Selected Parallel and Scalable Methods for Scientific Big Data Analytics

Dr.-Ing. Morris Riedel et al. Research Group Leader, Juelich Supercomputing Centre Adjunct Associated Professor, University of Iceland

> ZIH Kolloquium , 21th May 2015 Technical University of Dresden

Federated Systems and Data Division

Research Group

High Productivity Data Processing

UNIVERSITY OF ICELAND SCHOOL OF ENGINEERING AND NATURAL SCIENCES

FACULTY OF INDUSTRIAL ENGINEERING, MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Research Centre Juelich

JUELICH in Numbers

Area: 2.2 km²

Staff: 5236 Scientists: 1658 Technical staff: 1662 Trainees: 303

Budget: 557 Mio. € incl. 172 Mio. € third party funding

Located in Germany, Koeln – Aachen Area

Institutes at JUELICH Institute of Complex Systems Institute for Advanced Simulation **Juelich Supercomputing Center Juelich Center for Neutron Science Peter-Grünberg Institute** Institute for Neuroscience and Medicine **Institute for Nuclear Physics** Institute for Bio and Geosciences Institute for Energy and Climate Research Central Institute for Engineering, Electronics, and Analytics

Research for generic key technologies of the next generation

Scientific & Engineering Application-driven Problem Solving

University of Iceland

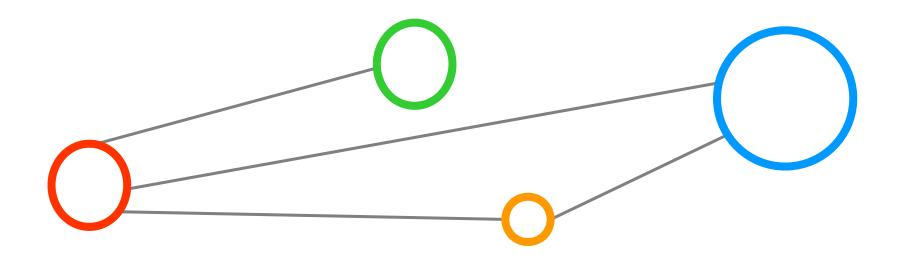
Schools of the University	Faculties of the School		
School of Education School of Humanities	Civil and Environmental Engineering Earth Sciences		
School of Engineering and Natural Sciences	Electrical and Computer Engineering		
School of Social Sciences	Industrial Engineering		
School of Health Sciences	Mechanical Engineering		
Interdisciplinary Studies	Computer Science		
	Life and Environmental Sciences		
Full programmes taught in English	Physical Sciences		
Staff: ~ 1259			
Students: ~14.000			
Staff: ~ 1259			

Teaching of key technologies in engineering & sciences University Courses: Statistical Data Mining & HPC-A/B

Located in Reykjavik Capital Center, Iceland

UNIVERSITY OF ICELAND SCHOOL OF ENGINEERING AND NATURAL SCIENCES

FACULTY OF INDUSTRIAL ENGINEERING, MECHANICAL ENGINEERING AND COMPUTER SCIENCE



Outline

Data Analytics @ Juelich

- Driven by Scientific & Engineering Demands
- Understanding of Terms & Key Focus

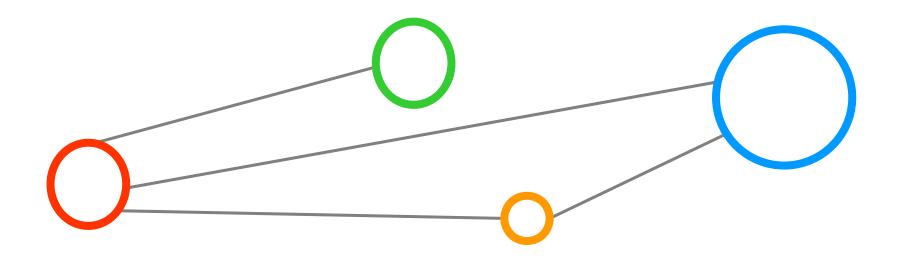
Scalable & Parallel Tools

- Clustering DBSCAN
- Classification SVM
- Scientific Applications in Context

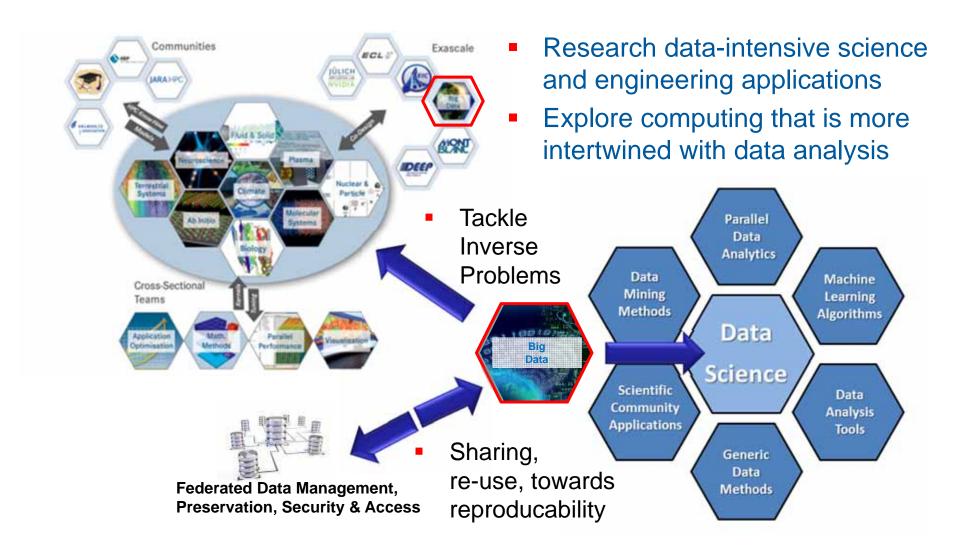
Recent Research Directions

- 'Brain Analytics'
- Deep Learning
- Conclusions
- References & Backup Slides

Data Analytics @ Juelich



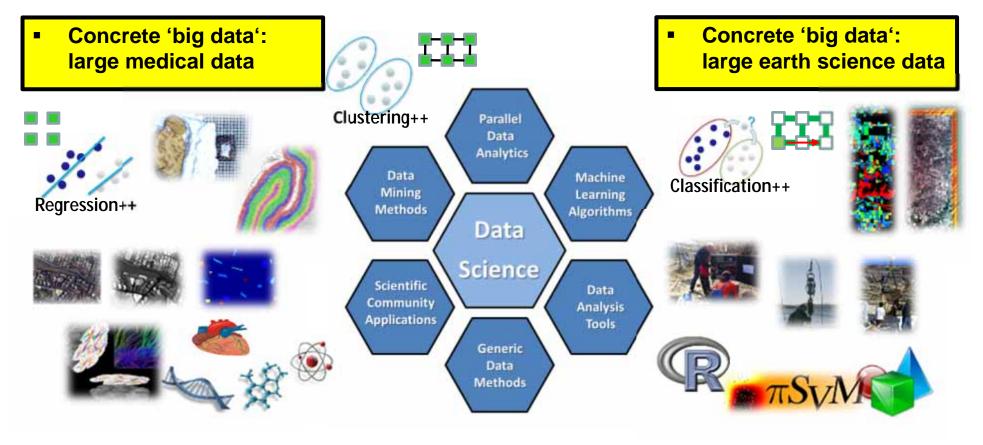
Data Analytics – Context JSC



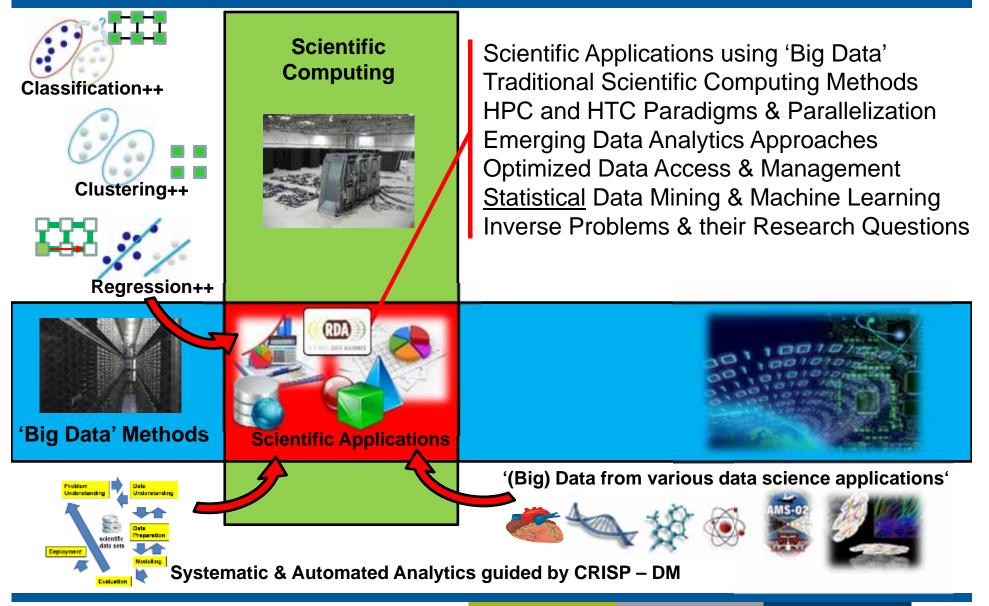
Data Analytics – Term Clarification

'Data Analytics' is an 'interesting mix' of different approaches

- Analytics: Whole methodology; Analysis: data investigation process itself
- 'Big' requires scalable processing methods and underlying infrastructure



Data Analytics – Research Key Focus



Data Analytics – Selected Research Group Activities

John von Neumann Institute for Computing (NIC)

- Peer-review of scientific big data analytics (SBDA) proposels
- Jointly work with SBDA users (first projects starting, prototyping process)

John von Neumann - Institut für Computing

Research Data Alliance (RDA)

- Chairing activities of the Big Data Analytics Interest Group
- Collaboration with a variety of EU and US partners
- Geoffrey Fox, UoIndiana (map-reduce), Kuo Kwo-Sen (NASA, SciDB)

Smart Data Innovation Lab (SDIL)

- Driving activities in the personalised medicine community (with Bayer)
- Collaboration with partners from industry (e.g. IBM, SAP, Siemens, etc.)

