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            University of La Manouba  

 14 institutions 

 National School of Computer Science (ENSI) 
o Graduate engineering programs 

     3 Departments for 6 different specializations 

o Coordinator of the “Embedded Software and Systems” specialization 

o Research and doctoral studies 

     PhD (1) 

     University Habilitation (1) 

 845 students (*) 

 82 full-time professors (*) 

(*) non official numbers 
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            University of Tunis El Manar 

 15 institutions 

 National Engineering School of Tunis (ENIT) 
o Graduate engineering programs 

     5 Departments for 9 different programs 

o Research and doctoral studies 

     MS (6) + Professional MS (1) 

     PhD (8) 

     University Habilitations (7) 

o 1444 students 

o 211 full-time professors 
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            OASIS Laboratory @ ENIT 

 Staff 
o 50 members  

o 24 doctoral candidates  

 Themes 
o Optimization/Supply chain 

o Computer science 

 National collaborations  
o Tunisian laboratories 

o Ministry of health/Hospitals  

o Ministry of transportation 

 International collaborations 
o France (ECP, ENSTA…) 

o Canada (Université Laval…) 

o USA (University of Minnesota) 

 

 

 

• Diagnosability conditions of a 
class of DES 

 

• Design of an ASIP for speaker 
recognition applications 

 

• Accelerator design of 
stereovision applications 
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Motivations  

Numerical  
systems are 
everywhere! 

Increasing complexity: [1] 
 
• SW requirements: 

2x/10months [LOC SW/Chip] 
• SW productivity: 
      2x/5years [LOC SW/Day] 
• HW productivity: 

1,6x/16months [Gates/Day] 
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Costs of failure 

 Very depending on the system criticality 

 Costs of failure are sometimes … dramatic! 
o Need to detect design faults 

o ~ 70% of project development cycle: design 
verification 

o Every approach to reduce development time 

  considerable influence on economy 
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Let’s consider a simplified example 

 Aircraft system 

 Need to control the right aircraft aileron: 
o That is generating periodically its control  

 

Aircraft 
Aileron 
Control 

Velocity 

Position 

Mode 
Control  

… 

Aircraft 
Aileron 
Control 

R1 

Velocity 

Position 

Mode 
Control  

… 

Aircraft 
Aileron 
Control 

R2 

Velocity 

Position 

Mode 
Control  

… 
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Need for abstraction 

 Abstract the control computation details 
o Coarse grained vision 

 Reason about the architecture 
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Aerodynamics laws opinion 

 Aircraft stability 

 The aileron should not be non commended for more than 16ms 

 Need for verification, or even more formal verification 
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Architecture description 

 Very first created model of a system during the lifecycle 

 Coarse grained vision 
o A complete description of a real system is impossible 

 A set of architectural design decisions allowing to generate the 
artifact of an architecture 
o Abstract implementation details 

o Extract the reusable components 

• Why?  Time-to-market 

• How? Modeling 
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General workflow 

Architectural Constraints 
and Requirements Constraints 

C2 

C1 C3 

C4 
Architecture 

C2 

C1 C3 

C4 

Architecture 
prototype 
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Need of a specification language 

 Why do we need a specification language? 
o Need for accurate semantics 

o Ability to reason about: 

• Consistency, 

• Completeness, 

• Ambiguity, 

• Minimalism, 

• … 

 Architecture description languages (ADL) 
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Architecture Description Languages (ADL) 
categories 

 Semi-formal or formal Notation 

 Textual and/or graphical syntax 

 With/without design/validation tool support 

 General purpose or domain specific 

 Research prototypes or included in industrial process 

 Modeling target: 
o Software architecture 

• Rapide, Wright 

o Hardware architecture 

• VHDL/Verilog | ADL for processor design: nML, LISA… 

o System architecture (hardware + software) 

• AADL 
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Software architecture description language 

 SA milestones  
o 1993:  SA is recognized as an 

independent research domain 

o 1997: first SADL prototypes 

o 2003: Architecture description 
languages 

 Many attempts to classify 
software architecture 
description languages  

 Medvidovic and Taylor’s 
classification and comparison 
framework: the most complete 

14 

ADL 

  Architecture modelling features 

    Components 

      Interface, Semantics, Constraints 

      Types, Evolution, 

      Non-functional properties 

    Connectors 

      Interface, Semantics, Constraints 

      Types, Evolution, 

      Non-functional properties 

    Architectural configurations 

      Understandability,  

      Compositionality 

      Heterogeneity,  

      Refinement and traceability 

      Scalability, Evolution,  

      Dynamism, Constraints,  

      Non-functional properties 

  Tool support 

    Active specification, Multiple views 

    Analysis, Refinement 

    Implementation generation, Dynamism 
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How to find bugs? 

