back-end: 
¤ Uses the BSP model  
¤ Message passing between nodes  

n  Combiners, aggregators 
¤ Checkpointing for fault-tolerance  



Pregel  



Pregel 



Apache Giraph (Dedicated)  

¨  Based on the Pregel model  
¨  Uses YARN as back-end (yet another framework) 
¨  In-memory  

¤ Limitations in terms of partition sizes 
¤ Spilling to disk is work in progress 

¨  Enables  
¤  Iterative data processing 
¤ Message passing, aggregators, combiners  



GraphLab (Dedicated) 

¨  Distributed programming model for machine learning 
¤  Provides an API for graph processing, C++ based (now Python) 

¨  All in-memory 
¨  Supports asynchronous processing  
¨  GraphChi is its single-node version, 

Dato as GraphLab company  



Neo4J (Dedicated) 

¨  Very popular graph database  
¤ Graphs are represented as relationships and 

annotated vertices  

¨  Single-node system  
¤ Uses parallel processing  
¤ Additional caching and query optimizations  
¤ All in-memory  

¨  The most widely used solutions for medium-scale 
problems  



Experiments* 
*Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. 

How Well do Graph-Processing Platforms Perform? An Empirical 
Performance Evaluation and Analysis, IPDPS 2014 



Platforms we have evaluated  

¨  Distributed or non-distributed 
¨  Dedicated or generic 

YARN 

Non-distributed 
(Dedicated) 
 

Distributed (Generic) 
Distributed  
(Dedicated) 



Setup 

¨  Benchmarking-like experiment  
¤ 6 algorithms  
¤ 7 data-sets  
¤ 7 platforms  

¨  Implement all algorithms on all platforms  
¨  Run and compare …  

¤ Performance  

¨  Estimate usability*  



Hardware 

¨  DAS4: a multi-cluster Dutch grid/cloud 
¤  Intel Xeon 2.4 GHz CPU (dual quad-core, 12 MB cache) 
¤ Memory 24 GB 
¤ 1 Gbit/s Ethernet network 

¨  Size 
¤ Most experiments take 20 working machines 
¤ Up to 50 working machines 

¨  HDFS used as distributed file system 



Datasets 

 
 The Game Trace Archive 

 

https://snap.stanford.edu/ http://www.graph500.org/ http://gta.st.ewi.tudelft.nl/ 

TABLE I
SUMMARY OF PERFORMANCE METRICS.

Metric How measured? Derived Relevant aspect (use)

job execution Time the full - Raw processing power

time (T ) execution (Figure 1, 3, 4)

Edges per - #E/T Raw processing power

second (EPS) (Figure 2)

Vertices per - #V/T Raw processing power

second (VPS) (Figure 2)

CPU, memory, Monitoring - Resource utilization

network sampled each second (Technical report [32])

Horizontal T of different - Scalability

scalability cluster size (N ) (Figure 5)

Vertical T of different - Scalability

scalability cores per node (Figure 6)

Normalized edges - #E/T/N Scalability

per second (NEPS) (Figure 5, 6)

Computation Time actual - Raw processing power

time (Tc) for calculating (Figure 7)

Overhead - T − Tc Overhead

time (To) (Figure 7)

#V and #E are the number of vertices and the number of edges of
graphs, respectively.

B. Selection of graphs and algorithms

This section presents a selection of graphs and algorithms,
which is akin to identifying some of the main functional
requirements of graph-processing systems. We further discuss
the representativeness of our selection in Section V.

1) Graph selection: The main goal of the graph selection
step is to select graphs with different characteristics but with
comparable representation. We use the classic graph formal-
ism [33]: a graph is a collection of vertices V (also called
nodes) and edges E (also called arcs or links) which connect
the vertices. A single edge is described by the two vertices it
connects: e = (u, v). A graph is represented by G = (V,E).
We consider both directed and undirected graphs. We do not
use other graph models (e.g., hypergraphs).

Regarding the graph characteristics, we select graphs with a
variety of values for the number of nodes and edges, and with
different structures (see Table II). We store the graphs in plain
text with a processing-friendly format but without indexes. In
our format, vertices have integers as identifiers. Each vertex
is stored in an individual line, which for undirected graphs,
includes the identifier of the vertex and a comma-separated list
of neighbors; for directed graphs, each vertex line includes the
vertex identifier and two comma-separated lists of neighbors,
corresponding to the incoming and to the outgoing edges.
Thus, we do not consider other data models proposed for
exchanging and using graphs [34], [35] such as complex
plain-text representations, universal data formats (e.g. XML),
relational databases, relationship formalisms (e.g., RDF), etc.