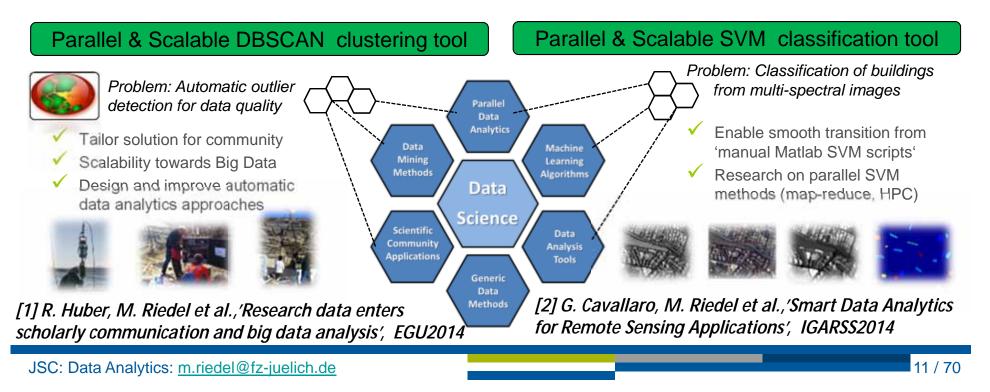
NIC

Smart Data Innovation Lab

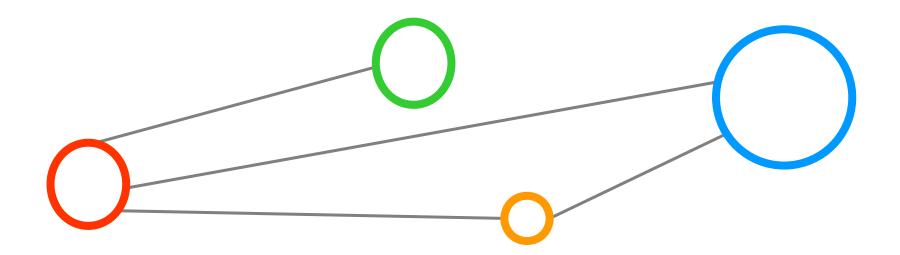
Data Analytics – Selected Research Expertise

Key expertise making algorithms parallel & scalable for 'big data'

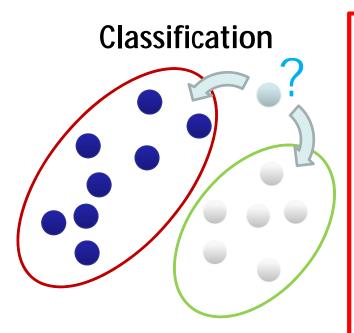
- Driven by scientific and engineering cases, e.g. understanding the human brain, remote sensing applications, marine measurements analysis, ...
- Automate and/or support the data analysis process
- Example codes: Density-based Spatial Clustering of Applications with Noise (DBSCAN), Support Vector Machines (SVMs),



Scalable & Parallel Tools: Clustering

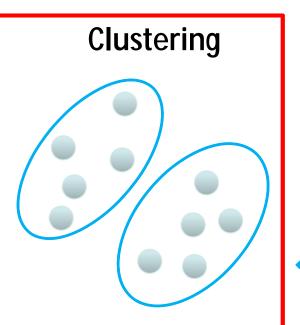


Learning From Data – Clustering Technique



Groups of data exist

 New data classified to existing groups



- No groups of data exist
- Create groups from data close to each other
- Identify a line with a certain slope describing the data

Regression

Selected Clustering Methods

K-Means Clustering – Centroid based clustering

Partitions a data set into K distinct clusters (centroids can be artificial)

K-Medoids Clustering – Centroid based clustering (variation)

Partitions a data set into K distinct clusters (centroids are actual points)

Sequential Agglomerative hierarchic nonoverlapping (SAHN)

• Hiearchical Clustering (create tree-like data structure \rightarrow 'dendrogram')

Clustering Using Representatives (CURE)

Select representative points / cluster; as far from one another as possible

Density-based spatial clustering of applications + noise
 (DBSCAN) Reasoning: density similarity measure helpful in our driving applications
 Assumes clusters of similar density or areas of higher density in dataset

Technology Review of Open & Available Tools

Technology	Platform Approach	Analysis
HPDBSCAN	C; MPI; OpenMP	Parallel, hybrid, DBSCAN
(authors implementation)		
Apache Mahout	Java; Hadoop	K-means variants, spectral,
		no DBSCAN
Apache Spark/MLlib	Java; Spark	Only k-means clustering,
		No DBSCAN
scikit-learn	Python	No parallelization strategy
		for DBSCAN
Northwestern University	C++; MPI; OpenMP	Parallel DBSCAN
PDSDBSCAN-D		

M. Goetz, M. Riedel et al., 6th Workshop on Data Mining in Earth System Science, International Conference of Computational Science (ICCS), Reykjavik, to be published

Parallel & Scalable DBSCAN MPI/OpenMP Tool (1)

DBSCAN Algorithm

- Introduced 1996 by Martin Ester et al.
- Groups number of similar points into clusters of data
- Similarity is defined by a distance measure (e.g. euclidean distance)

Distinct Algorithm Features

- Clusters a variable number of clusters
- Forms arbitrarily shaped clusters
- Identifies outliers/noise

Understanding Parameters for MPI/OpenMP tool

- Looks for a similar points within a given search radius
 Parameter epsilon
- A cluster consist of a given minimum number of points
 - → Parameter *minPoints*

[3] M.Goetz & C. Bodenstein, HPDBSCAN Tool

[4] Ester et al.

Unclustered Data

Clustered

Data

Parallel & Scalable DBSCAN MPI/OpenMP Tool (2)

Parallelization Strategy

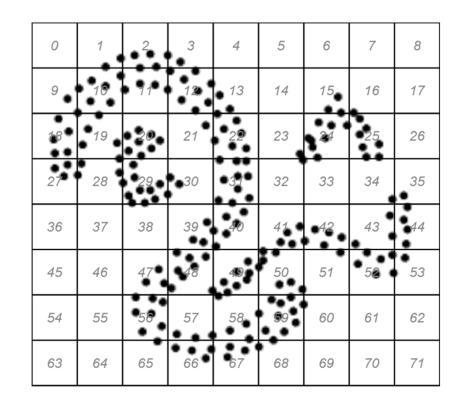
- Smart 'Big Data' Preprocessing into Spatial Cells
- OpenMP standalone
- MPI (+ optional OpenMP hybrid)

Preprocessing Step

- Spatial indexing and redistribution according to the point localities
- Data density based chunking of computations

Computational Optimizations

- Caching of point neighborhood searches
- Cluster merging based on comparisons instead of zone reclustering



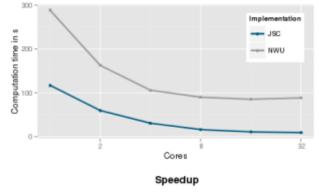
[3] M.Goetz & C. Bodenstein, HPDBSCAN Tool

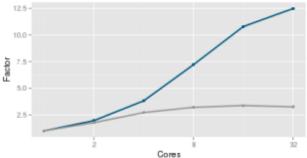
Parallel & Scalable DBSCAN MPI/OpenMP Tool (3)

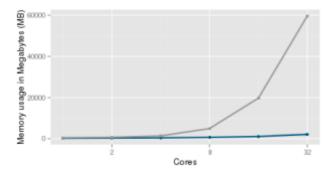
Performance Comparisons

- With another open-source parallel DBSCAN implementation (aka 'NWU')
 [5] Patwary et al.
- 3.7056.351 data points (2 dimensions)
- Use of Hierarchical Data Format (HDF)
 v.5 for scalable input/output of 'big data'

Computation time comparison





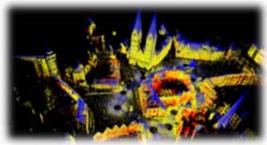


JSC: Data Analytics: m.riedel@fz-juelich.de

Parallel & Scalable DBSCAN MPI/OpenMP Tool (4)

Selected 'Big Data' Applications

- London twitter data (goal: find density centers of tweets)
- Bremen thermo point cloud data (goal: noise reduction)
- PANGAEA earth science datasets (goal: automated outlier detection)



Total number of data sets 349 871 Data items ~ 7.9 billions

[6] Open PANGAEA Earth Science Data Collection

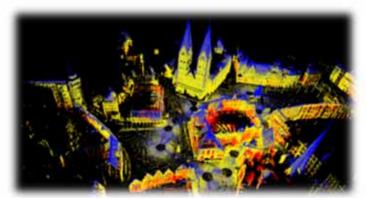
	Cores					
Computation time	1	2	4	8	16	32
JSC-HPDBSCAN	117,18 s	59,64 s	30,68 s	16,25 s	10,86 s	9,39 s
NWU-PDSDBSCAN	288,35 s	162,47 s	105,94 s	89,87 s	85,37 s	88,42 s
Speed-Up						
JSC-HPDBSCAN	1,00 x	1,96 x	3,82 x	7,21 x	10,79 x	12,48 ×
NWU-PDSDBSCAN	1,00 x	1,77 x	2,72 x	3,21 x	3,38 x	3,26 x
Memory						
JSC-HPDBSCAN	251,064 MB	345,276 MB	433,340 MB	678,248 MB	1,101 GB	2,111 GB
NWU-PDSDBSCAN	500,512 MB	725,104 MB	1,370 GB	4,954 GB	19,724 GB	59,685 GB

Parallel & Scalable DBSCAN MPI/OpenMP Tool (5)

Free tool available

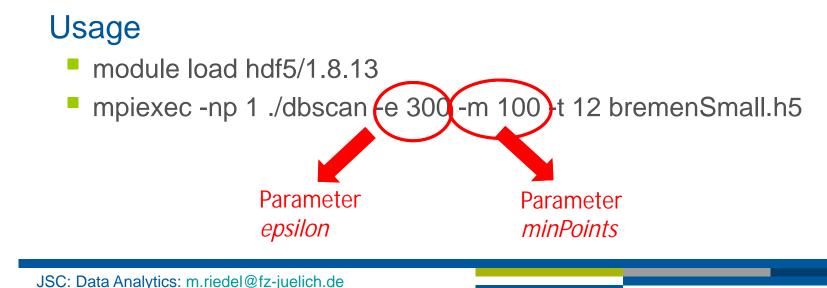
- Public bitbucket account open-source
- Tool Website with more information
- Maintained on best effort basis

[3] M.Goetz & C. Bodenstein, HPDBSCAN Tool



3D Point Cloud of Bremen/Germany

→ Usage via simple jobscripts



Parallel & Scalable DBSCAN MPI/OpenMP Tool (6)

Usage via jobscript

- Using MOAB job scheduler
- Important: module load hdf5/1.8.13
- Important: library gcc-4.9.2/lib64
- np = number of processors
- t = number of threads