 At the early design stages  
o Simulation 

o Formal verification 
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Simulation  

 Checks one output point at a time 

 Input-driven 
o generate input vectors 

o derive reference outputs 

 

 

Bug 

Bug 

Bug 

Bug 

Initial 
State 
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Formal verification 

 Checks a group of output points at  time 

 Output-driven: 
o describe desirable output behavior 

o the formal checker approves or disapproves 

 Uses extensive memory and long run time 

 

 
• Proves implementation is equivalent to 

specification in some formalism 
Theorem 
proving  

• Compares synthesized model against original 
model  

Equivalence 
checking 

 

• Checks if a model satisfies a given property 

 

Model 
checking 
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What is model checking 

 Model Checking (Property Checking): 
o Automatic technique for verifying finite systems 

o Pioneered by Edmund Clarke, in 1981 

 Exhaustive state space search 

 Can uncover subtle design errors 

 Currently the dominant formal verification tool. 

 Major challenge: 
o To fight state-explosion problem 

 Success stories: 
o RTL model debug prior to synthesis 

o Used concurrently with and/or prior to simulation 

o Cadence’s Model Checking tool: FormalCheck 
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Model checking process 

System Specification 
(Model M) 

Property Specification 
(temporal formula 𝜑) 

Model 
Checker: 
𝑀 ⊨ 𝜑 ? 

 

False with 
counter 
example 

True 
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Model checking  architectural designs process 

Archit. 
Specification 

Archit. 
Properties 

Input 
Translation 

Model Checker 
Specification 

Input 

Model Checker 
Property Input 

Model 
Checker 

Execution False with 
counter 
example 

Input Translation Computation Output 

Feedback 

True 
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Classification 

MC Engine Name Used by Input Languages Supported Logics Types of Property Specific Features Type of Checking 

SPIN 

Bose, Arcade, 

Zanolin et al. 

 CHARMY 

PROMELA (CSP-

like) 

LTL or Buchi 

automaton 
Safety and liveness 

Distributed 

Systems 
Model Checking 

SMV SAM 

SMV languages 

CTL 

Safety, liveness 

and fairness 

Hardware and 

embedded system 
Model Checking 

NuSMV Aemilia, AutoFocus CTL or LTL 
Customizable and 

extensible 
Model Checking 

Cadence SMV 
Garlan et al., 

AutoFocus 
CTL, LTL or SMV 

Refinement 

verification 

Model Checking 

and Equivalence 

Checking 

Maude Cbabel, Lfp Maude LTL Safety and liveness 
Based on multiset 

rewriting system 
Model Checking 

UPPAAL Fujaba Timed-automata TCTL 
Safety and timed 

liveness 
Real-time Model Checking 

… 
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Rewriting logic formalism for 
architecture description and analysis 
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Why “Rewriting logic”? 

 Semantic framework for concurrency formalisms 
o Executable semantics  

 It can be used to give both, operational and denotational semantics 
to programming languages 

 The logic of concurrent action and change 

 Based on simple deduction rules 

 A logical framework in which other logics can be represented  
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Rewriting logic semantics project 

 “The broad goal of the project is to develop a tool-supported 
computational logic framework for modular programming language 
design, semantics, formal analysis and implementation, based on 
rewriting logic.“ 

 

Analysis           

   tool  

   for L 

Impl.  

of L  

Formal 

Semantic 

 of L 

High 

Level 

design 

Low 

Level of 

the HW 



ZIH Colloquium, 09.04.2015 Chadlia Jerad 

25 

Definition  

 A labelled rewrite specification is a 4-uplet ℛ = (Σ, 𝐸, L, 𝑅), where: 
o Σ is a ranked alphabet of function symbols,  

o 𝐸 is a set of Σ-equations,  

o L is a set of labels  

o and 𝑅 is a set of elements ; 𝑅 ⊆ 𝐿 × (𝑇Σ,𝐸 𝑋 )2 

 The rewrite signature of ℛ is the equational theory (Σ, 𝐸)  

 The elements in R are called rewrite rules and are often denoted by 
expressions of the form 𝑟: 𝑡 → [𝑡′] 

 

