
LLNL-PRES-686269
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Performance Analysis for the Exascale Era:
From Measurements to Insights

Martin Schulz
 Lawrence Livermore National Laboratory

TU-Dresden, March 10th, 2016
http://scalability.llnl.gov/

2	

§  Wine
§  Windmills
§  A Lightbulb

Where is Livermore?

§  ~75km East of San Francisco

§  National Laboratories
 Lawrence Livermore 

 National Laboratory

 Sandia National 
 Laboratories

	

3	

§  World’s largest and highest-energy laser: Fusion research

§  LC: more than 40 dedicated HPC systems in 4 rooms

National Ignition Facility & Livermore Computing

4	

Livermore Computing Complex

§  48,000	
 square	
 feet	
 of	
 server	
 floor	
 space	

§  Up	
 to	
 30	
 MW	
 power	
 available	

§  Liquid	
 cooling	
 for	
 Blue	
 Gene	
 machines	

§  Power	
 Usage	
 EffecGveness	
 (PUE)	
 =	
 1.27	

Type Clusters Total Nodes Total CPU Cores Total Memory Total Disks

Linux Clusters 42 ~20,000 ~320,000 ~480TB Diskless

Lustre Clusters 18 1,360 ~20,000 ~40 TB ~80,000

BlueGene Clusters 3 121,500 ~2,000,000 ~2PB Diskless

NAS Systems N/A 44 176 ~600GB ~2,200

Infrastructure Servers N/A 100 ~400 432 GB NA

GCE (GDO+GLCC) N/A 56 672 2TB ~2,500

Totals 63 ~143,000 ~2.3M ~2.5PB ~84,700

5	

LLNL’s BG/Qs: 20 PF Sequoia (plus 5 PF Vulcan)

6	

§  Targeted for 2017/2018
—  CORAL collaboration between LLNL, ANL and ORNL
—  LLNL’s Sierra had the same basic architecture as ORNL’s Summit

§  Vendor: IBM plus NVIDIA and Mellanox
—  IBM Power nodes plus NVIDIA Volta GPUs
—  Local NVRAM
—  Fat tree interconnect
—  120-150 Pflop/s
—  11 MW

§  Path forward from  
Sierra to Exascale

New Machine: Sierra

7	

§  We need applications that can exploit an exascale system
—  Utilize system resources
—  Perform in resource constraint environments (e.g., power)
—  Survive higher failure rates (silent and fail/stop)

§  New applications will pose additional challenges
—  Not only larger scale, but new physics
—  More complex numerical algorithms
—  Uncertainty Quantification (UQ) and Scale-bridging

Even If We Had an Exascale Machine …

8	

Scale Bridging Example: Material Science

Source: Jim Belak

9	

§  We need applications that can exploit an exascale system
—  Utilize system resources
—  Perform in resource constraint environments (e.g., power)
—  Survive higher failure rates (silent and fail/stop)

§  New applications will pose additional challenges
—  Not only larger scale, but new physics
—  More complex numerical algorithms
—  Uncertainty Quantification (UQ) and Scale-bridging

§  Much will be left to the developer
—  New programming models
—  Complex heterogeneous architectures
—  High adaptivity at all system layers

§  Code developers will need sophisticated performance tools

Even If We Had an Exascale Machine …

10	

§  Many tools can collect lot’s of app. data
—  “Classic perf. tools” like  

Open|SpeedShop, TAU, mpiP,  
HPCToolkit, Scalasca, Paraver,  
ompP or Vampir

—  HWC access (e.g., PAPI)
—  Architectural simulators
—  Performance models

§  But …
—  Data volumes are increasing
—  Can’t handle adaptivity 

(faults, tuning, OS, …)
—  System variability can invalidate results

§  Second But …
—  Information often low level
—  Hard to match with application structure
—  Hard to understand for code developers

