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= 14 institutions
= National School of Computer Science (ENSI)

o Graduate engineering programs
3 Departments for 6 different specializations
o Coordinator of the “Embedded Software and Systems” specialization

o Research and doctoral studies
PhD (1)
University Habilitation (1)
= 845 students "
= 82 full-time professors "

*) non official numbers
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am=za University of Tunis El Manar

= 15 institutions

= National Engineering School of Tunis (ENIT)
o Graduate engineering programs
5 Departments for 9 different programs
o Research and doctoral studies
MS (6) + Professional MS (1)
PhD (8)
University Habilitations (7)
o 1444 students
o 211 full-time professors
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0OASISOASIS Laboratory @ ENIT

o 50 members
o 24 doctoral candidates

Themes
o Optimization/Supply chain
o Computer science
National collaborations
o Tunisian laboratories
o Ministry of health/Hospitals
o Ministry of transportation

International collaborations
o France (ECP, ENSTA...)

o Canada (Université Laval...)
o USA (University of Minnesota)

Diagnosability conditions of a
class of DES

Design of an ASIP for speaker
recognition applications

Accelerator design of
stereovision applications
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Motivations

Numerical
systems are
everywhere!

v

Increasing complexity: [1]

* SW requirements:
2x/10months [LOC SW/Chip]

e SW productivity:
2x/5years [LOC SW/Day]

e HW productivity:
1,6x/16months [Gates/Day]
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Costs of failure

= \ery depending on the system criticality
= Costs of failure are sometimes ... dramatic!

o Need to detect design faults

o ~70% of project development cycle: design
verification

o Every approach to reduce development time

—> considerable influence on economy

B i)

. |
intele |
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Let’s consider a simplified example

Aircraft system Velocity

Need to control the right aircraft aileron: Aircraft

o That is generating periodically its control EBSItiap Aileron

P
i Control

Control

Velocity

Position Aircra..
Aileron

Mode Contnr. Position Aircraft
Aileron

Control

Velocity

Control
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Need for abstraction

= Abstract the control computation details

o Coarse grained vision Bus E"a'l’t‘;’::; "I":t";'r:‘;;‘;'
H Analogical buses
= Reason about the architecture couneating functions | 0 me 0 me
the aileron
Digital bus connecting
MF to RF1 0ms 2ms
Digital bus connecting
MF to RF2 0ms 4ms
A Digital bus connecting 0 ms 4 ms

RF1 to RF2

RF1 = Electric Command
= Lileron Bus

= Fuselage Bus
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Aerodynamics laws opinion

= Aircraft stability
= The aileron should not be non commended for more than 16ms
=» Need for verification, or even more formal verification
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Architecture description

= \ery first created model of a system during the lifecycle
= Coarse grained vision

o A complete description of a real system is impossible

= A set of architectural design decisions allowing to generate the
artifact of an architecture
o Abstract implementation details

o Extract the reusable components
* Why? Time-to-market
* How? Modeling
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General workflow

C2

C1/C3

C4
Architecture

C2

c1 163

ca4

Architecture
prototype
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Need of a specification language

= Why do we need a specification language?
o Need for accurate semantics
o Ability to reason about:
* Consistency,
* Completeness,
* Ambiguity,

* Minimalism,

= Architecture description languages (ADL)
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Architecture Description Languages (ADL)

= Semi-formal or formal Notation

= Textual and/or graphical syntax

=  With/without design/validation tool support

=  General purpose or domain specific

= Research prototypes or included in industrial process

" Modeling target:
o Software architecture
* Rapide, Wright
o Hardware architecture
» VHDL/Verilog | ADL for processor design: nML, LISA...

o System architecture (hardware + software)
* AADL
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Software architecture description language

= SA milestones

o 1993: SAis recognized as an
independent research domain

1997: first SADL prototypes
o 2003: Architecture description
languages
= Many attempts to classify
software architecture
description languages

= Medvidovic and Taylor’s
classification and comparison
framework: the most complete

ADL
Architecture modelling features
Components
Interface, Semantics, Constraints

Types, Evolution,
Non-functional properties
Connectors
Interface, Semantics,
Types, Evolution,
Non-functional properties
Architectural configurations
Understandability,
Compositionality
Heterogeneity,
Refinement and traceability
Scalability, Evolution,
Dynamism, Constraints,
Non-functional properties
Tool support
Active specification, Multiple views
Analysis, Refinement
Implementation generation, Dynamism

Constraints

O
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How to find bugs?