StructurenalPropositioStructureAlgebraicStructuredDistibrute

DeductionRewritingTransition

nPropositioTermState






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Rewriting rules 

 Given a rewrite specification ℛ, ℛ ⊢ 𝑡 → [𝑡′] iff  𝑡 → [𝑡′] can be 
obtained by finite application of the following deduction rules: 

o Reflexivity: ∀ 𝑡 ∈ 𝑇Σ,𝐸 𝑋 ,
𝑡 →[𝑡]

 

o Congruence:  ∀ 𝑓 ∈ Σ𝑛, 𝑛 ∈ ℕ,
𝑡1 → 𝑡′1 … 𝑡𝑛 →[𝑡′𝑛]

𝑓(𝑡1,…,𝑡𝑛) → 𝑓(𝑡′1,…,𝑡′𝑛)
 

 

o Replacement:  ∀ 𝑟 ∶ [𝑡 𝑥1, … 𝑥𝑛 ] →, [𝑡′ 𝑥1, … 𝑥𝑛 ] ∈ 𝑅 

    
𝜔1 → 𝜔′

1 … 𝜔𝑛 →[𝜔′𝑛]

𝑡(𝜔 /𝑥 ) →[𝑡′ 𝜔′ 𝑥′  ]
 

o Transitivity: 
𝑡1 → 𝑡2 𝑡2 →[𝑡3]

𝑡1 →[𝑡3]
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Applications area 

Models of concurrent 
computation 

• Equational 
programming 

• Lambda calculi 

• Petri nets 

• CCS and p-calculus 

• Actors 

Distributed 
architectures and 

components 

• UML diagrams and 
metamodels 

• Middleware 
architecture for 
composable services 

Reference Model for 
Open Distributed 

Processing 

• Validation of OCL 
properties 

• Model management 
and model 
transformations 

Operational semantics 
of languages 

• Structural operational 
semantics (SOS) 

• Agent languages 

• Active networks 
languages 

• Mobile Maude 

• Hardware description 
languages 

Specification and analysis 
of communication 

protocols 

• Active networks 

• Wireless sensor 
networks 

• FireWire leader election 
protocol 

Modeling and analysis of 
security protocols 

• Cryptographic protocol 
specication language 
CAPSL 

• MSR security specication 
formalism 

• Maude-NPA 

Real-time, biological, 
probabilistic systems 

• Real-Time Maude Tool 

• Pathway Logic 

• Pmaude 

Logical framework and 
meta-tool 

• Linear logic 

• Translations between 
HOL and Nuprl theorem 
provers 

• Pure type systems 

• Open calculus of 
constructions 

• Tile logic 
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Maude system 

 High-level language and high-performance system 

 Developed a SRI 

 Features 
o Executability 
o High performance engine  
o Modularity and parameterization 
o Built in - booleans, number hierarchy, strings 
o Reflection - using descent and ascent functions 
o Search and model-checking 

 

 

http://maude.cs.uiuc.edu 
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Maude system 

 Modules 
o Functional modules: equational logic  

o System modules: specify general rewrite theories 

 Maude provides a range of efficient analysis commands: 
o Rewriting for simulation/prototyping 

o Search 

o … 

 Temporal logic model checking: check whether all possible 
behaviors from one initial state satisfies a temporal logic formula 
o  only when reachable state space finite 
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Maude’s meta-level & meta-programming  

 Rewriting logic is reflective 

 The functional module META-LEVEL: 
o Maude terms are redefined 

o Maude modules are redefined 

o Moving between reflection levels: operations: upModule, upTerm, 
downTerm… 

 Reducing a term to canonical form: metaReduce 

 Rewriting a term in a system module: metaRewrite and 
metaFrewrite 

 Maude versions: 
o Core Maude 

o Full Maude 
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Full-Maude 

 Full Maude is an extension of Maude 

 Written in Maude itself 

 Special syntax for object-oriented modules supporting object-
oriented  
o Concepts such as objects, messages, classes, and multiple class inheritance. 

o Class declarations: 

 class Person | age : Nat , status : Status . 

o An object can be represented as a term  

 < "Peter" : Person | age : 35 , status : single > 

 Full Maude itself can be used as a basis for further extensions, by 
adding new functionality 
o Declarative debuggers for Maude, for wrong and missing answers 

o Real-Time Maude tool for specifying and analyzing real-time systems 
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Real-Time Maude 