JUDGE @ Juelich mriedel@judge:/homeb/zam/analytic/bigdata/hpdbscan/jsc mpi/mriruns> more datajobscript.sh #!/bin/bash #MSUB -N HPDBSCAN BremenSmall 1 12 #MSUB -l nodes=1:ppn=12:gpus=0:performance #MSUB -1 walltime=00:03:00 #MSUB -M m.riedel@fz-juelich.de #MSUB -m abe DBSCAN #MSUB -v tpt=12 #MSUB -l vmem=64qb Parameters #MSUB -q devel module load hdf5/1.8.13 export LD LIBRARY PATH=/homeb/zam__nalytic/bigdata/hpdbscan/gcc-4.9.2/lib64:\$LD LIBRARY PATH DBSCAN=/homeb/zam/analytic/bigdz/hpdbscan/jsc mpi/dbscan SMALLBREMENDATA=/homeb/zam/ana/cic/bigdata/hpdbscan/jsc mpi/mriruns/bremenSmall.h5

cd /homeb/zam/analytic/bigdata/hpdbscan/jsc_mpi/mriruns mpiexec -np 1 \$DBSCAN -e 300 m 100 -t 12 \$SMALLBREMENDATA

Parallel & Scalable DBSCAN MPI/OpenMP Tool (7)

Output with various information

- Run-times of different stages
- Clustering task information (e.g. number of identified clusters)
- Noise identification
- Data volume (small Bremen): ~72 MB
- Data volume (large Bremen): ~1.9 GB

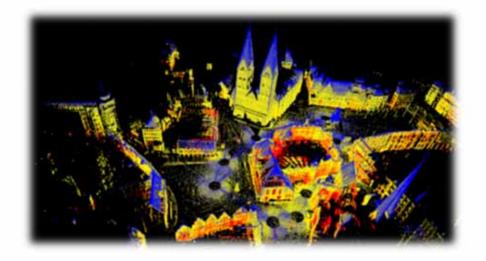
JUDGE @ Juelich

mriedel@judge:/homeb/zam/analytic/bigdata/hpdbscan/jsc_mpi/mriruns> more HPDBSCAN BremenSmall 1 12.o2208066 Calculating Cell Space... Computing Dimensions... [OK] in 0.011853 Computing Cells... [OK] in 0.073445 Sortina Points... [OK] in 0.124476 Output results written in same input data: Distributing Points... [OK] in 0.000000 DBSCAN... cluster number & noise label Local Scan... I am ready 0 in 90.606330 [OK] in 90.606364 (depends on parameters) Merging Neighbors... [OK] in 0.000000 Adjust Labels ... [OK] in 0.004972 Rec. Init. Order ... [OK] in 1.255420 Writing File ... [OK] in 0.019120 Result... 65 Clusters 2973821 Cluster Points 26179 Noise Points 2953129 Core Points Took: 92.214843s

Parallel & Scalable DBSCAN MPI/OpenMP Tool (8)

Visualization Example

- Using Point Cloud Library (PDL) toolset
- Transformation of Data to PCD format (python script on the right)



Usage

- python H5toPCD.py bremenSmall.h5
- pcl_viewer bremenClustered.pcd

import h5py as h5
import numpy as np
import sys

```
if len(sys.argv) < 2:
    INPUT="bremen.h5"
else:
    INPUT = sys.argv[1]
FILE = "bremenClustered.pcd"
```

print"loading H5"
bremen = h5.File("bremenSmall.h5")
points = bremen["DBSCAN"]
clusters = bremen["Clusters"]
colors = bremen["COLORS"]

print "Transform to numpy"
points = np.array(points)
clusters = np.array(clusters)
colors = np.array(colors)

```
#print "Remove Noise"
#points = points[clusters!=0]
#clusters = clusters[clusters!=0]
```

#data = np.concatenate((points, colors.reshape((-1,1))), axis=1)
data = np.concatenate((points, clusters.reshape((-1,1))), axis=1)

H5toPCD.py

python

script

Take advantage

of NumPy library

clusters[clusters!=0]=1
data = np.concatenate((data,clusters.reshape((-1,1))),axis=1)

```
print "Write PCD"
with open(FILE, "w+") as out:
    out.write("""# .PCD v0.7 - Point Cloud Data file format
VERSION 0.7
FIELDS x y z rgb noise
SIZE 4 4 4 4 4
TYPE F F F F F
COUNT 1 1 1 1 1
WIDTH %d
HEIGHT 1
VIEWPOINT 0 -50000 -50000 1 0 0 0
POINTS %d
DATA ascii
""" % (len(data),len(data),))
    np.savetxt(out, data)
```

Parallel & Scalable DBSCAN MPI/OpenMP Tool (9)

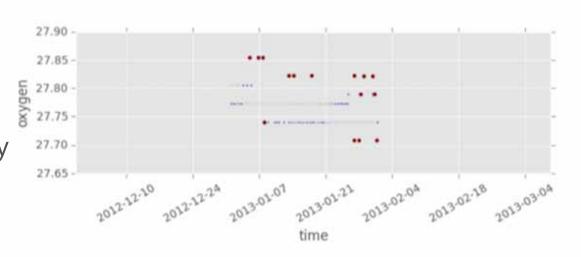
Earth Science Application 'Automated outlier detection in time series'

- Collaboration with MARUM, Bremen (work in progress)
- Example: water quality data of Koljoefjords
- Connected underwater device
- Measurements: oxygen, temperature, salinity, …

Use of HPBSCAN

algorithm

- Detect outliers and anomalies/events (e.g. water mixing)
- Compare with manually annotated data by domain-scientist
- Needs automation



Parallel & Scalable DBSCAN MPI/OpenMP Tool (10)

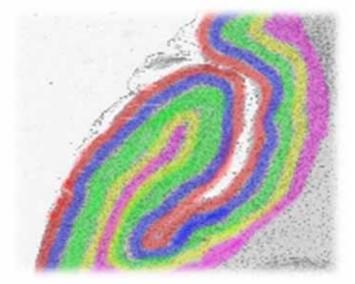
Neuroscience Application

'Cell nuclei detection and tissue clustering'

- Scientific Case: Detect various layers (colored)
- Layers seem to have different density distribution of cells
- Extract cell nuclei into 2D/3D point cloud
- Cluster different brain areas by cell density

Use of HPBSCAN algorithm

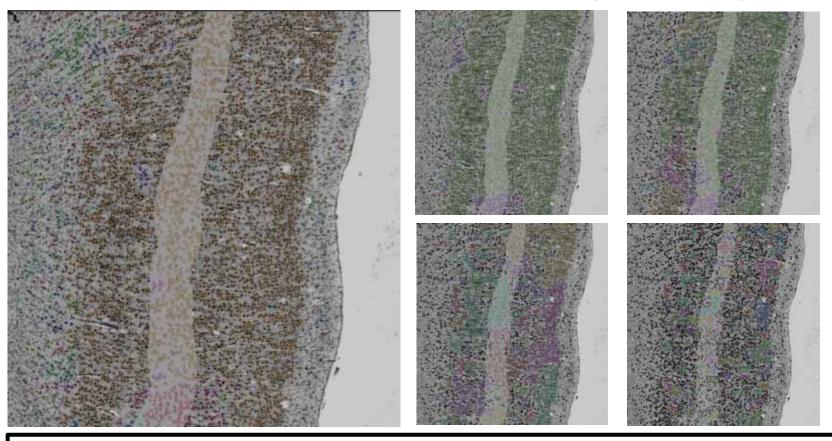
- First 2d results detect various clusters
- Work in progress, not very good results
- Approach: Several iterations (with 3D) with potentially different parameter values
- Investigate other methods (e.g. OPTICS)



> Research activities jointly with T. Dickscheid et al. (Juelich Institute of Neuroscience & Medicine)

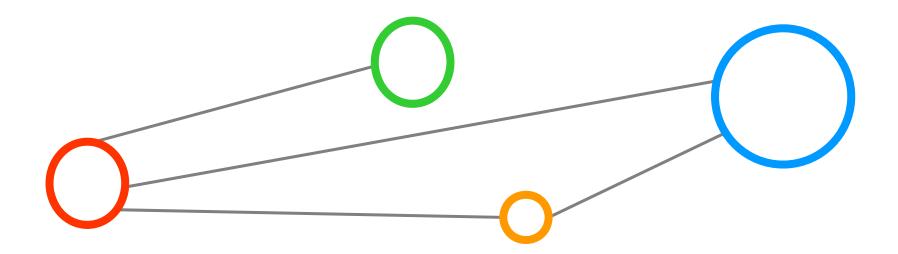
Parallel & Scalable DBSCAN MPI/OpenMP Tool (11)

Neuroscience Application – Work in progress (e.g. 3120x3288) 'Cell nuclei detection and tissue clustering' – varying parameters

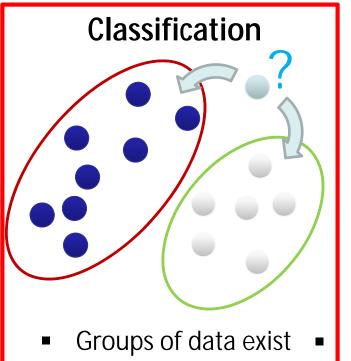


Research activities jointly with T. Dickscheid et al. (Juelich Institute of Neuroscience & Medicine)

Scalable & Parallel Tools: Classification



Learning From Data – Classification Technique



- New data classified to existing groups
- No groups of data exist

Clustering

- Create groups from data close to each other
- Identify a line with a certain slope describing the data

Regression

Selected Classification Methods

Perceptron Learning Algorithm – simple linear classification

Enables binary classification with 'a line' between classes of seperable data

Support Vector Machines (SVMs) – non-linear ('kernel') classification
 Enables non-linear classification with maximum margin (best 'out-of-the-box')
 Reasoning: achieves often better results than other methods in remote sensing application
 Decision Trees & Ensemble Methods – tree-based classification