Long History of Performance Tools

11	

§  Comprehensive data acquisition
—  Capture holistic view of the status of the software stack
—  Track system and application adaptations
—  Scalable data preprocessing and storage
—  Inclusion of facility and system data

§  More intuitive ways to show data to end users: visualization
—  Mapping of performance data to application semantics

•  Using	
 basic	
 applicaGon	
 informaGon	

•  Across	
 new	
 programming	
 abstracGons	

—  Multiple views on the same data to allow for correlations
—  Close collaborations with the InfoVis/Vis communities helpful

§  Critical pieces
—  Extract the necessary context
—  System/facility wide monitoring
—  Visualize context to provide new views on performance data

Need for a New Generation of Performance Tools

12	

§  Capture data in entire stack
—  Metadata to explain results
—  Capture adaptivity in the system
—  Information to map measurements
—  Correlation across layers

§  Low-level information
—  From CPU/MSR, board, accelerator
—  OS can provide valuable data

§  Extract information from programming model/runtime
—  Need ability to map performance data to programming constructs

•  Programming	
 model	
 specific	
 APIs	
 (OMPT,	
 MPI_T,	
 OCR-­‐T,	
 …)	

—  Need interfaces into the runtime stack

•  IntrospecGon	
 abiliGes,	
 especially	
 for	
 dynamic	
 adaptaGons	

§  Need facility wide and continuous monitoring
—  Single performance experiments from limited sources are no longer reliable

Holistic Data Acquisition

St
ac
k-­‐
w
id
e	

Da

ta
	
 C
ol
le
cG
on

	
 &
	

Se
m
an
Gc
	
 C
or
re
la
Go

n	

ApplicaGon	

	

Hardware	

CPU	
 NUMA	
 Netw.	

OS/Comm.	

MPI	
 Thrds.	
 Tasks	

Prg.	
 Model	

Msg.	
 PGAS	
 DSL	

Libraries	

HPC SW
Stack

13	

Example of Variability: Network contention

Slow run of pf3d on Cray XE6 system. 25% faster messaging rate without congestion.

Performance variability over time with and without network
congestion. Blue Gene systems (Mira & Intrepid) have isolated

per-job network partitions, while Cray XE6 systems use a shared
network.

Slow	run	of	pf3d	on	Cray	XE6	system.	 25%	faster	messaging	rate	without	conges?on.	

 0

 20

 40

 60

 80

 100

 120

 140

Mar 16 Mar 23 Mar 30 Apr 06 Apr 13 Apr 20 Apr 27

A
ve

ra
ge

 m
es

sa
gi

ng
 r

at
e

(M
B

/s
)

Mira
Hopper
Intrepid

Performance	variability	over	?me	with	and	without	network	conges?on.		Blue	Gene	systems	(Mira	&	
Intrepid)	have	isolated	per-job	network	par??ons,	while	Cray	XE6	systems	use	a	shared	network.	

14	

§  Network contention

§  OS Noise
—  Non reproducible runs
—  Memory layout

§  Manufacturing variability leads to power variations
—  Under a power cap these lead to performance variability
—  ~10% on Sandybridge, up to 25% on Ivybridge

§  External factors
—  Temperature fluctuations

§  File system performance

Ø Makes comparing two runs increasingly hard
Ø  Performance analysis is turning into statistical analysis
Ø  Small improvements in performance eaten up by variability
Ø  Need to understand and track execution context for many runs

Variability Concerns

15	

Multi-level, Site-wide Monitoring is Necessary
to Accurately Characterize Behavior

Clusters	
 send	
 data	
 to	
 the	
 database	
 to	
 be	
 analyzed,	
 visualized,	
 	

and	
 used	
 to	
 make	
 predicGons	
 for	
 future	
 runs.	

