
Model checking of architectural
descriptions: software & hardware

Chadlia JERAD
Dr.-Ing. in Electrical Engineering

Associate Professor at National School of Computer Sciences, Tunisia
Coordinator of the “Embedded software and systems” Specialization

Researcher at OASIS Laboratory/National Engineering School of Tunis, Tunisia

ZIH Colloquium, 09.04.2015

ZIH Colloquium, 09.04.2015 Chadlia Jerad

2

 University of La Manouba

 14 institutions

 National School of Computer Science (ENSI)
o Graduate engineering programs

 3 Departments for 6 different specializations

o Coordinator of the “Embedded Software and Systems” specialization

o Research and doctoral studies

 PhD (1)

 University Habilitation (1)

 845 students (*)

 82 full-time professors (*)

(*) non official numbers

ZIH Colloquium, 09.04.2015 Chadlia Jerad

3

 University of Tunis El Manar

 15 institutions

 National Engineering School of Tunis (ENIT)
o Graduate engineering programs

 5 Departments for 9 different programs

o Research and doctoral studies

 MS (6) + Professional MS (1)

 PhD (8)

 University Habilitations (7)

o 1444 students

o 211 full-time professors

ZIH Colloquium, 09.04.2015 Chadlia Jerad

4

 OASIS Laboratory @ ENIT

 Staff
o 50 members

o 24 doctoral candidates

 Themes
o Optimization/Supply chain

o Computer science

 National collaborations
o Tunisian laboratories

o Ministry of health/Hospitals

o Ministry of transportation

 International collaborations
o France (ECP, ENSTA…)

o Canada (Université Laval…)

o USA (University of Minnesota)

• Diagnosability conditions of a
class of DES

• Design of an ASIP for speaker
recognition applications

• Accelerator design of
stereovision applications

ZIH Colloquium, 09.04.2015 Chadlia Jerad

5

Motivations

Numerical
systems are
everywhere!

Increasing complexity: [1]

• SW requirements:

2x/10months [LOC SW/Chip]
• SW productivity:
 2x/5years [LOC SW/Day]
• HW productivity:

1,6x/16months [Gates/Day]

ZIH Colloquium, 09.04.2015 Chadlia Jerad

6

Costs of failure

 Very depending on the system criticality

 Costs of failure are sometimes … dramatic!
o Need to detect design faults

o ~ 70% of project development cycle: design
verification

o Every approach to reduce development time

  considerable influence on economy

ZIH Colloquium, 09.04.2015 Chadlia Jerad

7

Let’s consider a simplified example

 Aircraft system

 Need to control the right aircraft aileron:
o That is generating periodically its control

Aircraft
Aileron
Control

Velocity

Position

Mode
Control

…

Aircraft
Aileron
Control

R1

Velocity

Position

Mode
Control

…

Aircraft
Aileron
Control

R2

Velocity

Position

Mode
Control

…

ZIH Colloquium, 09.04.2015 Chadlia Jerad

8

Need for abstraction

 Abstract the control computation details
o Coarse grained vision

 Reason about the architecture

ZIH Colloquium, 09.04.2015 Chadlia Jerad

9

Aerodynamics laws opinion

 Aircraft stability

 The aileron should not be non commended for more than 16ms

 Need for verification, or even more formal verification

ZIH Colloquium, 09.04.2015 Chadlia Jerad

10

Architecture description

 Very first created model of a system during the lifecycle

 Coarse grained vision
o A complete description of a real system is impossible

 A set of architectural design decisions allowing to generate the
artifact of an architecture
o Abstract implementation details

o Extract the reusable components

• Why? Time-to-market

• How? Modeling

ZIH Colloquium, 09.04.2015 Chadlia Jerad

11

General workflow

Architectural Constraints
and Requirements Constraints

C2

C1 C3

C4
Architecture

C2

C1 C3

C4

Architecture
prototype

ZIH Colloquium, 09.04.2015 Chadlia Jerad

12

Need of a specification language

 Why do we need a specification language?
o Need for accurate semantics

o Ability to reason about:

• Consistency,

• Completeness,

• Ambiguity,

• Minimalism,

• …

 Architecture description languages (ADL)