Grows trees for class decisions, ensemble methods average n trees

Artificial Neural Networks (ANNs) – brain-inspired classification

Combine multiple linear perceptrons to a strong network for non-linear tasks

Naive Bayes Classifier – probabilistic classification

Use of the Bayes theorem with strong/naive independence between features

Technology Review of Open & Available Tools

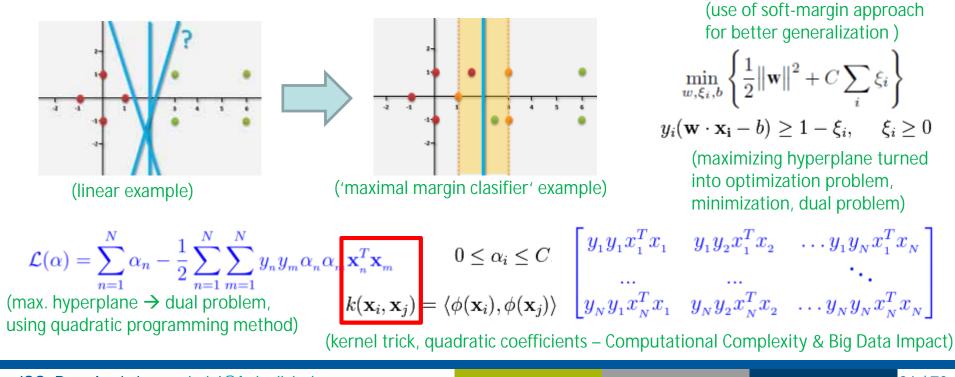
Technology	Platform Approach	Analysis
Apache Mahout	Java; Hadoop	No parallelization strategy
		for SVMs
Apache Spark/MLlib	Java; Spark	Parallel linear SVMs
		(no multi-class)
Twister/ParallelSVM	Java; Twister;	Parallel SVMs, open source;
	Hadoop 1.0	developer version 0.9 beta
scikit-learn	Python	No parallelization strategy
		for SVMs
piSVM 1.2 & piSVM 1.3	C; MPI	Parallel SVMs; stable;
		not fully scalable
GPU LibSVM	CUDA	Parallel SVMs; hard to
		programs, early versions
pSVM	C; MPI	Parallel SVMs; unstable;
		beta version

M. Goetz, M. Riedel et al., 6th Workshop on Data Mining in Earth System Science, International Conference of Computational Science (ICCS), Reykjavik, to be published

Parallel & Scalable SVM MPI Tool (1)

SVM Algorithm Approach

- Introduced 1995 by C.Cortes & V. Vapnik et al.
- Creates a 'maximal margin classifier' to get future points ('more often') right
- Uses quadratic programming & Lagrangian method with N x N



[7] C. Cortes and V. Vapnik et al.

Parallel & Scalable SVM MPI Tool (2)

- True Support Vector Machines are Support Vector Classifiers combined with a non-linear kernel
- Non-linear kernels exist mostly known are polynomial & Radial Basis Function (RBF) kernels

- Selecting non-linear kernel function K type as RBF → parameter -t 2
- Setting RBF Kernel configuration parameter $\gamma \rightarrow e.g.$ parameter -g 16
- Setting SVM allowed errors parameter → e.g. parameter –c 10000

Major benefit of Kernels: Computing done in original space

Linear Kernel $K(x_i, x_{i'}) = \sum_{j=1}^{i} x_{ij} x_{i'j}$ (linear in features)

Polynomial Kernel
$$K(x_i, x_{i'}) = (1 + \sum_{j=1}^{p} x_{ij} x_{i'j})^d$$
 (polynomial of degree d)

Kernel
$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2)$$
 (large distance, small impact)

RBF

Parallel & Scalable SVM MPI Tool (3)

Original parallel piSVM tool 1.2

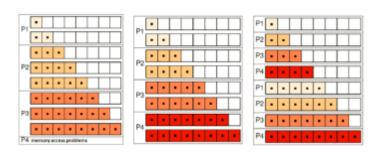
Open-source and based on libSVM library, C, 2011

New version appeared 2014-10 v. 1.3 (no major improvements)

Message Passing Interface (MPI)

[9] piSVM Website, 2011/2014 code

11:00 optimized #SyM 10:00 09:00 08:00 07:00 06:00 05:00 04:00 memory access problems 03:00 02:00 01:00 00:00 148 16 32 64 128 32 optimized #SVM 28 24 20 16 12 8 nemory access problems 64 128

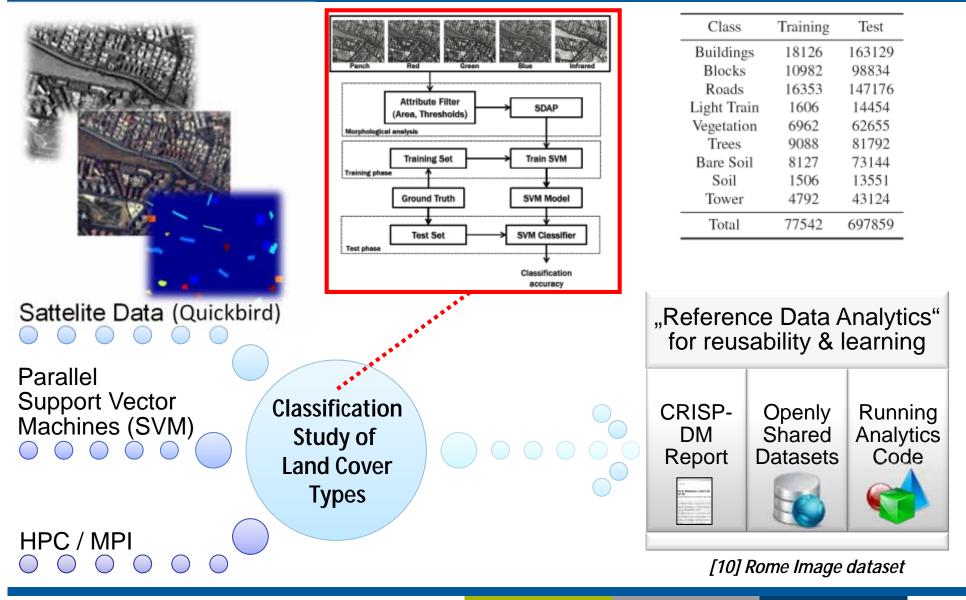


Lack of 'big data' support (memory, layout, etc.)

Tuned scalable parallel piSVM tool 1.2.1

- Open-source (repository to be created)
- Based on piSVM tool 1.2
- Optimizations: load balancing; MPI collectives
- Contact: <u>m.richerzhagen@fz-juelich.de</u>

Parallel & Scalable SVM MPI Tool (4)



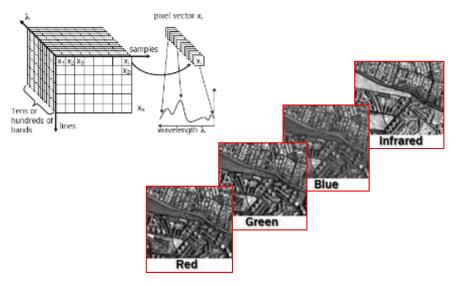
Parallel & Scalable SVM MPI Tool (5)

Example dataset: Geographical location: Image of Rome, Italy

Remote sensor data obtained by Quickbird satellite

High-resolution (0.6m) panchromatic image

Pansharpened (UDWT) low-resolution (2.4m) multispectral images

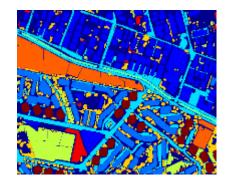


[10] Rome Image dataset

Parallel & Scalable SVM MPI Tool (6)

Labelled data available for train/test data

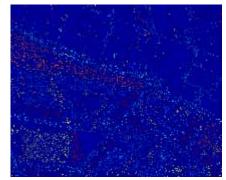
 Groundtruth data of 9 different land-cover classes available



Data preparation

- We generated a set of training samples by randomly selecting 10% of the reference samples (with labelled data)
- Generated set of test samples from the remaining labels (labelled data, 90% of reference samples)

Class	Training	Test
Buildings	18126	163129
Blocks	10982	98834
Roads	16353	147176
Light Train	1606	14454
Vegetation	6962	62655
Trees	9088	81792
Bare Soil	8127	73144
Soil	1506	13551
Tower	4792	43124
Total	77542	697859



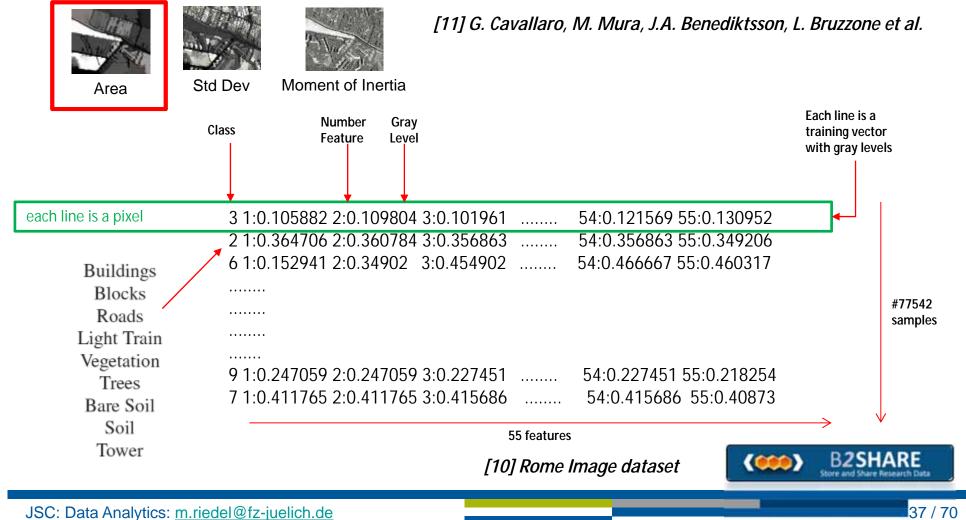
Training Image (10% pixels/class)

[10] Rome Image dataset

Parallel & Scalable SVM MPI Tool (7)

Based on 'LibSVM data format' (using feature extraction method)

Add 'Self-Dual Attribute Profile (SDAP) on Area' on all images training file



Parallel & Scalable SVM MPI Tool (8)

Usage via jobscript

- Using MOAB job scheduler
- np = number of processors; o/q partitioning

#!/bin/bash

#MSUB -N Train-tune-rec86-4-16-32 #MSUB -1 nodes=4:ppn=16:performance #MSUB -1 walltime=03:00:00 #MSUB -M m.riedel@fz-juelich.de #MSUB -m abe #MSUB -W x=naccesspolicy:singlejob #MSUB -v tpt=2 #MSUB -q devel

JUDGE @ Juelich

jobscript

```
cd $PBS_O_WORKDIR
echo "workdir: $PBS O WORKDIR"
```

NSLOTS=32

```
echo "running on $NSLOTS cpus..."
```

```
### location
PISVM=/homeb/zam/mriedel/pisvm-1.2/pisvm-1.2/pisvm-train
```

```
TRAINDATA=/homeb/zam/mriedel/bigdata/86-
romeok/sdap_area_all_training.el
```

```
### submit
mpiexec -np $NSLOTS $PISVM -0 1024 -q 512 -c 10000 -g 16 -t 2 -n
1024 -s 0 $TRAINDATA
```