Flume

16	

§  Context: program and system state
—  Spread across the software stack
—  Must be contributed independently by different modules
—  Should be used to annotate measurements

Capturing Application Context

ApplicaGon	

•  call	
 path,	

iteraGon	

count,	

calculaGon	

phase	

Library	

•  AMR	
 level,	

library	
 phase,	

solver	
 level	

RunGme	
 system	

•  thread	
 /	
 task	

id,	
 runGme	

state	

Context	

FLOPS,	
 Gme,	

memory	

accesses	

Measurement	

data	

17	

§  Modules define and update attributes independently
—  Attribute:Value pairs

§  Caliper maintains global context buffer
—  Process global

§  Caliper takes snapshots of current context +
measurements
—  Written to context stream or given to third-party tool

The Caliper Approach

Module
API

Module
API

Module
API

Module
API

Context	Store

Caliper	Framework

External	Tool

Caliper	API	
A�r. Val.

A�r.	instan�a�on
A�r.	change	

Measurement
Service

Context	 MeasurementsContext
Stream

18	

§ cali::Annotation
—  Encapsulates attribute

§  begin()
—  Append new value

§  set()
—  Set (overwrite) value

§  end()
—  Remove last value

Annotation Interface
#include <Annotation.h>

int main(int argc, char* argv[])

{

 cali::Annotation phase_ann("phase");

 phase_ann.begin("main”);

 phase_ann.begin("init");

 // Perform initialization

 initialize();

 phase_ann.end(); // ends “init”

 phase_ann.begin("loop");

#pragma omp parallel for

 for (int i; i < MAX; ++i) {

cali::Annotation("iteration").set(i);

 do_work(i);

 }

 phase_ann.end(); // ends “loop”

 phase_ann.end(); // ends “main”

}

19	

Timer
•  Timestamps, time durations

Ompt
•  OpenMP tools interface: get OpenMP runtime status

Callpath
•  Get call path using stack unwinding

perf event
•  Memory access info from Intel PEBS counters

Measurement Services

20	

§  Replace code specific timer libraries
—  Expose measurement intervals via Caliper
—  Simple timing service provide day to day metrics
—  More complex tools can pick up the same context

§  Example: large physics at LLNL
—  Multiple libraries independently instrumented
—  Correlations across modules/libraries

Caliper Use Cases

Hydro
app

iteration

phase hypre phase

vcycle level

HYPRE
Caliper timer
service

iteration, phase, regrid level, amr phase,
vcycle level, hypre phase, MPI rank

duration

Caliper context store

amr phase

regrid level

SAMRAI

Figure 5: Caliper instrumentation overheads with
lulesh for di↵erent runtime configurations

5 times. While the run-to-run variation in each configura-
tion was at most 0.03 seconds for the small and medium
problem sizes, it exceeded 0.4 seconds with the large prob-
lem size, eclipsing the instrumentation overhead. Since the
Caliper annotation costs are independent of the problem size
in our setup, we therefore only report the results for small
and medium problem sizes, listing the fastest run for each
configuration. Figure 5 shows the results.

We can see that the stub library barely has any measur-
able execution overhead compared to the unmodified ver-
sion. With Caliper active, the instrumentation adds 0.04
seconds to the execution time, indicating an average cost of
about 0.47 microseconds per blackboard update. Snapshots
without additional measurement take about 2.4 microsec-
onds each on average. The snapshot costs are higher when
relatively expensive measurement services such as the call-
path service are enabled: due to the stack unwinding being
performed, snapshots with callpaths take 6.6 microseconds.
In contrast, taking timestamps does not significantly a↵ect
the snapshot performance.

Overall, we find that the performance impact of Caliper
annotations is generally low. More importantly, costs oc-
cur only when needed: Caliper does not perform expensive
operations like call-stack unwinding unless they are explic-
itly enabled in the runtime configuration, allowing for great
flexibility in balancing overheads with information gathering
requirements for each individual use case.

7. CASE STUDIES
In the following, we demonstrate two Caliper use cases.

First, we show how Caliper was used to explain perfor-
mance behavior in a large multi-physics code by correlating
attributes from di↵erent libraries. In the second example,
we show how we collect Caliper attributes to create pre-
dictive performance models, which are then used together
with attributes collected online to select optimal settings at
runtime.