Why these datasets? We select seven graphs which could
match, in scale and diversity, the datasets used by SMEs. Ta-
ble II shows the characteristics of the selected graph datasets2.
The graphs have diverse sources (e-business, social network,
online gaming, citation links, and synthetic graph), and a wide
range of different sizes and graph metrics (e.g. high vs. low

2We extract from each raw graph the largest connected component, so that
the vertices are reachable to each other in these graphs.

TABLE II
SUMMARY OF DATASETS.

Graphs #V #E d D̄ Directivity

G1 Amazon 262,111 1,234,877 1.8 4.7 directed

G2 WikiTalk 2,388,953 5,018,445 0.1 2.1 directed

G3 KGS 293,290 16,558,839 38.5 112.9 undirected

G4 Citation 3,764,117 16,511,742 0.1 4.4 directed

G5 DotaLeague 61,171 50,870,316 2,719.0 1,663.2 undirected

G6 Synth 2,394,536 64,152,015 2.2 53.6 undirected

G7 Friendster 65,608,366 1,806,067,135 0.1 55.1 undirected

d is the link density of the graphs (×10−5). D̄ is the average vertex degree of undirected
graphs and the average vertex in-degree (or average vertex out-degree) of directed graphs.

TABLE III
SUMMARY OF ALGORITHMS.

Algorithm Main features Use

A1 STATS single step, low processing decision-making

A2 BFS iterative, low processing building block

A3 CONN iterative, medium processing building block

A4 CD iterative, medium or high processing social network

A5 EVO iterative (multi-level), high processing prediction

degree, 1,663.2 vs. 2.1, respectively, directed and undirected
graphs, etc.). The synthetic graph (“Synth” in Table II) is
produced by the generator described in Graph500 [29]. The
other graphs have been extracted from real-world use, and have
been shared through the Stanford Network Analysis Project
(SNAP) [36]) and the Game Trace Archive (GTA) [2].

2) Algorithm selection: Why these algorithms? We have
conducted a survey of graph-processing of 10 representative
conferences in recent years over 100 papers (see technical
report [32]). We found that a large variety of graph processing
algorithms exist in practice [37] and are likely used by
SMEs. The algorithms can be categorized into several groups
by functionality, consumption of resources, etc. We focus
on algorithm functionality and select one exemplar of each
of the following five algorithmic classes: general statistics,
graph traversal (used in Graph500), connected components,
community detection, and graph evolution. We describe in the
following the five selected algorithms and summarize their
characteristics in Table III.

The General statistics (STATS) algorithm computes the
number of vertices and edges, and the average of the local
clustering coefficient of all vertices. The results obtained with
STATS can provide the graph analyst with an overview of the
structure of the graph.

Breadth-first search (BFS) is a widely used algorithm in
graph processing, which is often a building block for more
complex algorithms, such as item search, distance calculation,
diameter calculation, shortest path, longest path, etc. BFS
allows us to understand how the tested platforms cope with
lightweight iterative jobs.

Connected Component (CONN) is an algorithm for extract-
ing groups of vertices that can reach each other via graph
edges. This algorithm produces a large amount of output, as
in many graphs the largest connected component includes a
majority of the vertices.

Community detection (CD) is important for social network
applications, as users of these networks tends to form com-
munities, that is, groups whose constituent nodes form more



Graph-Processing Algorithms 

¨  Literature survey 
¤ 10 top research conferences: SIGMOD, VLDB, HPDC … 
¤ 2009–2013, 124 articles 

Class	
� Examples	
� %	
�
Graph Statistics	
� Diameter, PageRank 16.1	
�

Graph Traversal	
� BFS, SSSP, DFS	
� 46.3	
�

Connected Component	
� Reachability, BiCC 13.4	
�

Community Detection	
� Clustering, Nearest Neighbor  5.4	
�

Graph Evolution	
� Forest Fire Model, PAM 4.0	
�

Other	
� Sampling, Partitioning  14.8	
�



BFS: results for all-2-all 

in Section III, using the process and metrics, and the datasets
and algorithms introduced in Section II. The complete results
are available through our technical report [33]. Compared with
the previous work (Section VI), our experiments show more
comprehensive and quantitative results in diverse performance
metrics.
The experiments we have performed are:
• Basic performance (Section IV-A): we have measured
the job execution time on a fixed infrastructure. Based
on these execution times, we further report throughput
numbers, using the edges per second (EPS) and vertices
per second (VPS) metrics.