= At the early design stages
o Simulation

o Formal verification
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Simulation

= Checks one output point at a time
" |nput-driven

o generate input vectors
o derive reference outputs

Initial
State
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Formal verification
B

* Checks a group of output points at time

= Qutput-driven:
o describe desirable output behavior

o the formal checker approves or disapproves

= Uses extensive memory and long run time

Theorem e Proves implementation is equivalent to
proving specification in some formalism

Equivalence  Compares synthesized model against original
checking el

Model
checking

e Checks if a model satisfies a given property
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Model Checking (Property Checking):
o Automatic technique for verifying finite systems
o Pioneered by Edmund Clarke, in 1981

= Exhaustive state space search
= Can uncover subtle design errors

= Currently the dominant formal verification tool.

= Major challenge:

o To fight state-explosion problem

= Success stories:
o RTL model debug prior to synthesis
o Used concurrently with and/or prior to simulation
o Cadence’s Model Checking tool: FormalCheck

What is model checking
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Model checking process

System Specification
(Model M)

Property Specification
(temporal formula @)

Model
Checker:
MEg@?

True

False with
counter
example

O
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Model checking architectural designs process

Input Translation Computation Output
: Model Checker
Archit. e
0 P + Specification (-
Specification True
Input Model | |/
Input
Translation Checker
—  Archit. | | . Model Checker |_| Execution | N\ False with
Properties Property Input counter
example
Feedback
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Classification

MC Engine Name Used by Input Languages Supported Logics Types of Property Specific Features Type of Checking
Bose, Arcade
! ! PROMELA (CSP- LTL or Buchi Distributed
SPIN Zanolin et al. like) ( aut(c)):nal:gnl Safety and liveness :55 gcel:nj Model Checking
CHARMY y
Hard d
SMV SAM cTL araware an Model Checking
embedded system
Safety, li Customizabl d
NuSMV Aemilia, AutoFocus SMV languages CTLorLTL ey, .|veness us omlza. ean Model Checking
and fairness extensible
Model Checking
Garl tal. Refi t
Cadence SMV arian et al. CTL, LTL or SMV etnemen and Equivalence
AutoFocus verification .
Checking
, Based on multiset .
Maude Cbabel, Lfp Maude LTL Safety and liveness N Model Checking
rewriting system
Safety and timed
UPPAAL Fujaba Timed-automata TCTL arety and time Real-time Model Checking

liveness

S
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Rewriting logic formalism for
architecture description and analysis
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Why “Rewriting logic”?

= Semantic framework for concurrency formalisms

o Executable semantics
" |t can be used to give both, operational and denotational semantics
to programming languages
* The logic of concurrent action and change
= Based on simple deduction rules

" Alogical framework in which other logics can be represented
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Rewriting logic semantics project

= “The broad goal of the project is to develop a tool-supported
computational logic framework for modular programming language
design, semantics, formal analysis and implementation, based on

rewriting logic.”

jormar\

Semantic
<

Low
Level of

the HW
&0
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Definition

= Alabelled rewrite specification is a 4-uplet R = (Z,E, L, R), where:

o X is aranked alphabet of function symbols,
o Eis a set of X-equations,
o Lis a set of labels

o and R is a set of elements ; R S L X (Tg z(X))*

* The rewrite signature of R is the equational theory (%, E)

= The elements in R are called rewrite rules and are often denoted by
expressions of the form r: [t] — [t']