 Particularly suitable to specify object oriented real-time systems 

 Two types of rewrite rules:  
o ordinary rewrite rules 

o and tick rewrite rules, 

 Real-Time rewrite theories  
o Timed modules  

o Or object oriented timed modules 

 Analysis techniques 
o timed rewriting  

o untimed and time-bound search for states that are reachable from the initial 
state  

o time-bound linear temporal logic model checking 

32 
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Architecture description in Real-Time Maude 

 Main idea: 
o Topology   Static aspect  

• Components 

• Connectors  

• Configuration 

• The interfaces 

o Behaviour  Dynamic aspect 

33 



ZIH Colloquium, 09.04.2015 Chadlia Jerad 

34 

Architecture description in Real-Time Maude 

 Main idea: 

34 

Software architecture concepts Real-Time Maude concepts 

Component  Class 

Component interface  
A set of terms having the sort Service on 
top 

Component computation  A set of rewrite rules 

Connector  A set of rewrite rules 

Types Sorts 

Communication events  Messages exchange 

Configuration  A term having the sort System on top 

Compositionality Sub-class relationship 
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Architecture description in Real-Time Maude (3) 

 Modular description 

35 

Real-Time 

module of 

component 1 

specifications 

Real-Time 

module of 

component n 

specifications 

 

Real-Time 

module of 

connectors 

specifications 

Real-Time 

module of 

configuration 

specifications 

. 

. 

. 

Protect/Ext

end/Import 

Protect/Ext

end/Import 

Protect/Ext

end/Import 
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Model checking with Maude 

 Two levels of specification: 
o a system specification level,  

o a property specification level 

 Temporal logic allows specification of properties such as  
o safety properties 

o and liveness properties 

 Maude 2 includes a model checker to prove properties expressed in 
Linear temporal logic (LTL) 
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Linear Temporal Logic 

 Temporal operators: 

 

 

 

 

 

 

 

 Timed LTL 
o Time-bounded linear temporal logic model checking 

o The untimed linear temporal logic model checking 
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Modelling components 

 Example: MF class 

38 

 

class MF | clock : Time, dly : Time, 

   computation : String, mode : String . 

 

op CmdService RF1Service RF2Service  

            : -> Service [ctor] . 
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Master function behaviour 
39 

MF behaviour Real-Time Maude specification 

Compute position 
rl [MF-Compute-position] : 

  < O : MF | mode : "cmd", computation : "Start" > 

 => < O : MF | mode : "cmd", computation : "CmpPos" > . 

Sending controls  

rl [MF-Sending] : 

  < O : MF | computation : "CmpPos" > 

 => < O : MF | computation : "Send" > 

    provide("CmdService") provide("RF1Service") 

    provide("RF2Service") . 

Period  

rl [MF-Period] : 

  < O : MF | clock : R, dly : 0, computation : "Send" > 

 => if R == 2 then  

    < O : MF | clock : 0, dly : 0, computation : "Start" > 

   else 

    < O : MF | clock : R, dly : step, computation : "Send" >  

   fi . 

MF failiure 
rl [MF-Failiure] : 

  < O : MF | > 

 => none . 
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RF1 behaviour  
40 

RF1 behaviour Real-Time Maude specification 

Receive a message crl [RF1-Receive-require-message] : 

  < O : RF1 | clock : R, dly : R’ > require("RF1Service") 

 => < O : RF1 | clock : 0, dly : 0 > 

if R <= 4 . 

Advance time if no 

message is received 

crl [RF1-No-message-advance-time] : 

  {< O : RF1 | clock : R, dly : 0 > Conf} 

 => {< O : RF1 | clock : R, dly : step > Conf} 

if R <= 4 and not(existe(require("RF1Service"), Conf)) . 

Move to cmd mode crl [RF1-Move-to-cmd-mode] : 

  < O : RF1 | clock : R, dly : R’, mode : "off", computation : "Start" > 

 => < O : RF1 | clock : 0, dly : 0, mode : "cmd", computation : "Cmd" > 

if R > 4 . 

Compute position rl [RF1-Compute-position] : 

  < O : RF1 | mode : "cmd", computation : "Cmd" > 

 => < O : RF1 | mode : "cmd", computation : "CmpPos" > . 

Sending controls rl [RF1-Sending] : 

  < O : RF1 | computation : "CmpPos" > 

 => < O : RF1 | computation : "Send" > provide("CmdService")  

    provide("RF1Service") provide("RF2Service") . 