• Resource utilization (Section IV-B): we have investigated
the CPU utilization, memory usage, and network traffic.
We report them for both the master and computing nodes
on the distributed platforms.

• Scalability (Section IV-C): we have measured the hori-
zontal and vertical scalability of the platforms; we report
the execution time and the normalized edges per second
(NEPS) for interesting datasets.

• Overhead (Section IV-D): we have analyzed the execution
time in detail, and report important findings related to the
platform overhead.

A. Basic performance: job execution time
The fixed infrastructure we use for our basic performance

measurements is a cluster of 20 homogeneous computing
nodes provisioned from DAS4. With the configuration in [33],
each node is restricted at using a single core for computing.
We configure the cluster as follows. For the experiments on
Hadoop and YARN, we run 20 map tasks and 20 reduce
tasks on the 20 computing nodes. Due to the settings used for
Hadoop [33], the map phase will be completed in one wave;
all the reduce tasks can also be finished in one wave, without
any overlap with the map phase [40]. In Giraph, Stratosphere,
and GraphLab, we set the parallelization degree to 20 tasks,
also equal to the total number of computing nodes.
With these settings, we run the complete set of experiments

(6 platforms, 5 different applications, and 7 datasets) and
measure the execution time for each combination. In the
remainder of this section, we present a selection of our results.
Key findings:
• There is no overall winner, but Hadoop is the worst
performer in all cases.

• Multi-iteration algorithms suffer for additional perfor-
mance penalties in Hadoop and YARN.

• EPS and VPS are suitable metrics for comparing the
platforms throughput.

• The performance of all the platforms is stable, with the
largest variance around 10%.

• Several of the platforms are unable to process all datasets
for all algorithms, and crash.

1) Results for one selected algorithm: We present here
the results obtained for one selected algorithm, BFS (see
Section II-B2).

TABLE V
STATISTICS OF BFS.

G1 G2 G3 G4 G5 G6 G7
Coverage [%] 99.9 98.5 100 0.1 100 100 100
Iterations 68 8 9 11 6 8 23
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Fig. 1. The execution time of algorithm BFS of all datasets of all platforms.

Because the starting node for the BFS traversal will impact
performance by limiting the coverage and number of itera-
tions of the algorithm, we summarize in Table V the vertex
coverage and iteration count observed for the BFS experiments
presented in this section. Overall, BFS covers over 98% of the
vertices, with the exception of the Citation (G4) dataset. The
iteration count depends on the structure of each graph and
varies between 6 and 68; we expect higher values to impact
negatively the performance of Hadoop.
We depict the performance of the BFS graph traversal in

Figure 1 and discuss in the following the main findings.
Similarly to most figures in this section, Figure 1 has a
logarithmic vertical scale.
Hadoop always performs worse than the other platforms,

mainly because Hadoop has a significant I/O between two
continuous iterations (see Section III). In these experiments,
Hadoop does not use spills, so it has no significant I/O within
the iteration. As expected, the I/O overhead of Hadoop is
worse when the number of BFS iterations increases. For exam-
ple, although Amazon is the smallest graph in our study, it has
the largest iteration count, which leads to a very long execution
time. YARN performs only slightly better than Hadoop—it has
not been altered to support iterative applications. Although
Stratosphere is also a generic data-processing platform, it
performs much better than Hadoop and YARN (up to an
order of magnitude lower execution time). We attribute this
to Stratosphere’s ability to optimize the execution plan based
on code annotations regarding data sizes and flows, and to the
much more efficient use of the network channel.
In contrast to the generic platforms, for Giraph and

GraphLab the input graphs are read only once, and then
stored and processed in-memory. Both Giraph and GraphLab
realize a dynamic computation mechanism, by which only
selected vertices will be processed in each iteration. This
mechanism reduces the actual computing time for BFS, in
comparison with the other platforms (more details are dis-
cussed in Section IV-D). In addition, GraphLab also addresses

No platform runs fastest for all graphs, but Hadoop is the worst performer.  
Not all platforms can process all graphs, but Hadoop processes everything.  