7.1 Using Caliper to Instrument a Large
Parallel Multi-Physics Code

ARES [4, 10] is a 1, 2 and 3D radiation hydrodynamics
code capable of running small serial to large massively par-
allel simulations. It is used primarily in munitions modeling

0 20 40 60 80 100
0

5 · 105

1 · 106

Timestep

A
v
er
a
g
e
T
im

e
(µ

s)

Iteration Length
AMR Regrid
Hypre Solve

Figure 6: By relating data from independent Caliper
context annotations in the HYPRE and SAMRAI
libraries, we learn that regrid phases in SAMRAI
cause re-setup of HYPRE matrices in the following
time step and a longer timestep length as a result.

and inertial confinement fusion simulations.
ARES relies on several numeric libraries, including a struc-

tured AMR library SAMRAI [7] and a linear solver library
HYPRE [5]. We use Caliper to instrument the individual
components used by ARES. While each component is in-
strumented separately1, Caliper’s shared context allows us
to look at how the components impact each other. For exam-
ple, the ability to annotate the regrid phases in SAMRAI will
enable the application developers to anticipate the update
of data structures needed for HYPRE along with increased
timestep length of the application. This goes beyond classi-
cal performance analysis, which provides simple metrics like
time spent in a given function, and is a step towards true
algorithmic performance debugging. Moreover, any instru-
mentation in a commonly shared library, such as the widely
used HYPRE package, can be reused for studying other sim-
ulation applications built on top of the same library. This
enables enhanced tool support in applications that have no
direct use of Caliper in their main code and without any
further e↵orts on the side of the user. Further, existing
Caliper instrumentation does not interfere with new Caliper
instrumentation, making it easy to add and remove annota-
tions as application developers see fit. Such instrumentation
reusability and composability is key for large software like
ARES.

To demonstrate these capabilities, we annotate ARES and
its libraries to provide the following context information:

We used the Caliper C++ interface to annotate ARES:

1. Attribute phase (“main,”“loop”);

2. Annotated variables: “MPI Rank”, “iteration.”

Because HYPRE is written in C, we used Caliper’s C
wrapper layer to annotate HYPRE:
1In practice the development team for each library as well
as for the application itself would insert Caliper annotation
unknowingly from each other, enabling true modularity.

Example:
Combine data
from multiple
components

in an IC code

21	

From Information to Insight

St
ac
k-­‐
w
id
e	

Da

ta
	
 C
ol
le
cG
on

	
 &
	

Se
m
an
Gc
	
 C
or
re
la
Go

n	

ApplicaGon	

	

Hardware	

CPU	
 NUMA	
 Netw.	

OS/Comm.	

MPI	
 Thrds.	
 Tasks	

Prg.	
 Model	

Msg.	
 PGAS	
 DSL	

Libraries	

Q
ue

ry
	
 A
PI
	

Sonar	

VisualizaGon	

Analysis	

Tools	

OpGmizaGon	

Tools	

PIPER
project

22	

§  Visual exploration useful to find new phenomena
—  Collaboration with SciVis and InfoVis communities
—  Goal: increase intuition for tool user
—  Map data from measurement to analysis/visualization domain

From Information to Insight

St
ac
k-­‐
w
id
e	

Da

ta
	
 C
ol
le
cG
on

	
 &
	

Se
m
an
Gc
	
 C
or
re
la
Go

n	

ApplicaGon	

	

Hardware	

CPU	
 NUMA	
 Netw.	

OS/Comm.	