→ Usage via simple jobscripts

SVM

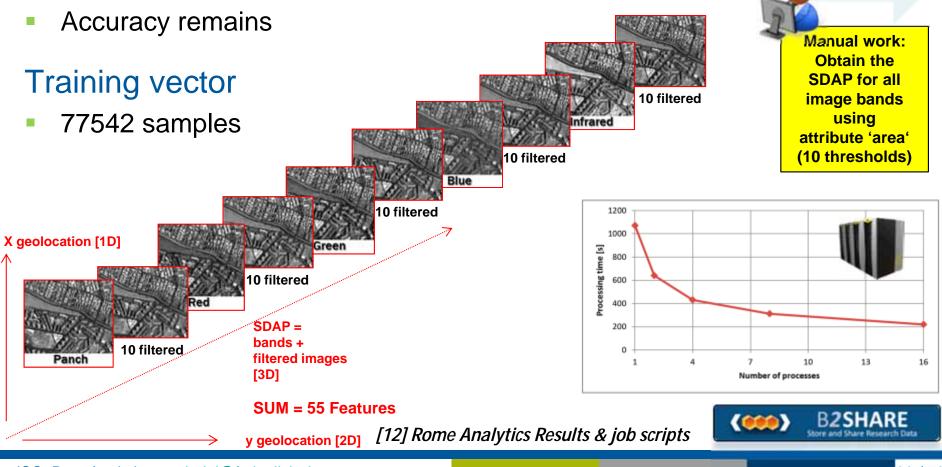
Parameters

[12] Rome Analytics Results & job scripts

Parallel & Scalable SVM MPI Tool (9)

Training speed-up is possible when number of features is 'high'

- Serial Matlab: ~1277 sec (~21 minutes)
- Parallel (16) Analytics: 220 sec (3:40 minutes)



Manual

SDAP

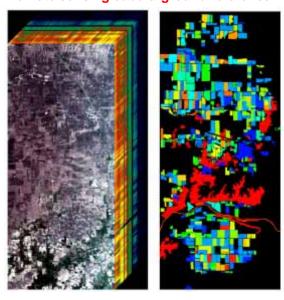
Parallel & Scalable SVM MPI Tool (10)

Another more challenging dataset: high number of classes

Parallelization challenges: unbalanced class representations

Class		Number of samples		Class		Number of samples	
number	name	training	test	number	name	training	test
1	Buildings	1720	15475	27	Pasture	1039	9347
2	Corn	1778	16005	28	pond	10	92
3	Corn?	16	142	29	Soybeans	939	8452
4	4 Corn-EW		463	30	Soybeans?	89	805
5	5 Corn-NS		2120	31	Soybeans-NS	111	999
6	5 Corn-CleanTill		11164	32	Soybeans-CleanTill	507	4567
7	Corn-CleanTill-EW	2649	23837	33	Soybeans-CleanTill?	273	2453
8	Corn-CleanTill-NS	3968	35710	34	Soybeans-CleanTill-EW	1180	10622
9	Corn-CleanTill-NS-Irrigated	80	720	35	Soybeans-CleanTill-NS	1039	9348
10	Corn-CleanTilled-NS?	173	1555	36	Soybeans-CleanTill-Drilled	224	2018
11	Corn-MinTill	105	944	37	Soybeans-CleanTill-Weedy	54	489
12	Corn-MinTill-EW	563	5066	38	Soybeans-Drilled	1512	13606
13	Corn-MinTill-NS	886	7976	39	Soybeans-MinTill	267	2400
14	Corn-NoTill	438	3943	40	Soybeans-MinTill-EW	183	1649
15	Corn-NoTill-EW	121	1085	41	Soybeans-MinTill-Drilled	810	7288
16	Corn-NoTill-NS	569	5116	42	Soybeans-MinTill-NS	495	4458
17	Fescue	11	103	43	Soybeans-NoTill	216	1941
18	Grass	115	1032	44	Soybeans-NoTill-EW	253	2280
19	Grass/Trees	233	2098	45	Soybeans-NoTill-NS	93	836
20	Hay	113	1015	46	Soybeans-NoTill-Drilled	873	7858
21	Hay?	219	1966	47	Swampy Area	58	525
22	Hay-Alfalfa	226	2032	48	River	311	2799
23	Lake	22	202	49	Trees?	58	522
24	NotCropped	194	1746	50	Wheat	498	4481
25	Oats	174	1568	51	Woods	6356	57206
26	Oats?	34	301	52	Woods?	14	130

remote sensing cube & ground reference

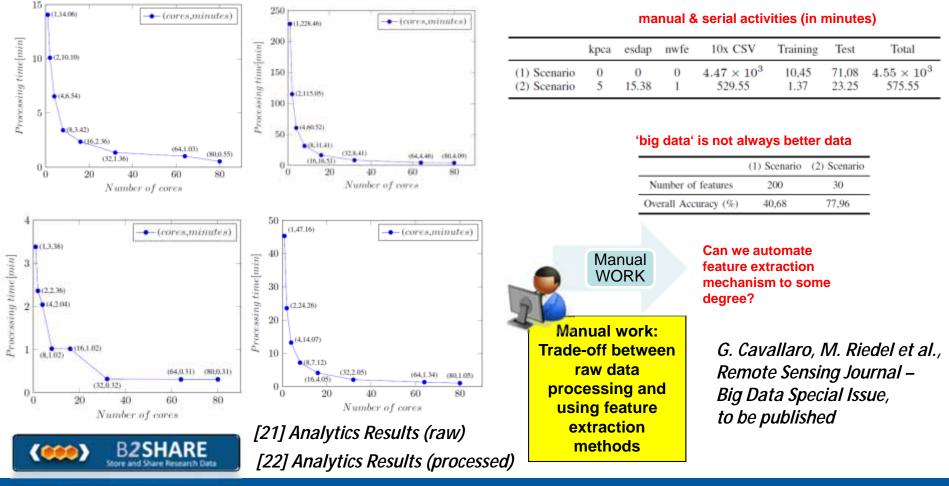


G. Cavallaro, M. Riedel et al., Remote Sensing Journal – Big Data Special Issue, to be published (2) KPCA 90% ESDAP + NWFE 99% Train SVM + Model + SVM classifier + Train set + GroundTruth + Test set [20] Indian pines dataset, processed and raw

Parallel & Scalable SVM MPI Tool (11)

Another example dataset: high number of classes

Parallelization benefits: major speed-ups, ~interactive (<1 min) possible



Parallel & Scalable SVM MPI Tool (12)

2x benefits of parallelization (shown in n-fold cross validation)

- Evaluation between Matlab (aka serial) and parallel piSVM
- 10x cross-validation (RBF kernel parameter and C, gridsearch)

raw dataset (serial)							processed dataset (serial)				
γ / C	1	10	100	1000	10000	γ / C	1	10	100	1000	10000
2	27.30 (109.78)	34.59 (124.46)	39.05 (107.85)	37.38 (116.29)	37.20 (121.51)	2	48.90 (18.81)	65.01 (19.57)	73.21 (20.11)	75.55 (22.53)	74.42 (21.21)
4	29.24 (98.18)	37.75 (85.31)	38.91 (113.87)	38.36 (119.12)	38.36 (118.98)	4	57.53 (16.82)	70.74 (13.94)	75.94 (13.53)	76.04 (14.04)	74.06 (15.55)
8	31.31 (109.95)	39.68 (118.28)	39.06 (112.99)	39.06 (190.72)	39.06 (872.27)	8	64.18 (18.30)	74.45 (15.04)	77.00 (14.41)	75.78 (14.65)	74.58 (14.92)
16	33.37 (126.14)	39.46 (171.11)	39.19 (206.66)	39.19 (181.82)	39.19 (146.98)	16	68.37 (23.21)	76.20 (21.88)	76.51 (20.69)	75.32 (19.60)	74.72 (19.66)
32	34.61 (179.04)	38.37 (202.30)	38.37 (231.10)	38.37 (240.36)	38.37 (278.02)	32	70.17 (34.45)	75.48 (34.76)	74.88 (34.05)	74.08 (34.03)	73.84 (38.78)
raw dataset (parallel, 80 cores)								processed	dataset (paral	lel, 80 cores)	
γ / C	2 1	10	100	1000	10000	γ / C	1	10	100	1000	10000
2	27.26 (3.38)	34.49 (3.35)	39.16 (5.35)	37.56 (11.46)	37.57 (13.02)	2	75.26 (1.02)	65.12 (1.03)	73.18 (1.33)	75.76 (2.35)	74.53 (4.40)

4

8

16

32

57.60 (1.03)

64.17 (1.02)

68.57 (1.33)

70.21 (1.33)

70.88 (1.02)

76.07 (1.33)

74.52 (1.03) 77.02 (1.02)

75.87 (1.03)

76.40 (1.34)

75.38 (1.34) 74.69 (1.34) 73.91 (1.47) 73.73 (1.33)

76.01 (1.33)

75.26 (1.05)

75.79 (1.04) 74.42 (1.34)

G. Cavallaro, M. Riedel et al., Remote Sensing Journal – Big Data Special Issue, to be published

38.43 (7.47)

39.14 (5.42)

39.25 (5.27)

38.36 (5.49)

[23] Analytics 10 fold cross-validation Results (raw)

38.43 (7.47)

39.14 (5.43)

39.25 (5.10)

38.36 (5.28)

[24] Analytics 10 fold cross-validation Results (processed)

29.12 (3.34) 37.58 (3.38)

33.36 (4.09) 39.61 (4.56)

31.24 (3.38) 39.77 (4.09) 39.14 (5.45)

34.61 (5.13) 38.37 (5.30) 38.36 (5.43)

38.91 (6.02)

39.25 (5.06)

4

8

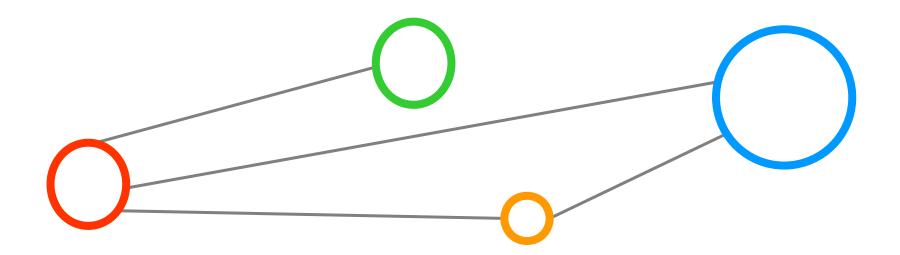
16

32

74.06 (2.35)