Giraph: results for  
all algorithms, all data sets 

Storing the whole graph in memory helps Giraph perform well 
Giraph may crash when graphs or number of messages large 



Horizontal scalability:   
BFS on Friendster (31 GB) 

Using more computing machines can reduce execution time 
Tuning needed for horizontal scalability, e.g., for GraphLab, split large 
input files into number of chunks equal to the number of machines 



Overhead (BFS, DotaLeague) 

We need new metrics, to capture meaning of computation time (more later) 
In some systems, overhead is by and large wasted time (e.g., in Hadoop) 



Additional Overheads:Data ingestion 

¨  Data ingestion 
¤ Batch system: one ingestion, multiple processing 
¤ Transactional system: one ingestion, one processing 

¨  Data ingestion matters even for batch systems 
Amazon	
� DotaLeague	
� Friendster	
�

HDFS	
� 1 second	
� 7 seconds	
� 5 minutes	
�

Neo4J	
� 4 hours	
� days	
� n/a	
�



Productivity 

¨  Low throughput in terms of LOC for all models  
¨  Days to hours development time for the simpler 

applications 
 

We need better productivity metrics!  



Lessons learned* 

¨  Performance is function of  
(Dataset, Algorithm, Platform, Deployment) 
¤  Previous performance studies may lead to tunnel vision 

¨  Platforms have their own drawbacks  
(crashes, long execution time, tuning, etc.) 
¤  Best-performing is not only low response time 
¤  Ease-of-use of a platform is very important 

¨  Some platforms can scale up reasonably with cluster 
size (horizontally) or number of cores (vertically) 
¤  Strong vs weak scaling still a challenge 

n  workload scaling tricky 

*All results and details: 
http://www.pds.ewi.tudelft.nl/fileadmin/pds/reports/2013/PDS-2013-004-4.pdf  



P-A-D triangle revisited 

Algorithm 

Dataset Platform 

Overstudied 
Performance is enabled 
Portability is disabled 

In progress  
Algorithms for different 
data types and graphs 

Understudied 
No systematic findings yet 
Intuitive correlations 
Must be correlated with the algorithm  

In distributed systems,  
deployment matters, too!  



Future directions 



Graphalytics* 

¨  Benchmarking graph processing systems  
¤  Selection of datasets  

n  Synthetic, with real profiles  
n  Real-life  

¤  Selection of algorithms 
n  Problem-based  
n  Code-based  

¤  Selection of metrics 
¤  Selection of systems  

n  All of them.  
¤  Reporting the results  

n  Goal-oriented 

*http://graphalytics.ewi.tudelft.nl 



Heterogeneous computing 

¨  Build *the first* multi-node heterogeneous graph 
processing system 
¤ Model performance 

n Are GPUs always useful in a distributed setup?  
n Which partition goes where?  

¤  Implementation 
n Based on existing distributed systems  
n Add graph-specific scheduling and resource allocation 



Graph-centric framework 

¨  Understand graph features 
¤ What makes a graph “special” 

¨  Select the best algorithm for a given graph 

Input 
Graph 

Sample 

Characterization 

Algorithms 

Application 

Hardware 
Best performing 

hardware-software 
mix 



End goal: Graphitti 

1.Understand the hardware 

2.Understand the application 

3. Match hardware to application 



End goal: Graphitti 



Summary 



Take home message 

¨  Graph processing is a hot topic for both software 
and hardware developers  

¨  Challenges in scale and irregularity 
¨  Existing graph processing systems : 80+ 
¨  Choose which one to use  

¤ Quick-Pick: choose a platform where your graph fits 
and you can program. 

¤ Systematic: meta-benchmarking, a.k.a., Graphalytics  



Take home message 

¨  Comprehensive and systematic performance study 
of graph processing systems is difficult.   

¨  Main challenges  
¤  fairness of comparison 
¤ development time 

¨  Large-scale systems are  
   promising, but adoption remains low. 
¨  GPU-enabled systems show promising performance, 

but … no dedicated distributed GPU-enabled 
graph processing systems – YET!  



Future research directions  

¨  Improved benchmarking  
¨  Heterogeneous computing  
¨  Workload characterization  
¨  Smart resource allocation 
 



Questions ? 

A.L.Varbanescu@uva.nl 
Online:  graphalytics.ewi.tudelft.nl 