MPI	
 Thrds.	
 Tasks	

Prg.	
 Model	

Msg.	
 PGAS	
 DSL	

Libraries	

Q
ue

ry
	
 A
PI
	

Sonar	

VisualizaGon	

Analysis	

Tools	

OpGmizaGon	

Tools	

PIPER
project

23	

0 1 2 3 4 5 6 7

0 1
2 3
4 5
6 7

§  Example: Performance data of a 256 core CFD run
—  Dense matrix on 8x32 cores
—  Floating point operations

Picking the Right Analysis/Visualization Domain

!"##$%#&'

!"(#$%#&'

("##$%#&'

("(#$%#&'

)"##$%#&'

)"(#$%#&'

&"##$%#&'

&"(#$%#&'

#' *)' +,' !-')!' -#' .)' **,' *,-' *!!' *)#' *&)' *.,' ,#-' ,,!' ,!#'

!"
#
$
%
&
'
()
#
*&
+(
,
-
.
/$
%
#
&
0(

)/#1.00#/23#/.(4567./(

§  Second Effect
•  Visible in dots in L2CM
•  Not related to physics
•  Map to same core on each node

L2CM

Aluminum

FP Ops

L2CM

Aluminum

FP Ops

24	

§  Single view on data is insufficient
—  Different perspectives for different problems
—  Need to support correlation between views

§  Map data from one domain to the 
one of the other domains
—  Comparable data
—  Enable correlation
—  Understand interactions
—  Access to visualization techniques

§  Increase intuition for users
—  Display data in domains  

familiar to users
—  Make abstract measurements tangible

Correlating Performance Domains

Performance Data
in Network Topology

Communication
Patterns

Physical
Simulation
Data

25	

The Boxfish Tool Embodies This Approach	

Input data from

multiple
measurements

Available
Visualization

domains

Selected
visualization:

3D Torus

Choice of
mappings:

Present data on
nodes or links?

Drag selection
to map data to
visualization

26	

Boxfish Usage: Network Visualization
§ Study contention in networks

— Map link counters to 3D torus on BG/P
— Example: AMG2000

§ Processor Neighborhoods
— Visualize job allocations around own job
— Understand performance impact

§ Visualization of fat tree networks
— Dominant topology in cluster systems
— Study impact of routing algorithms

§ Power optimization for networks
— Turn off unused links in torus networks
— Boxfish used to show simulation data

Credit: Tokyo-Tech

Credit: Kyushu Uni.

27	

Visualizing Dragonfly Network

28	

MemAxes: Visualizing Memory Traffic

§  Shows data mapped to of code and machine characteristics
§  Hardware topology
§  Location within the mesh
§  Code locations

29	

§  Efficient Sampling using PEBS
—  Access to cache miss address
—  Ability to map to data structures (and more)

§  Collection of application metadata
—  Tracking of user allocations
—  Parsing of debug symbols for code mappings
—  Integration with Caliper context

§  Case Study: LULESH
—  Shock Hydrodynamics challenge problem
—  Solves Sedov problem
—  Unstructured hex mesh
—  Implemented in a wide range of models  

(incl. OpenMP, which we use here)

MemAxes: Details and Case Study

Calculation step: 2051

Calculation step: 616

30	

 
Cache Misses è LULESH Unstructured Grid

Total Cycles

Compulsory
cache

misses at
first element

31	

§  Parallel coordinates view shows
correlation between array index
and core id in LULESH

§  Linked node topology view
shows data motion for
highlighted memory operations

§  A contiguous chunk of an array
is initially split between threads
on four cores

§  Using an optimized affinity
scheme, we improve locality

§  Performance improved by 10%

Case Study: Optimization of On-node Locality

Default thread affinity with poor locality

Optimized thread affinity with good locality

32	

§  Trace visualization is a helpful tool to show message details
—  Physical timeline view can create a hairball
—  We need new techniques to unravel this hairball -> virtual time

Ravel: Making Message Traces Readable

33	

§  Step 1: Identifying time slices
—  Concept of connected components
—  Start with send/recv pairs and grow from there
—  Heuristics on when to stop growing

§  Step 2: Mapping timing metrics
—  Mapping to virtual time loses physical time
—  Reintroduction of time using lateness metric