State <~ Term <> Proposition
Transition <> Rewriting <> Deduction
Distibruted Structure <> Algebraic Structure <> Propositional Structure
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Rewriting rules

= Given a rewrite specification R, R + [t] — [t'] iff [t] = [t'] can be
obtained by finite application of the following deduction rules:

o Reflexivity: V [t] € TE,E(X)' [t]-[t]

[t1]-[t" 1] [tn]=[t 7]

o Congruence: VfeX, neN, et S (trntr)]
o Replacement: Vr:[t(xy,...x)] = [t'(xg,...x,)] ER
[w1]—>[w’1]---[wn]_’[w’n]
[t(w/x)]->[tr(w7/X7)]
[t1]-[¢t2][E2]-[t3]

o Transitivity: TS
1171[t3
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Applications area

Models of concurrent
computation

Reference Model for
Open Distributed

Distributed
architectures and

Operational semantics
of languages

e Equational
programming

e Lambda calculi

e Petri nets

e CCS and p-calculus

e Actors

Specification and analysis
of communication

components Processing

e UML diagrams and e Validation of OCL

metamodels properties
e Middleware * Model management
architecture for and model

composable services transformations

Modeling and analysis of

Real-time, biological,

security protocols probabilistic systems

e Structural operational
semantics (SOS)

e Agent languages

e Active networks
languages

* Mobile Maude

* Hardware description
languages

Logical framework and
meta-tool

protocols

e Active networks

e Wireless sensor
networks

¢ FireWire leader election
protocol

® Real-Time Maude Tool
¢ Pathway Logic
* Pmaude

¢ Cryptographic protocol
specication language
CAPSL

e MSR security specication
formalism

e Maude-NPA

e Linear logic

* Translations between
HOL and Nuprl theorem
provers

e Pure type systems

* Open calculus of
constructions

¢ Tile logic

&
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Maude system

= High-level language and high-performance system

= Developed a SRl

= Features

o Executability
High performance engine
Modularity and parameterization
Built in - booleans, number hierarchy, strings
Reflection - using descent and ascent functions
Search and model-checking

O O O O O

http://maude.cs.uiuc.edu
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Maude system

" Modules
o Functional modules: equational logic
o System modules: specify general rewrite theories
" Maude provides a range of efficient analysis commands:

o Rewriting for simulation/prototyping
o Search

o ..

= Temporal logic model checking: check whether all possible
behaviors from one initial state satisfies a temporal logic formula

o only when reachable state space finite
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Maude’s meta-level & meta-programming

= Rewriting logic is reflective
= The functional module META-LEVEL:

o Maude terms are redefined
o Maude modules are redefined
o Moving between reflection levels: operations: upModule, upTerm,
downTerm...
= Reducing a term to canonical form: metaReduce

= Rewriting a term in a system module: metaRewrite and
metaFrewrite

= Maude versions:

o Core Maude
o Full Maude
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Full-Maude

=  Full Maude is an extension of Maude

= Written in Maude itself

= Special syntax for object-oriented modules supporting object-
oriented
o Concepts such as objects, messages, classes, and multiple class inheritance.

o Class declarations:

class Person | age : Nat , status : Status
o An object can be represented as a term
< "Peter" : Person | age : 35 , status : single >
= Full Maude itself can be used as a basis for further extensions, by
adding new functionality
o Declarative debuggers for Maude, for wrong and missing answers
o Real-Time Maude tool for specifying and analyzing real-time systems
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Real-Time Maude

= Particularly suitable to specify object oriented real-time systems

= Two types of rewrite rules:
o ordinary rewrite rules

o and tick rewrite rules,

= Real-Time rewrite theories
o Timed modules
o Or object oriented timed modules

= Analysis techniques

o timed rewriting

o untimed and time-bound search for states that are reachable from the initial
state

o time-bound linear temporal logic model checking
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Architecture description in Real-Time Maude

= Mainidea:

o Topology —> Static aspect
* Components

* Connectors
e Configuration
* The interfaces

o Behaviour - Dynamic aspect
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Architecture description in Real-Time Maude