ZIH Colloquium, 09.04.2015 Chadlia Jerad

13

Architecture Description Languages (ADL)
categories

 Semi-formal or formal Notation

 Textual and/or graphical syntax

 With/without design/validation tool support

 General purpose or domain specific

 Research prototypes or included in industrial process

 Modeling target:
o Software architecture

• Rapide, Wright

o Hardware architecture

• VHDL/Verilog | ADL for processor design: nML, LISA…

o System architecture (hardware + software)

• AADL

ZIH Colloquium, 09.04.2015 Chadlia Jerad

14

Software architecture description language

 SA milestones
o 1993: SA is recognized as an

independent research domain

o 1997: first SADL prototypes

o 2003: Architecture description
languages

 Many attempts to classify
software architecture
description languages

 Medvidovic and Taylor’s
classification and comparison
framework: the most complete

14

ADL

 Architecture modelling features

 Components

 Interface, Semantics, Constraints

 Types, Evolution,

 Non-functional properties

 Connectors

 Interface, Semantics, Constraints

 Types, Evolution,

 Non-functional properties

 Architectural configurations

 Understandability,

 Compositionality

 Heterogeneity,

 Refinement and traceability

 Scalability, Evolution,

 Dynamism, Constraints,

 Non-functional properties

 Tool support

 Active specification, Multiple views

 Analysis, Refinement

 Implementation generation, Dynamism

ZIH Colloquium, 09.04.2015 Chadlia Jerad

15

How to find bugs?

 At the early design stages
o Simulation

o Formal verification

ZIH Colloquium, 09.04.2015 Chadlia Jerad

16

Simulation

 Checks one output point at a time

 Input-driven
o generate input vectors

o derive reference outputs

Bug

Bug

Bug

Bug

Initial
State

ZIH Colloquium, 09.04.2015 Chadlia Jerad

17

Formal verification

 Checks a group of output points at time

 Output-driven:
o describe desirable output behavior

o the formal checker approves or disapproves

 Uses extensive memory and long run time

• Proves implementation is equivalent to

specification in some formalism
Theorem
proving

• Compares synthesized model against original
model

Equivalence
checking

• Checks if a model satisfies a given property

Model
checking

ZIH Colloquium, 09.04.2015 Chadlia Jerad

18

What is model checking

 Model Checking (Property Checking):
o Automatic technique for verifying finite systems

o Pioneered by Edmund Clarke, in 1981

 Exhaustive state space search

 Can uncover subtle design errors

 Currently the dominant formal verification tool.

 Major challenge:
o To fight state-explosion problem

 Success stories:
o RTL model debug prior to synthesis

o Used concurrently with and/or prior to simulation

o Cadence’s Model Checking tool: FormalCheck

ZIH Colloquium, 09.04.2015 Chadlia Jerad

19

Model checking process

System Specification
(Model M)

Property Specification
(temporal formula 𝜑)

Model
Checker:
𝑀 ⊨ 𝜑 ?

False with
counter
example

True

ZIH Colloquium, 09.04.2015 Chadlia Jerad

20

Model checking architectural designs process

Archit.
Specification

Archit.
Properties

Input
Translation

Model Checker
Specification

Input

Model Checker
Property Input

Model
Checker

Execution False with
counter
example

Input Translation Computation Output

Feedback

True

ZIH Colloquium, 09.04.2015 Chadlia Jerad

21

Classification

MC Engine Name Used by Input Languages Supported Logics Types of Property Specific Features Type of Checking

SPIN

Bose, Arcade,

Zanolin et al.

 CHARMY

PROMELA (CSP-

like)

LTL or Buchi

automaton
Safety and liveness

Distributed

Systems
Model Checking

SMV SAM

SMV languages

CTL

Safety, liveness

and fairness

Hardware and

embedded system
Model Checking

NuSMV Aemilia, AutoFocus CTL or LTL
Customizable and

extensible
Model Checking

Cadence SMV
Garlan et al.,

AutoFocus
CTL, LTL or SMV

Refinement

verification

Model Checking

and Equivalence

Checking

Maude Cbabel, Lfp Maude LTL Safety and liveness
Based on multiset

rewriting system
Model Checking

UPPAAL Fujaba Timed-automata TCTL
Safety and timed

liveness
Real-time Model Checking

…

ZIH Colloquium, 09.04.2015 Chadlia Jerad

22

Rewriting logic formalism for
architecture description and analysis

ZIH Colloquium, 09.04.2015 Chadlia Jerad

23

Why “Rewriting logic”?