74.53 (1.34)

Recent Research Directions



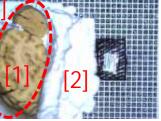
Recent Research Directions – Brain Data Classification

- Build 'reconstructed brain (one 3d volume) that matches with sections & block images
- Understanding the 'sectioning of the brain' and support automation of reconstruction
- 1. Some 'pattern' exists
 - Image content classification (e.g. SVMs, RandomForst, etc.)
- 2. No exact mathematical formula exists
 - No precise formula for 'contour of the brain'
- 3. Dataset (next: 5 brains, >100.000 pixels, 2PB raw)
 - Block face images (of frozen brain tissue)
 - Every 20 micron (cut size), resolution: 3272 x 2469
 - ~ 14 MB / RGB image
 - ~ 8 MB / corresponding mask image ('groundtruth')
 - ~700 images \rightarrow ~40 GB dataset

Research activities jointly with T. Dickscheid et al. (Juelich Institute of Neuroscience & Medicine)

Smart Data Innovation Lab



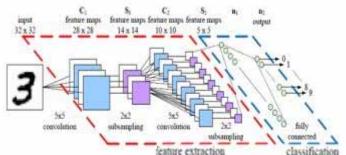


Recent Research Directions – Deep Learning

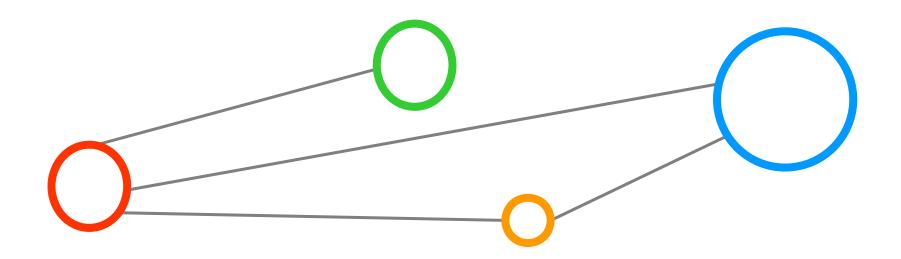
Investigate a pipeline for cell nuclei detection and tissue clustering

- 1. Some 'pattern' exists
 - Image content <u>classification & clustering</u>
- 2. No exact mathematical formula exists
 - No precise formula for 'brain layers'
- 3. Dataset raw images exist
 - Needs to be properly prepared
 - Generate labeled data to learn from (manual tool supporting scientists)
 - Use Deep Learning (deep convolutional Arch neural network, GPGPUs) to classify cell nuclei
 - Extract cell nuclei into 2D/3D point cloud
 - Cluster different brain areas by cell density (parallel DBSCAN)

Research activities jointly with T. Dickscheid et al. (Juelich Institute of Neuroscience & Medicine)



Conclusions



Conclusions

Scientific Peer Review is essential to progress in the field

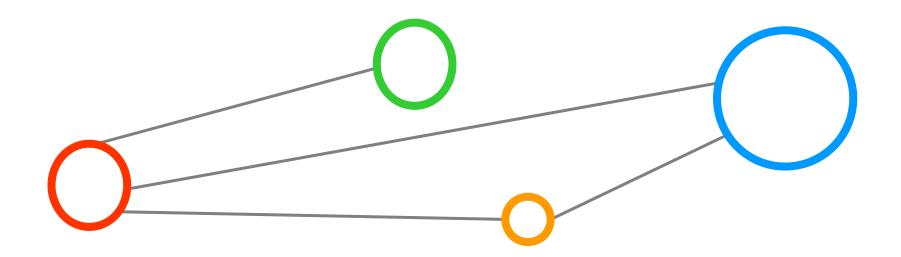
- Work in the field needs to be guided & steered by communities
- NIC Scientific Big Data Analytics (SBDA) first step (learn from HPC)
- Towards enabling reproducability by uploading runs and datasets

Selected SBDA benefit from parallelization

- Statistical data mining techniques able to reduce 'big data' (e.g. PCA, etc.)
- Benefits in n-fold cross-validation & raw data, less on preprocessed data
- Two codes available to use and maintained @JSC: HPDBSCAN, piSVM

Number of Data Analytics et al. Technologies incredible high

- Thorough analysis and evaluation hard (needs different infrastructures)
- (Less) open source & working versions available, often paper studies
- Still evaluating approaches: HPC, map-reduce, Spark, SciDB, MaTex, ...



References (1)

- [1] R. Huber, M. Riedel et al., 'PANGAEA Data Publisher for Earth & Environmental Science Research data enters scholarly communication and big data analysis', presentation at EGU 2014, Vienna
- [2] G. Cavallaro, J.A. Benediktsson and M. Riedel et al. 'Smart Data Analytics Methods for Remote Sensing Applications', in proceedings of IGARSS 2014
- [3] M.Goetz & C. Bodenstein, Clustering Highly Parallelizable DBSCAN Algorithm, JSC, Online: <u>http://www.fz-juelich.de/ias/jsc/EN/Research/DistributedComputing/DataAnalytics/Clustering/Clustering_node.html</u>
- [4] Ester, Martin, et al. "A density-based algorithm for discoveringclusters in large spatial databases with noise." Kdd. Vol. 96. 1996.
- [5] Patwary, Md Mostofa Ali, et al. "A new scalable parallel dbscanalgorithm using the disjoint-set data structure." High Performance Computing, Networking, Storage and Analysis (SC), 2012 InternationalConference for. IEEE, 2012
- [6] PANGAEA Earth Science Data Collection, Online: http://www.pangaea.de/
- [7] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20(3), pp. 273–297, 1995
- [8] An Introduction to Statistical Learning with Applications in R, Online: <u>http://www-bcf.usc.edu/~gareth/ISL/index.html</u>
- [9] Original piSVM tool, online: http://pisvm.sourceforge.net/
- [10] B2SHARE data collection Rome Dataset, online: <u>http://hdl.handle.net/11304/4615928c-e1a5-11e3-8cd7-14feb57d12b9</u>
- [11] G. Cavallaro, M. Mura, J.A. Benediktsson, L. Bruzzone 'A Comparison of Self-Dual Attribute Profiles based on different filter rules for classification', IEEE IGARSS2014, Quebec, Canada
- [12] B2SHARE data collection piSVM1.2 Analytics JUDGE Cluster Rome Images 55 Features, online: http://hdl.handle.net/11304/6880662c-1edf-11e4-81ac-dcbd1b51435e

References (2)

- [13] Deep Learning Architecture, Online: http://parse.ele.tue.nl/cluster/2/CNNArchitecture.jpg
- [14] UNICORE, online: http://www.unicore.eu
- [15] DOE ASCAC Report, 'Synergistic Challenges in Data-Intensive Science and. Exascale Computing'
- [16] M. Riedel and P. Wittenburg et al. 'A Data Infrastructure Reference Model with Applications: Towards Realization of a ScienceTube Vision with a Data Replication Service', 2013
- [17] Shearer C., 'The CRISP-DM model: the new blueprint for data mining', J Data Warehousing (2000); 5:13—22.
- [18] Jeremy Ginsburg et al., 'Detecting influenza epidemics using search engine query data', Nature 457, 2009
- [19] David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani,
- 'The Parable of Google Flu: Traps in Big Data Analysis', Science Vol (343), 2014
- [20] B2SHARE data collection, remote sensing indian pines images, Online:

http://hdl.handle.net/11304/7e8eec8e-ad61-11e4-ac7e-860aa0063d1f

[21] B2SHARE data collection, piSVM remote sensing indian pines analytics results (raw), Online:

http://hdl.handle.net/11304/c06a8c7e-fe6c-11e4-8a18-f31aa6f4d448

[22] B2SHARE data collection, piSVM remote sensing indian pines analytics results (processed), Online:

http://hdl.handle.net/11304/c528998e-ff7c-11e4-8a18-f31aa6f4d448

[23] B2SHARE data collection, Analytics 10 fold cross-validation (raw), Online:

http://hdl.handle.net/11304/163ba8e8-fe60-11e4-8a18-f31aa6f4d448

[24] B2SHARE data collection, Analytics 10 fold cross-validation (processed), Online:

http://hdl.handle.net/11304/5bba8e36-fe63-11e4-8a18-f31aa6f4d448

PhD Student Gabriele Cavallaro, University of Iceland Tómas Philipp Runarsson, University of Iceland Kristján Jonasson, University of Iceland

Timo Dickscheid, Markus Axer, Stefan Köhnen, Tim Hütz, Institute of Neuroscience & Medicine, Juelich

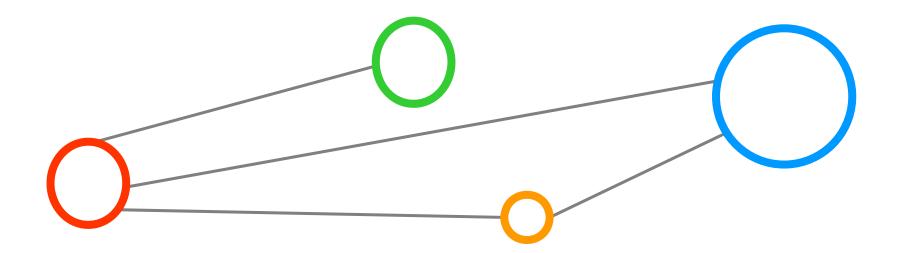
Selected Members of the Research Group on High Productivity Data Processing

Ahmed Shiraz Memon Mohammad Shahbaz Memon Markus Goetz Christian Bodenstein Philipp Glock Matthias Richerzhagen