BT
" Mainidea:
Software architecture concepts Real-Time Maude concepts
Component Class
. A set of terms having the sort Service on
Component interface
top
Component computation A set of rewrite rules
Connector A set of rewrite rules
Types Sorts
Communication events Messages exchange
Configuration A term having the sort System on top
Compositionality Sub-class relationship
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Architecture description in Real-Time Maude (3)

= Modular description

4 4

Real-Time
module of
connectors
specifications

Real-Time
module of
component 1
specifications

/Ext

end/Impo Protect/Ext

-

Real-Time
module of
configuration
specifications

Real-Time
module of

Protect/Ext
component n

end/Import

v

specifications
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Model checking with Maude

= Two levels of specification:
o a system specification level,
o a property specification level

» Temporal logic allows specification of properties such as
o safety properties

o and liveness properties

= Maude 2 includes a model checker to prove properties expressed in
Linear temporal logic (LTL)
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Linear Temporal Logic

* Temporal operators:

Eventually: Qo =T U @

Henceforth: g = =0—-¢

Release: @ R ¢ = —((—g) U (—¢))
Unless: o Wy = (U o)V (Lg)
Leads-to: @ ~ ¢p =U(¢ — (Q¢))
Strong implication: ¢ = ¢ =U(e — ¢)
Strong equivalence: ¢ & ¢ =U(@ < ¢)

= Timed LTL

o Time-bounded linear temporal logic model checking

o The untimed linear temporal logic model checking

O
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Modelling components

= Example: MF class
class MF | clock : Time, dly : Time,
computation : String, mode : String

op CmdService RF1Service RF2Service
-> Service [ctor]
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Master function behaviour

MF behaviour Real-Time Maude specification

rl [MF-Compute-position]
Compute position < O : MF | mode : "cmd", computation : "Start" >
=> < O : MF | mode : "cmd", computation : "CmpPos" >

rl [MF-Sending]

< O : MF | computation : "CmpPos" >
Sending controls => < O : MF | computation : "Send" >
provide ("CmdService") provide ("RF1lService")

provide ("RF2Service")

rl [MF-Period]

< O : MF | clock : R, dly : 0, computation : "Send" >
=> if R == 2 then
Period < O : MF | clock : 0, dly : 0, computation : "Start" >
else
< O : MF | clock : R, dly : step, computation : "Send" >
fi

rl [MF-Failiure]
MF failiure <0 : MF | >

=> none
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RF1 behaviour

RF1 behaviour Real-Time Maude specification
Receive a message crl [RF1-Receive-require-message]

< O : RF1 | clock : R, dly : R’ > require("RFlService")
=> < O : RFl1 | clock : 0, dly : 0 >
if R <= 4

Advance time if no/|crl [RF1-No-message-advance-time]
. . {< O : RF1l | clock : R, dly : 0 > Conf}
message isreceived | —> (< o0 : RF1 | clock : R, dly : step > Conf}

if R <= 4 and not (existe(require ("RF1lService"), Conf))

Move to cmd mode crl [RF1-Move-to-cmd-mode]

< O : RF1 | clock : R, dly : R’, mode : "off", computation : "Start" >
=> < O : RF1 | clock : 0, dly : 0, mode : "cmd", computation : "Cmd" >
if R > 4
Compute pOS|t|on rl [RF1-Compute-position]
< O : RFl | mode : "cmd", computation : "Cmd" >
=> < O : RF1l | mode : "cmd", computation : "CmpPos" >
Sending controls rl [RF1-Sending]
< O : RF1 | computation : "CmpPos" >
=> < O : RF1 | computation : "Send" > provide ("CmdService")
provide ("RF1lService") provide ("RF2Service")
PerIOd rl [RF1-Period]
< O : RF1 | clock : R, dly : 0, computation : "Send" >
=> if R == 2 then < O : RFl | clock : 0, dly : 0, computation : "Cmd" >
else < O : RF1 | clock : R, dly : step, computation : "Send" > fi
RF1 falllure rl [RFl1-Failiure] : < O : RF1 | mode : "Cmd" > => none
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Modelling connections