 Semantic framework for concurrency formalisms
o Executable semantics

 It can be used to give both, operational and denotational semantics
to programming languages

 The logic of concurrent action and change

 Based on simple deduction rules

 A logical framework in which other logics can be represented

ZIH Colloquium, 09.04.2015 Chadlia Jerad

24

Rewriting logic semantics project

 “The broad goal of the project is to develop a tool-supported
computational logic framework for modular programming language
design, semantics, formal analysis and implementation, based on
rewriting logic.“

Analysis

 tool

 for L

Impl.

of L

Formal

Semantic

 of L

High

Level

design

Low

Level of

the HW

ZIH Colloquium, 09.04.2015 Chadlia Jerad

25

Definition

 A labelled rewrite specification is a 4-uplet ℛ = (Σ, 𝐸, L, 𝑅), where:
o Σ is a ranked alphabet of function symbols,

o 𝐸 is a set of Σ-equations,

o L is a set of labels

o and 𝑅 is a set of elements ; 𝑅 ⊆ 𝐿 × (𝑇Σ,𝐸 𝑋)2

 The rewrite signature of ℛ is the equational theory (Σ, 𝐸)

 The elements in R are called rewrite rules and are often denoted by
expressions of the form 𝑟: 𝑡 → [𝑡′]

StructurenalPropositioStructureAlgebraicStructuredDistibrute

DeductionRewritingTransition

nPropositioTermState







ZIH Colloquium, 09.04.2015 Chadlia Jerad

26

Rewriting rules

 Given a rewrite specification ℛ, ℛ ⊢ 𝑡 → [𝑡′] iff 𝑡 → [𝑡′] can be
obtained by finite application of the following deduction rules:

o Reflexivity: ∀ 𝑡 ∈ 𝑇Σ,𝐸 𝑋 ,
𝑡 →[𝑡]

o Congruence: ∀ 𝑓 ∈ Σ𝑛, 𝑛 ∈ ℕ,
𝑡1 → 𝑡′1 … 𝑡𝑛 →[𝑡′𝑛]

𝑓(𝑡1,…,𝑡𝑛) → 𝑓(𝑡′1,…,𝑡′𝑛)

o Replacement: ∀ 𝑟 ∶ [𝑡 𝑥1, … 𝑥𝑛] →, [𝑡′ 𝑥1, … 𝑥𝑛] ∈ 𝑅

𝜔1 → 𝜔′

1 … 𝜔𝑛 →[𝜔′𝑛]

𝑡(𝜔 /𝑥) →[𝑡′ 𝜔′ 𝑥′]

o Transitivity:
𝑡1 → 𝑡2 𝑡2 →[𝑡3]

𝑡1 →[𝑡3]

ZIH Colloquium, 09.04.2015 Chadlia Jerad

27

Applications area

Models of concurrent
computation

• Equational
programming

• Lambda calculi

• Petri nets

• CCS and p-calculus

• Actors

Distributed
architectures and

components

• UML diagrams and
metamodels

• Middleware
architecture for
composable services

Reference Model for
Open Distributed

Processing

• Validation of OCL
properties

• Model management
and model
transformations

Operational semantics
of languages

• Structural operational
semantics (SOS)

• Agent languages

• Active networks
languages

• Mobile Maude

• Hardware description
languages

Specification and analysis
of communication

protocols

• Active networks

• Wireless sensor
networks

• FireWire leader election
protocol

Modeling and analysis of
security protocols

• Cryptographic protocol
specication language
CAPSL

• MSR security specication
formalism

• Maude-NPA

Real-time, biological,
probabilistic systems

• Real-Time Maude Tool

• Pathway Logic

• Pmaude

Logical framework and
meta-tool

• Linear logic

• Translations between
HOL and Nuprl theorem
provers

• Pure type systems

• Open calculus of
constructions

• Tile logic

ZIH Colloquium, 09.04.2015 Chadlia Jerad

28

Maude system

 High-level language and high-performance system

 Developed a SRI

 Features
o Executability
o High performance engine
o Modularity and parameterization
o Built in - booleans, number hierarchy, strings
o Reflection - using descent and ascent functions
o Search and model-checking