•  Time	
 difference	
 to	
 end	
 of	
 aligned	
 phase	

•  Shows	
 propagaGons	
 of	
 delays	

§  Step 3: Cross process clustering
—  Aggregate traces with similar lateness
—  Use of representative traces to show data

Ravel: Visualizing Traces in Virtual Time

Lateness

Logical Time

34	

Ravel: Trace Visualization Using Logical Time

Original View Based
on

Wall-Clock Time

Global Timelime with
Lateness Metric

Cluster View

Logical Time View
With Lateness Metric

35	

§  Communication benchmark  
for physics simulation
—  Several process counts
—  Traces at process counts show  

inverting gradient of lateness

Case Study: Optimizing Communication Patterns

1k processes 8k processes 32k processes

Gradients

36	

Case Study: Optimizing Communication Patterns
Before

After

37	

§  Visualize tasks and their dependencies
§  Left shows mess of tasks considering message receive order
§  Right shows messages reordered to ignore nondeterminism,

colored by lateness.

Unraveling Task Based Execution  
An Example Based on Charm++

38	

§  We need more insights into performance data
—  Mappings between domains
—  Attribution and correlation with meta-data
—  Visualization, in particular InfoVis
—  Implicit and in-situ analysis of performance data

§  Major steps necessary
—  Include more metrics (power, environmental, network, …)
—  Continuous and facility wide monitoring
—  Extract the necessary context across the SW stack
—  Correlate and visualize context to provide new views on performance

§  Examples that embody this approach:
—  Sonar: global NoSQL store and query interface
—  Caliper: flexible context annotation and storage
—  Boxfish: mapping performance data across domains
—  MemAxes: fine grained memory access visualization
—  Ravel: making message traces viable for analysis

Conclusions

39	

q  Performance analysis tools and optimization
q  Correctness and debugging (incl. STAT, AutomaDeD, MUST)
q  Power-aware and power-limited computing (incl. Adagio, Conductor)
q  Resilience and Checkpoint/Restart (incl. SCR)

The Scalability Team 
http://scalability.llnl.gov/

Abhinav
Bhatele

David
Boehme

Todd
Gamblin

Tanzima
Islam

Ignacio
Laguna

Kathryn
Mohror

Barry
Rountree

Martin
Schulz

PIPER
project

Murali
Emani

David
Beckingsale

Tapasya
Patki

Jae-Seung
Yeom

Kento
Sato

Aniruddha
Marathe

S
ta

ff

P
os

td
oc

40	

q  Performance analysis tools and optimization
q  Correctness and debugging (incl. STAT, AutomaDeD, MUST)
q  Power-aware and power-limited computing (incl. Adagio, Conductor)
q  Resilience and Checkpoint/Restart (incl. SCR)

The Scalability Team 
http://scalability.llnl.gov/

Abhinav
Bhatele

David
Boehme

Todd
Gamblin

Tanzima
Islam

Ignacio
Laguna

Kathryn
Mohror

Barry
Rountree

Martin
Schulz

PIPER
project

Murali
Emani

David
Beckingsale

Tapasya
Patki

Jae-Seung
Yeom

Kento
Sato

Aniruddha
Marathe

S
ta

ff

P
os

td
oc

41	

§  We need more insights into performance data
—  Mappings between domains
—  Attribution and correlation with meta-data
—  Visualization, in particular InfoVis
—  Implicit and in-situ analysis of performance data

§  Major steps necessary
—  Include more metrics (power, environmental, network, …)
—  Continuous and facility wide monitoring
—  Extract the necessary context across the SW stack
—  Correlate and visualize context to provide new views on performance

§  Examples that embody this approach:
—  Sonar: global NoSQL store and query interface
—  Caliper: flexible context annotation and storage
—  Boxfish: mapping performance data across domains
—  MemAxes: fine grained memory access visualization
—  Ravel: making message traces viable for analysis

Conclusions http://scalability.llnl.gov/