Connectors
behaviour

Real-Time Maude specification

Analogical bus

rl [Analogical-bus]
provide ("CmdService")
=> require ("CmdService")

Digital  bus
maximal latency 2

with

rl [Digital-bus-2]
provide ("RFlService")
=> tempRequire ("RF1lService", 2, 0, 0)
crl [tempRequire-to-require]
tempRequire ("RFlService",
=> require ("RFlService")
if R’ >= R’ and R’ <= R

R, R’, R'')

Digital  bus
maximal latency 4

with

rl [Digital-bus-4]
provide ("RF2Service")
=> tempRequire ("RF2Service", 4,
crl [tempRequire-to-require]
tempRequire ("RF2Service",
=> require ("RF2Service")
if R’/ >= R’ and R’/ <= R

0, 0)

R, R’, R'')
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Advancing time

= A synchronous rule that increases all clock attribute values:

crl [tick]
{C:Configuration} => {delta(C:Configuration, R)} 1n time R
1f mte(C:Configuration) == true

" mte :operation that describes advancing time condition

" delta :operation that models the effect of time elapse on the
system
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System verification

= The system’s initial state:
ops AileronInst MFInst RFlInst RF2Inst : -> 0Oid [ctor]
-> System [ctor]

op initState

eq initState = { < AileronlInst : Aileron | clock : O,
computation "Start" >

< MFInst : MF | clock : 0O, dly : 0, computation

mode : "Cmd" >

< RFlInst : RF1l | clock : 0, dly : 0, computation

mode : "Off" >

< RF2Inst : RF2 | clock : 0, dly : 0, computation

mode : "Off" > }

0,

"Start",

"Start",

"Start",
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System verification

= First property:
o The aileron should not remain without control more than 16 ms (AileronCMD

property).

op AileronCMD : -> Prop [ctor]

eq {< O : Aileron | clock : R', dly : R'"',

computation : S >
Rest:Configuration} |= AileronCMD = (R' > 16)
Maude > (mc {initState} |=u [] ~ AileronCMD .)
rewrites: 51475 in 1lléms cpu (1l1l4ms real) (443723
rewrites/second)
Untimed model check {initState} |=u []~ AileronCMD in
AIRCRAFT-CHECK with mode default time increase 1
Result Bool

true
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System verification

= Second property
o There must be only one function controlling the aileron at a time (NbrFCmd

property).
op NbrFCmd : -> Prop [ctor]
eq {< MFInst : MF | mode : "Cmd" > < RFlInst : RF1 |
mode : " Cmd" >
Rest:Configuration} |= AileronCMD = true
Maude > (mc {initState} |=u [] ~ NbrFCmd .)
rewrites: 54617 in 96ms cpu (96ms real) (568891
rewrites/second)
Untimed model check {initState} |=u []~ NbrFCmd in AIRCRAFT-
CHECK with mode default time increase 1
Result Bool
true
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System verification

= Deadlock freeness:

Maude > (utsearch {initState} =>! GS:GlobalSystem .)
rewrites: 49226 in 88ms cpu (88ms real) (559348 rewrites/second)
Untimed search in AIRCRAFT-CHECK {initState} =>! GS:GlobalSystem
with mode default time increase 1
No solution
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Current situation

= Why is there so many ADL?

Express different needs

Different domains
Different analysis
Some of them are mostely similar

O O O O O

Some are only research prototypes
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Current situation

Used Architectural Notations

40
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Problems to solve
m :"-'ii"f.:’: S e S R 7 S O s B AT

= From ADL side

o High degree of formalization

—> Difficult to integrate within industral life-cycle
o Limited number of analysis tools
o Limited industrial support

" From formal methods side

o State explosion problem
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Thank you for your
attention
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