http://maude.cs.uiuc.edu

ZIH Colloquium, 09.04.2015 Chadlia Jerad

29

Maude system

 Modules
o Functional modules: equational logic

o System modules: specify general rewrite theories

 Maude provides a range of efficient analysis commands:
o Rewriting for simulation/prototyping

o Search

o …

 Temporal logic model checking: check whether all possible
behaviors from one initial state satisfies a temporal logic formula
o only when reachable state space finite

ZIH Colloquium, 09.04.2015 Chadlia Jerad

30

Maude’s meta-level & meta-programming

 Rewriting logic is reflective

 The functional module META-LEVEL:
o Maude terms are redefined

o Maude modules are redefined

o Moving between reflection levels: operations: upModule, upTerm,
downTerm…

 Reducing a term to canonical form: metaReduce

 Rewriting a term in a system module: metaRewrite and
metaFrewrite

 Maude versions:
o Core Maude

o Full Maude

ZIH Colloquium, 09.04.2015 Chadlia Jerad

31

Full-Maude

 Full Maude is an extension of Maude

 Written in Maude itself

 Special syntax for object-oriented modules supporting object-
oriented
o Concepts such as objects, messages, classes, and multiple class inheritance.

o Class declarations:

 class Person | age : Nat , status : Status .

o An object can be represented as a term

 < "Peter" : Person | age : 35 , status : single >

 Full Maude itself can be used as a basis for further extensions, by
adding new functionality
o Declarative debuggers for Maude, for wrong and missing answers

o Real-Time Maude tool for specifying and analyzing real-time systems

ZIH Colloquium, 09.04.2015 Chadlia Jerad

32

Real-Time Maude

 Particularly suitable to specify object oriented real-time systems

 Two types of rewrite rules:
o ordinary rewrite rules

o and tick rewrite rules,

 Real-Time rewrite theories
o Timed modules

o Or object oriented timed modules

 Analysis techniques
o timed rewriting

o untimed and time-bound search for states that are reachable from the initial
state

o time-bound linear temporal logic model checking

32

ZIH Colloquium, 09.04.2015 Chadlia Jerad

33

Architecture description in Real-Time Maude

 Main idea:
o Topology  Static aspect

• Components

• Connectors

• Configuration

• The interfaces

o Behaviour  Dynamic aspect

33

ZIH Colloquium, 09.04.2015 Chadlia Jerad

34

Architecture description in Real-Time Maude

 Main idea:

34

Software architecture concepts Real-Time Maude concepts

Component Class

Component interface
A set of terms having the sort Service on
top

Component computation A set of rewrite rules

Connector A set of rewrite rules

Types Sorts

Communication events Messages exchange

Configuration A term having the sort System on top

Compositionality Sub-class relationship

ZIH Colloquium, 09.04.2015 Chadlia Jerad

35

Architecture description in Real-Time Maude (3)

 Modular description

35

Real-Time

module of

component 1

specifications

Real-Time

module of

component n

specifications

Real-Time

module of

connectors

specifications

Real-Time

module of

configuration

specifications

.

.

.

Protect/Ext

end/Import

Protect/Ext

end/Import

Protect/Ext

end/Import

ZIH Colloquium, 09.04.2015 Chadlia Jerad

36

Model checking with Maude

 Two levels of specification:
o a system specification level,

o a property specification level

 Temporal logic allows specification of properties such as
o safety properties

o and liveness properties

 Maude 2 includes a model checker to prove properties expressed in
Linear temporal logic (LTL)

ZIH Colloquium, 09.04.2015 Chadlia Jerad

37

Linear Temporal Logic

 Temporal operators:

 Timed LTL
o Time-bounded linear temporal logic model checking

o The untimed linear temporal logic model checking

ZIH Colloquium, 09.04.2015 Chadlia Jerad

38

Modelling components

 Example: MF class

38

class MF | clock : Time, dly : Time,

 computation : String, mode : String .

op CmdService RF1Service RF2Service

 : -> Service [ctor] .