Period 
rl [RF1-Period] : 

  < O : RF1 | clock : R, dly : 0, computation : "Send" > 

 => if R == 2 then < O : RF1 | clock : 0, dly : 0, computation : "Cmd" > 

   else < O : RF1 | clock : R, dly : step, computation : "Send" > fi . 

RF1 failiure rl [RF1-Failiure] : < O : RF1 | mode : "Cmd" > => none . 
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Modelling connections 
41 

Connectors 

behaviour 
Real-Time Maude specification 

Analogical bus rl [Analogical-bus] : 

  provide("CmdService") 

 => require("CmdService") . 

Digital bus with 

maximal latency 2 
rl [Digital-bus-2] : 

  provide("RF1Service") 

 => tempRequire("RF1Service", 2, 0, 0) . 

crl [tempRequire-to-require] : 

  tempRequire("RF1Service", R, R’, R’’) 

 => require("RF1Service") 

if R’’ >= R’ and R’’ <= R . 

Digital bus with 

maximal latency 4 
rl [Digital-bus-4] : 

  provide("RF2Service") 

 => tempRequire("RF2Service", 4, 0, 0) . 

crl [tempRequire-to-require] : 

  tempRequire("RF2Service", R, R’, R’’) 

 => require("RF2Service") 

if R’’ >= R’ and R’’ <= R . 
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Advancing time 

 A synchronous rule that increases all clock attribute values: 

 

 

 

  

 mte : operation that describes advancing time condition 

 delta : operation that models the effect of time elapse on the 
system 

42 

crl [tick] : 

 {C:Configuration} => {delta(C:Configuration, R)} in time R 

if mte(C:Configuration) == true . 
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System verification 

 The system’s initial state: 

   

 

 

 

 

 

43 

ops AileronInst MFInst RF1Inst RF2Inst : -> Oid [ctor] . 

 

op initState : -> System [ctor] . 

 

eq initState = { < AileronInst : Aileron | clock : 0, dly : 0,  

 computation : "Start" >  

 

 < MFInst : MF | clock : 0, dly : 0,  computation : "Start",  

 mode : "Cmd" >  

 

 < RF1Inst : RF1 | clock : 0, dly : 0, computation : "Start", 

 mode : "Off" >  

 

 < RF2Inst : RF2 | clock : 0, dly : 0, computation : "Start", 

 mode : "Off" >  } . 
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System verification 

 First property: 
o The aileron should not remain without control more than 16 ms (AileronCMD 

property). 

 op AileronCMD : -> Prop [ctor] . 

 

eq {< O : Aileron | clock : R', dly : R'',  

 computation : S >  

    Rest:Configuration} |= AileronCMD = (R' > 16) . 

Maude > (mc {initState} |=u [] ~ AileronCMD .) 

 rewrites: 51475 in 116ms cpu (114ms real) (443723 

rewrites/second) 

 Untimed model check {initState}  |=u []~ AileronCMD in 

AIRCRAFT-CHECK  with mode default time increase 1 

 Result Bool : 

   true 
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System verification 

 Second property 
o There must be only one function controlling the aileron at a time (NbrFCmd 

property). 

 op NbrFCmd : -> Prop [ctor] . 

eq {< MFInst : MF | mode : "Cmd" > < RF1Inst : RF1 | 

 mode : " Cmd" >  

 Rest:Configuration} |= AileronCMD = true . 

... 

Maude > (mc {initState} |=u [] ~ NbrFCmd .) 

 rewrites: 54617 in 96ms cpu (96ms real) (568891 

rewrites/second) 

 Untimed model check {initState}  |=u []~ NbrFCmd in AIRCRAFT-

CHECK  with mode default time increase 1 

 Result Bool : 

   true 
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System verification 

 Deadlock freeness:  

46 

 Maude > (utsearch {initState} =>! GS:GlobalSystem .) 
 rewrites: 49226 in 88ms cpu (88ms real) (559348 rewrites/second) 

 Untimed search in AIRCRAFT-CHECK {initState} =>! GS:GlobalSystem 

  with mode default time increase 1 : 

 No solution 
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Current situation 

 Why is there so many ADL? 
o Express different needs 

o Different domains 

o Different analysis 

o Some of them are mostely similar  

o Some are only research prototypes 
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Current situation 
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Problems to solve  

 From ADL side 
o High degree of formalization 

 Difficult to integrate within industral life-cycle 

o Limited number of analysis tools 

o Limited industrial support 

 

 From formal methods side 
o State explosion problem 
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Thank you for your 
attention 
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