Thanks

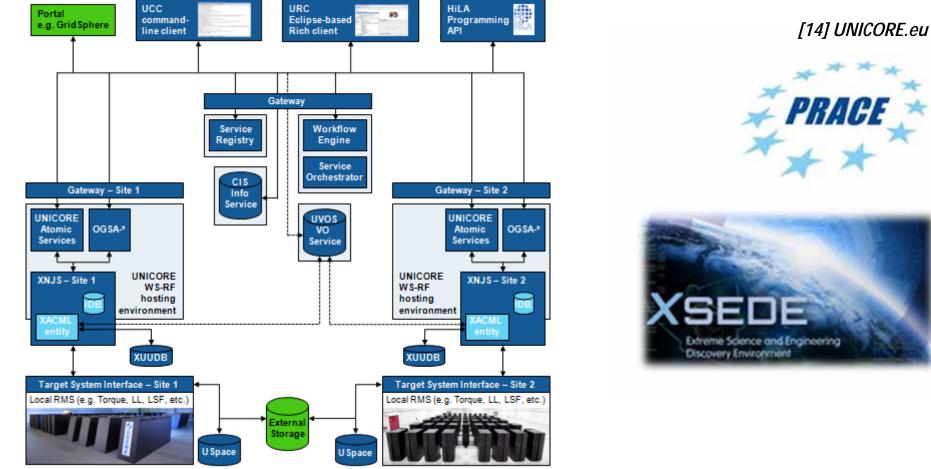
Slides available at http://www.morrisriedel.de/talks

Selected Backup Slides for Discussions

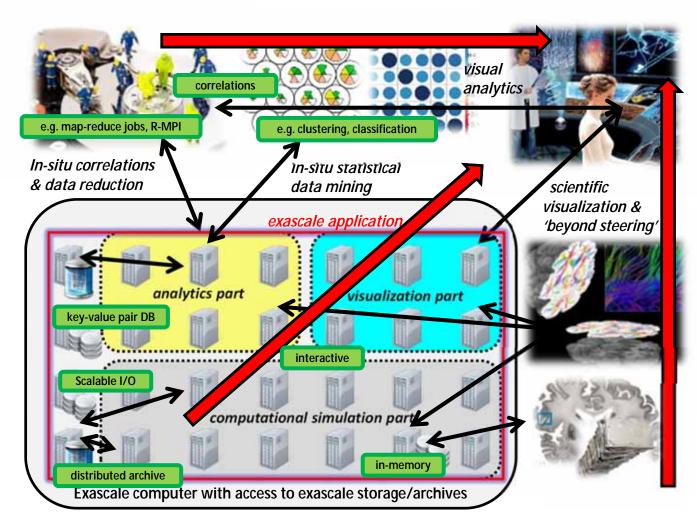


Distributed Large-scale Data Management

UNIC®RE



In-Situ Analytics for HPC & Exascale



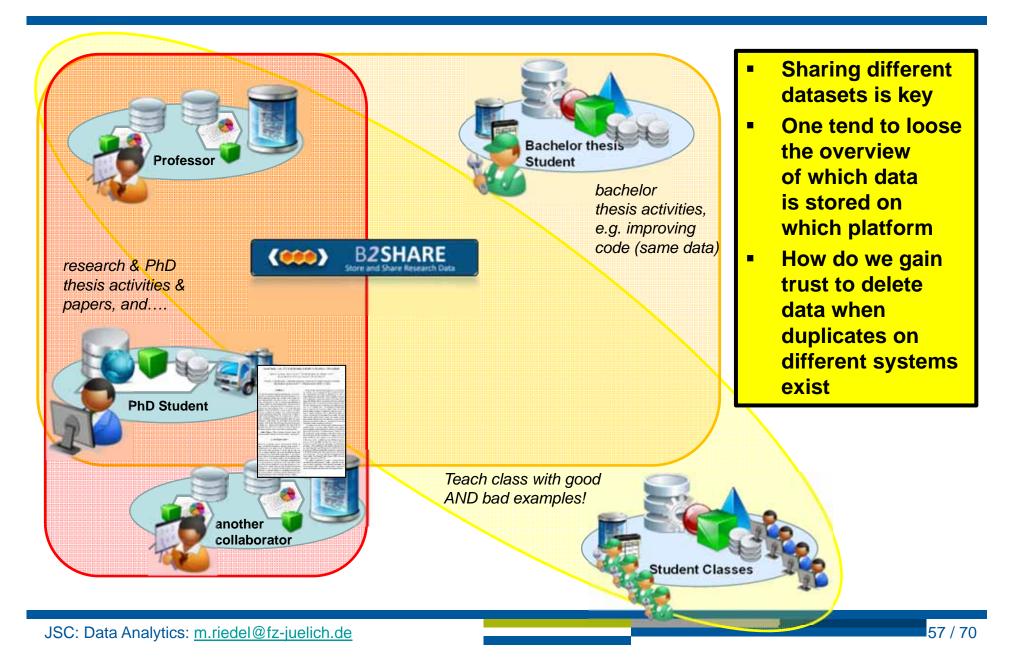
[15] Inspired by ASCAC DOE report

Tools for Large-scale Distributed Data Management

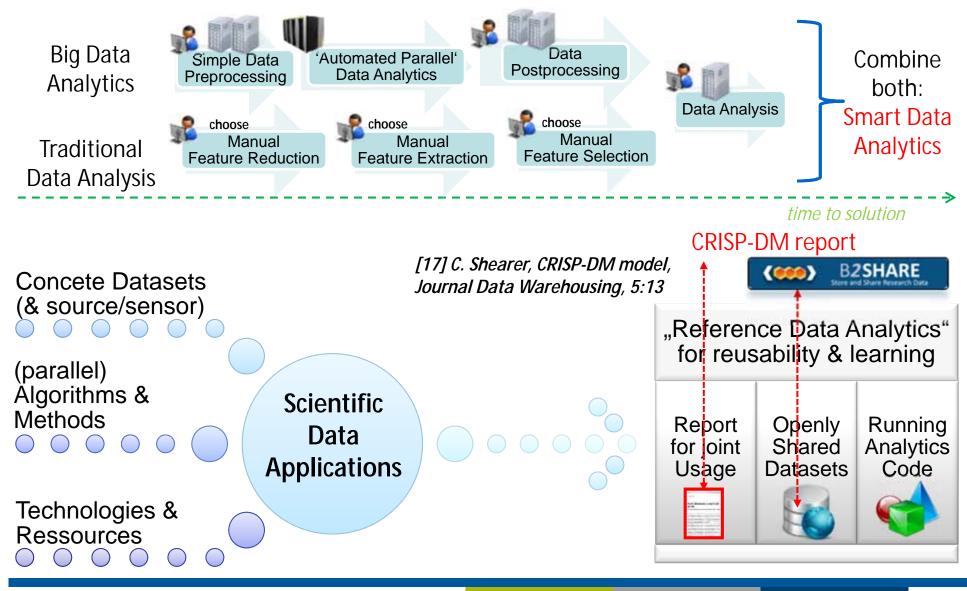
Useful tools for data-driven scientists & HPC users

[16] M. Riedel & P. Wittenburg et al.

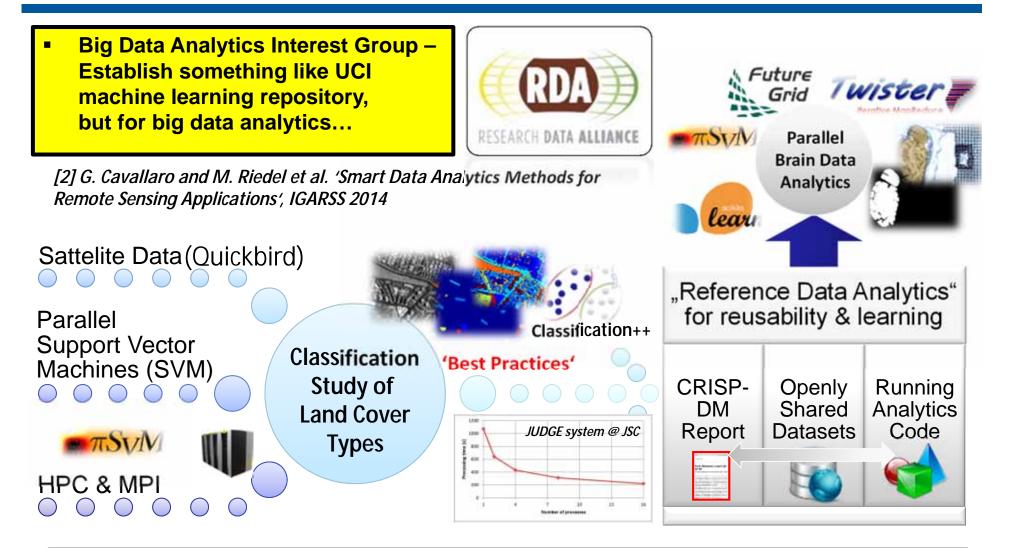
Need for Sharing & Reproducability in HPC – Example



Smart Data Analytics Process

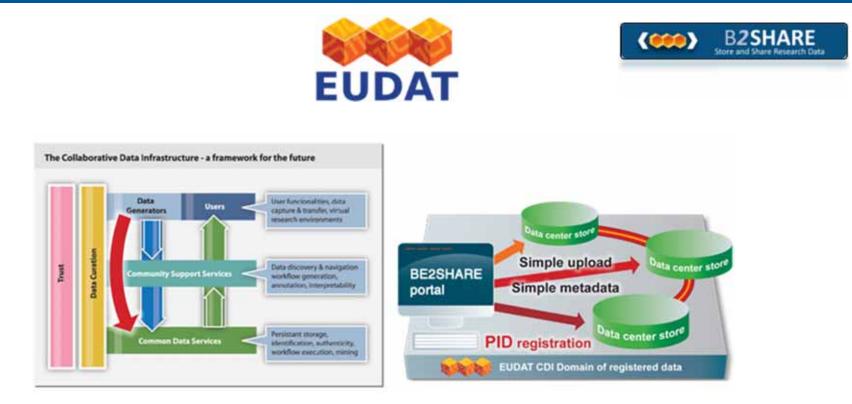


Selected Research Data Alliance (RDA) Activities



> Research activities with Gabriele Cavallaro (PhD thesis, Uolceland) on Self Dual Attribute Profile

Reproducability Example in Data-driven Science (1)



- Having this tool available on the Web helps tremendously to save time for no research tasks
- Using the tool enables to focus better on the research tasks

Reproducability Example in Data-driven Science (2)