ZIH Colloquium, 09.04.2015 Chadlia Jerad

39

Master function behaviour
39

MF behaviour Real-Time Maude specification

Compute position
rl [MF-Compute-position] :

 < O : MF | mode : "cmd", computation : "Start" >

 => < O : MF | mode : "cmd", computation : "CmpPos" > .

Sending controls

rl [MF-Sending] :

 < O : MF | computation : "CmpPos" >

 => < O : MF | computation : "Send" >

 provide("CmdService") provide("RF1Service")

 provide("RF2Service") .

Period

rl [MF-Period] :

 < O : MF | clock : R, dly : 0, computation : "Send" >

 => if R == 2 then

 < O : MF | clock : 0, dly : 0, computation : "Start" >

 else

 < O : MF | clock : R, dly : step, computation : "Send" >

 fi .

MF failiure
rl [MF-Failiure] :

 < O : MF | >

 => none .

ZIH Colloquium, 09.04.2015 Chadlia Jerad

40

RF1 behaviour
40

RF1 behaviour Real-Time Maude specification

Receive a message crl [RF1-Receive-require-message] :

 < O : RF1 | clock : R, dly : R’ > require("RF1Service")

 => < O : RF1 | clock : 0, dly : 0 >

if R <= 4 .

Advance time if no

message is received

crl [RF1-No-message-advance-time] :

 {< O : RF1 | clock : R, dly : 0 > Conf}

 => {< O : RF1 | clock : R, dly : step > Conf}

if R <= 4 and not(existe(require("RF1Service"), Conf)) .

Move to cmd mode crl [RF1-Move-to-cmd-mode] :

 < O : RF1 | clock : R, dly : R’, mode : "off", computation : "Start" >

 => < O : RF1 | clock : 0, dly : 0, mode : "cmd", computation : "Cmd" >

if R > 4 .

Compute position rl [RF1-Compute-position] :

 < O : RF1 | mode : "cmd", computation : "Cmd" >

 => < O : RF1 | mode : "cmd", computation : "CmpPos" > .

Sending controls rl [RF1-Sending] :

 < O : RF1 | computation : "CmpPos" >

 => < O : RF1 | computation : "Send" > provide("CmdService")

 provide("RF1Service") provide("RF2Service") .

Period
rl [RF1-Period] :

 < O : RF1 | clock : R, dly : 0, computation : "Send" >

 => if R == 2 then < O : RF1 | clock : 0, dly : 0, computation : "Cmd" >

 else < O : RF1 | clock : R, dly : step, computation : "Send" > fi .

RF1 failiure rl [RF1-Failiure] : < O : RF1 | mode : "Cmd" > => none .

ZIH Colloquium, 09.04.2015 Chadlia Jerad

41

Modelling connections
41

Connectors

behaviour
Real-Time Maude specification

Analogical bus rl [Analogical-bus] :

 provide("CmdService")

 => require("CmdService") .

Digital bus with

maximal latency 2
rl [Digital-bus-2] :

 provide("RF1Service")

 => tempRequire("RF1Service", 2, 0, 0) .

crl [tempRequire-to-require] :

 tempRequire("RF1Service", R, R’, R’’)

 => require("RF1Service")

if R’’ >= R’ and R’’ <= R .

Digital bus with

maximal latency 4
rl [Digital-bus-4] :

 provide("RF2Service")

 => tempRequire("RF2Service", 4, 0, 0) .

crl [tempRequire-to-require] :

 tempRequire("RF2Service", R, R’, R’’)

 => require("RF2Service")

if R’’ >= R’ and R’’ <= R .

ZIH Colloquium, 09.04.2015 Chadlia Jerad

42

Advancing time

 A synchronous rule that increases all clock attribute values:

 mte : operation that describes advancing time condition

 delta : operation that models the effect of time elapse on the
system

42

crl [tick] :

 {C:Configuration} => {delta(C:Configuration, R)} in time R

if mte(C:Configuration) == true .

ZIH Colloquium, 09.04.2015 Chadlia Jerad

43

System verification

 The system’s initial state:



43

ops AileronInst MFInst RF1Inst RF2Inst : -> Oid [ctor] .

op initState : -> System [ctor] .

eq initState = { < AileronInst : Aileron | clock : 0, dly : 0,

 computation : "Start" >

 < MFInst : MF | clock : 0, dly : 0, computation : "Start",

 mode : "Cmd" >

 < RF1Inst : RF1 | clock : 0, dly : 0, computation : "Start",

 mode : "Off" >

 < RF2Inst : RF2 | clock : 0, dly : 0, computation : "Start",

 mode : "Off" > } .

ZIH Colloquium, 09.04.2015 Chadlia Jerad

44

System verification

 First property:
o The aileron should not remain without control more than 16 ms (AileronCMD

property).

 op AileronCMD : -> Prop [ctor] .

eq {< O : Aileron | clock : R', dly : R'',

 computation : S >

 Rest:Configuration} |= AileronCMD = (R' > 16) .

Maude > (mc {initState} |=u [] ~ AileronCMD .)

 rewrites: 51475 in 116ms cpu (114ms real) (443723

rewrites/second)

 Untimed model check {initState} |=u []~ AileronCMD in

AIRCRAFT-CHECK with mode default time increase 1

 Result Bool :

 true

ZIH Colloquium, 09.04.2015 Chadlia Jerad

45

System verification

 Second property
o There must be only one function controlling the aileron at a time (NbrFCmd

property).

 op NbrFCmd : -> Prop [ctor] .

eq {< MFInst : MF | mode : "Cmd" > < RF1Inst : RF1 |

 mode : " Cmd" >

 Rest:Configuration} |= AileronCMD = true .

...

Maude > (mc {initState} |=u [] ~ NbrFCmd .)

 rewrites: 54617 in 96ms cpu (96ms real) (568891

rewrites/second)

 Untimed model check {initState} |=u []~ NbrFCmd in AIRCRAFT-

CHECK with mode default time increase 1

 Result Bool :

 true

ZIH Colloquium, 09.04.2015 Chadlia Jerad

46

System verification

 Deadlock freeness:

46

 Maude > (utsearch {initState} =>! GS:GlobalSystem .)
 rewrites: 49226 in 88ms cpu (88ms real) (559348 rewrites/second)

 Untimed search in AIRCRAFT-CHECK {initState} =>! GS:GlobalSystem

 with mode default time increase 1 :

 No solution

ZIH Colloquium, 09.04.2015 Chadlia Jerad

47

Current situation

 Why is there so many ADL?
o Express different needs

o Different domains

o Different analysis

o Some of them are mostely similar

o Some are only research prototypes

ZIH Colloquium, 09.04.2015 Chadlia Jerad

48

Current situation

ZIH Colloquium, 09.04.2015 Chadlia Jerad

49

Problems to solve

 From ADL side
o High degree of formalization

 Difficult to integrate within industral life-cycle

o Limited number of analysis tools

o Limited industrial support

 From formal methods side
o State explosion problem

ZIH Colloquium, 09.04.2015 Chadlia Jerad

50

Thank you for your
attention

ZIH Colloquium, 09.04.2015 Chadlia Jerad

51

References

 Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking
(Representation and Mind Series). The MIT Press.

 Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and Antony Tang.
2013. What Industry Needs from Architectural Languages: A Survey. IEEE Trans. Softw.
Eng. 39, 6 (June 2013), 869-891.

 Jernimo Castrilln Mazo and Rainer Leupers. 2013. Programming Heterogeneous
Mpsocs: Tool Flows to Close the Software Productivity Gap. Springer Publishing
Company, Incorporated.

 José Meseguer and Grigore Roşu. 2013. The rewriting logic semantics project: A
progress report.Inf. Comput. 231 (October 2013), 38-69.

 Nenad Medvidovic and Richard N. Taylor. 2000. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Trans. Softw. Eng. 26,
1 (January 2000), 70-93.

 Pengcheng Zhang, Henry Muccini, and Bixin Li. 2010. A classification and comparison of
model checking software architecture techniques. J. Syst. Softw. 83, 5 (May 2010), 723-
744.

 Peter Csaba Ölveczky. Real-Time Maude 2.3 Manual. Department of Informatics,
University of Oslo, (August 8, 2007)