- Sh pro da
- Lib
- Tra Tes
- Dif for (SI SD Pa

Informa	ation Comments Revi	iews Usage statistics				
at				Rome data set OK		
sets				22 May 2014 http://b2shane.eudat.eu		
ups The reco Generic	Abstract: Attr ord appears in these collections:					
or						
Files *					Export	
Nam	•	Date	Size		Export as BibTeX, MARC, MARCXML, DC, EndNote, NLM, RefW	
	_area_panch_training.el	22 May 2014	12.7 MB	Downland		
sdap						
	_area_all_training.el	22 May 2014	46.7 MB	Download	Metadata	
sdap	_area_ol_training.el _area_panch_test.el	22 May 2014 22 May 2014	46.7 MB	Download	Metadata PID:	http://hdl.handle.net/11304/4615928c-e1a5-11e 8cd7-14feb57d12b9
sdap, sdap,					A A A A A A A A A A A A A A A A A A A	
sdap, sdap,	_area_panch_test.el	22 May 2014	114.8 MB	Download	PID:	8cd7-14feb57d12b9 http://b2share.eudat.eu
sdap, sdap,	_area_panch_test.el	22 May 2014	114.8 MB	Download	PID: Publication:	8cd7-14feb57d12b9 http://b2share.eudat.eu
sdap, sdap,	_area_panch_test.el	22 May 2014	114.8 MB	Download	PID: Publication: Publication Date:	8cd7-14feb57d12b9 http://b2share.eudat.au 2014-05-22
sdap,	_area_panch_test.el	22 May 2014	114.8 MB 420.0 MB	Download	PID: Publication: Publication Date: Uploaded by:	8cd7-14feb57d12b9 http://b2share.eudat.eu 2014-05-22 cavaliaro.gabriele@gmail.com

Reproducability Example in Data-driven Science (3)

Simple download from http using the wget command

mriedel@judg	e:~/biqdat	a> ls	-al				
total 640							
drwxrwxrwx 2	1 mriedel	zam	32768	2014-09-17	22:20		
drwxr-xr-x 1	9 mriedel	zam	32768	2014-09-18	11:49	T	
drwxr-xr-x	2 mriedel	zam	32768	2014-06-19	07:17	102-salinasindian	
drwxr-xr-x	2 mriedel	zam	512	2014-06-19	20:11	107-salinasrescaled	
drwxr-xr-x	2 mriedel	zam	512	2014-07-08	17:14	111-romemultispectra	Lother
drwxr-xr-x	2 mriedel	zam	512	2014-07-10	11:46	112-romeoriginalband	s open
drwxr-xr-x	2 mriedel	zam	512	2014-09-17	22:31	120-indianpine	B2SHARE
drwxr-xr-x	2 mriedel	zam	512	2014-09-17	22:14	121-salinas	datasets
drwxr-xr-x	2 mriedel	zam	512	2014-09-17	22:19	122-salinas2	
drwxr-xr-x	2 mriedel	zam	512	2014-09-17	22:24	123-indianpine2	
	2 mriedel	zam		2014-07-09			
drwxr-xr-x	2 mriedel	zam				bigindianpines	
Simple	mriedel	zam		2014-05-28			
	mriedel	zam				indianpinesreduced	
Download	mriedel	zam				mnist-576-rbf	
from http	skoehnen			2014-07-29			
· · · · · · · · · · · · · · · · · · ·	mriedel	zam		2014-06-25			
using wget	mriedel	zam				rome-ok-copy	
Well defined	mriedel	zam		2014-06-03			before adopting
	mriedel	zam				salinasindianrev	B2SHARE regularly
directory	mriedel	zam	32768	2014-06-10	15:47	salinas-new	
structures							

Reproducability Example in Data-driven Science (4)

Make a short note in your directory linking back to B2SHARE

mriedel@judge:~/bigdata> cd 86-romeok/ mriedel@judge:~/bigdata/86-romeok> ls -al total 580320 drwxr-xr-x 2 mriedel zam 512 2014-07-09 11:03 . drwxr-xr-x 2 mriedel zam 512 2014 00 17 22:20
-rw-rr 1 mriedel zam 32/60 2014 00 1/ 22:20
-my-r-r 1 mriodol zem /1997/873 201/-05-22 13:36 eden erce ell tost ol
-rw-rr 1 mriedel zam 46652874 2014-05-22 13:36 sdap_area_all_training.el
-rw-rr 1 mriedel zam 114763982 2014-05-22 13:36 sdap_area_panch_test.el
-rw-rr 1 mriedel zam 12745692 2014-05-22 13:36 sdap area panch training.el
mriedel@judge:~/bigdata/86-romeok> more b2share.txt
https://b2share.eudat.eu/record/86
mriedel@judge:~/bigdata/86-romeok>

Enables the trust to delete data if necessary (working against big data)

Link back to B2SHARE for quick checks and file that links back fosters trust

Reproducability Example in Data-driven Science (5)

mriedel@judge:~> ls -al	
total 111840	
drwxr-xr-x 19 mriedel zam 32768 2014-09-18	
drwxr-xr-x 214 root sys 32768 2014-09-12	
	10:35 115-RunsMatthiasStable.tar a bachelor project
drwxr-xr-x 3 mriedel zam 32768 2014-06-03	
drwxr-xr-x 3 mriedel zam 32768 2014-06-03	
drwxr-xr-x 3 mriedel zam 32768 2014-06-04	
drwxr-xr-x 2 mriedel zam 32768 2014-06-16	
	19:24 ann-0.4-orig (another classification
drwxr-xr-x 2 mriedel zam 32768 2014-06-19 (
drwxr-xr-x 6 mriedel zam 32768 2014-06-25 (00:52 ann-0.6
drwxr-xr-x 4 mriedel zam 32768 2014-06-19	16:31 ann-0.6-scal
drwxr-xr-x 2 mriedel zam 32768 2014-06-24	17:02 ann-0.7
-rw 1 mriedel zam 1797 2014-05-12	13:51 .bashrc
drwxrwxrwx 21 mriedel zam 32768 2014-09-17 3	22:20 <mark>bigdata</mark>
drwxr-xr-x 3 mriedel zam 512 2014-06-19 (09:34 .config
drwxr-xr-x 3 mriedel zam 32768 2014-06-03	14:38 .emacs.d
-rw 1 mriedel zam 1864 2014-05-12 :	
drwxr-xr-x 3 mriedel zam 32768 2014-05-12	14:56 pisvm-1.2 different versions of a
drwxr-xr-x 5 mriedel zam 32768 2014-09-18	11:49 pisvm-1.2.1 parallel
drwxr-xr-x 3 mriedel zam 512 2014-07-09 1	14:51 pisvm-1.2-refactored support vector machine
-rw 1 mriedel zam 2686 2014-05-12 3	13:51 .profile code
-rw 1 mriedel zam 22490 2014-09-18	11:51 .sh history
drwx 2 mriedel zam 32768 2014-05-12 3	14:38 .ssh
drwxr-xr-x 2 mriedel zam 32768 2014-05-12	14:39 transfers
-rw 1 mriedel zam 19526 2014-09-18	True repreduce bility needed (1) detector
-rw 1 mriedel zam 204 2014-09-17	 True reproducability needs: (1) datasets;
mriedel@judge:~>	(2) technique parameters (here for SVM);
	and (3) correct versions of algorithm code

Deep Learning (1)

Classical Machine Learning

Dealing with Big Data in traditional Machine Learning

- Define Features to learn from ?!
- Transform data into supported format ?!
- How to reduce dimensions ?!
- How to parallelize ?!

Deep Learning (2)

Deep Learning

Dealing with Big Data in Deep Learning

- Define Features to learn from
 - \rightarrow Automatically learn how to define features
- Transform data into supported format
 - \rightarrow Adopt the model to your data
- How to reduce dimensions
 - \rightarrow Automatically reduce dimensions in every hidden layer
- How to parallelize
 - \rightarrow Naturally the brain is parallel, so Artificial Neural Networks are!

• A. Ng, Google Brain

Deep Learning in Computational Biomedicine

Genome Analysis

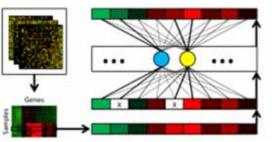
 Find high level features on low level –omics data

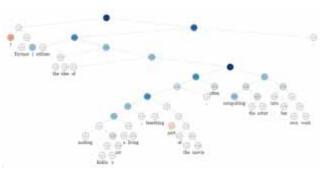
Medical Image Analysis

 Use 2D (or 3D) structure of the data for classification

Unstructured Data Analysis

 Use DL for text analysis to classify patient data, drug recommendations by users, ...





Etc...

Deep Learning Packages

There exists several frameworks for deep neural networks

- Pylearn2
 - · Python tool on the top of the Theano python library
 - Easy configuration of data, model, learning via YAML files
 - . CUDA support for accelerated calculations
 - . Jobman for parallel cross validation
- Caffe
 - . C++ implementation with python & matlab wrappers
 - . CUDA acceleration
- DL4J
 - Java implementation of Deep Learning
 - . CUDA + Hadoop support

Chances and Pitfalls for 'Scientific Big Data Analytics'

~2009 – H1N1 Virus Made Headlines

- Nature paper from Google employees
- Explains how Google is able to predict fast winter flus
- Not only on national scale, but down to regions
- Possible via logged big data 'search queries'

~2014 – The Parable of Google Flu

- Large errors in flu prediction & lessons learned
- (1) Dataset: Transparency & replicability impossible
- (2) Study the algorithm since they keep changing
- (3) It's not just about size of the data

[18] Jeremy Ginsburg et al., 'Detecting influenza epidemics using search engine query data', Natur<u>e 457, 2009</u>

The Parable of Google Flu: Traps in Big Data Analysis Science

ط [19] David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani, 'The Parable of Google Flu: Traps in Big Data Analysis', Science Vol (343), 2014

Big data is not always better data – Think about difference of causality vs. correlation

Location-based Social Network-based Health Analytics

Scientific Domain Area

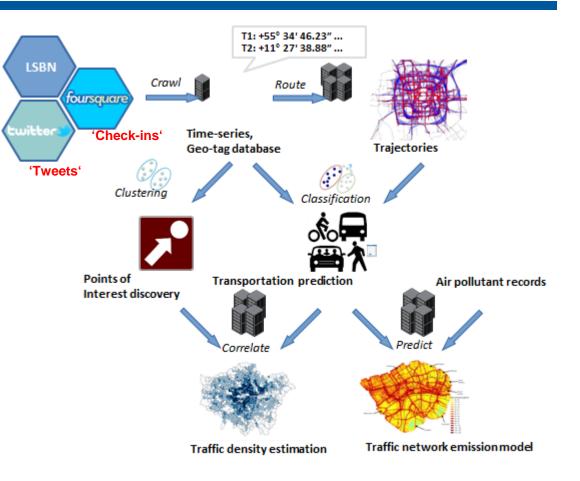
 Smart Cities approaches compined with Health Analytics Research

Scientific Outcome

- Traffic density estimation
- Network emission model

Location-based Social Networks (LBSN) Data

- Open data sources: Twitter & Foursquare
- Plan: Validation with real measurements in cities



Research activities with Markus Goetz (PhD thesis) – Juelich Supercomputing Centre, Uolceland