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§  Wine 
§  Windmills 
§  A Lightbulb 

Where is Livermore?

§  ~75km East of San Francisco

§  National Laboratories
      Lawrence Livermore 

           National Laboratory
   

               Sandia National 
          Laboratories
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§  World’s largest and highest-energy laser: Fusion research

§  LC: more than 40 dedicated HPC systems in 4 rooms

National Ignition Facility & Livermore Computing
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Livermore Computing Complex

§  48,000	
  square	
  feet	
  of	
  server	
  floor	
  space	
  

§  Up	
  to	
  30	
  MW	
  power	
  available	
  

§  Liquid	
  cooling	
  for	
  Blue	
  Gene	
  machines	
  

§  Power	
  Usage	
  EffecGveness	
  (PUE)	
  =	
  1.27	
  

Type  Clusters Total Nodes Total CPU Cores Total Memory  Total Disks 

Linux Clusters 42 ~20,000 ~320,000 ~480TB Diskless 

Lustre Clusters 18 1,360 ~20,000 ~40 TB ~80,000 

BlueGene Clusters 3 121,500 ~2,000,000 ~2PB Diskless 

NAS Systems N/A 44 176 ~600GB ~2,200 

Infrastructure Servers N/A 100 ~400 432 GB NA 

GCE (GDO+GLCC) N/A 56 672 2TB ~2,500 

Totals 63 ~143,000 ~2.3M ~2.5PB ~84,700 
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LLNL’s BG/Qs: 20 PF Sequoia (plus 5 PF Vulcan) 
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§  Targeted for 2017/2018
—  CORAL collaboration between LLNL, ANL and ORNL
—  LLNL’s Sierra had the same basic architecture as ORNL’s Summit

§  Vendor: IBM plus NVIDIA and Mellanox
—  IBM Power nodes plus NVIDIA Volta GPUs
—  Local NVRAM
—  Fat tree interconnect
—  120-150 Pflop/s
—  11 MW

§  Path forward from  
Sierra to Exascale

New Machine: Sierra
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§  We need applications that can exploit an exascale system
—  Utilize system resources 
—  Perform in resource constraint environments (e.g., power)
—  Survive higher failure rates (silent and fail/stop)

§  New applications will pose additional challenges
—  Not only larger scale, but new physics
—  More complex numerical algorithms
—  Uncertainty Quantification (UQ) and Scale-bridging

Even If We Had an Exascale Machine …
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Scale Bridging Example: Material Science 

Source: Jim Belak 
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§  We need applications that can exploit an exascale system
—  Utilize system resources 
—  Perform in resource constraint environments (e.g., power)
—  Survive higher failure rates (silent and fail/stop)

§  New applications will pose additional challenges
—  Not only larger scale, but new physics
—  More complex numerical algorithms
—  Uncertainty Quantification (UQ) and Scale-bridging

§  Much will be left to the developer
—  New programming models
—  Complex heterogeneous architectures
—  High adaptivity at all system layers

§  Code developers will need sophisticated performance tools

Even If We Had an Exascale Machine …
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§  Many tools can collect lot’s of app. data
—  “Classic perf. tools” like  

Open|SpeedShop, TAU,  mpiP,  
HPCToolkit, Scalasca, Paraver,  
ompP or Vampir

—  HWC access (e.g., PAPI)
—  Architectural simulators
—  Performance models

§  But …
—  Data volumes are increasing
—  Can’t handle adaptivity 

(faults, tuning, OS, …)
—  System variability can invalidate results

§  Second But …
—  Information often low level
—  Hard to match with application structure
—  Hard to understand for code developers

Long History of Performance Tools
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§  Comprehensive data acquisition
—  Capture holistic view of the status of the software stack
—  Track system and application adaptations
—  Scalable data preprocessing and storage
—  Inclusion of facility and system data

§  More intuitive ways to show data to end users: visualization
—  Mapping of performance data to application semantics

•  Using	
  basic	
  applicaGon	
  informaGon	
  
•  Across	
  new	
  programming	
  abstracGons	
  

—  Multiple views on the same data to allow for correlations
—  Close collaborations with the InfoVis/Vis communities helpful

§  Critical pieces
—  Extract the necessary context
—  System/facility wide monitoring
—  Visualize context to provide new views on performance data

Need for a New Generation of Performance Tools
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§  Capture data in entire stack
—  Metadata to explain results
—  Capture adaptivity in the system
—  Information to map measurements
—  Correlation across layers

§  Low-level information
—  From CPU/MSR, board, accelerator
—  OS can provide valuable data

§  Extract information from programming model/runtime
—  Need ability to map performance data to programming constructs

•  Programming	
  model	
  specific	
  APIs	
  (OMPT,	
  MPI_T,	
  OCR-­‐T,	
  …)	
  
—  Need interfaces into the runtime stack

•  IntrospecGon	
  abiliGes,	
  especially	
  for	
  dynamic	
  adaptaGons	
  

§  Need facility wide and continuous monitoring
—  Single performance experiments from limited sources are no longer reliable

Holistic Data Acquisition
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Example of Variability: Network contention

Slow run of pf3d on Cray XE6 system. 25% faster messaging rate without congestion. 

Performance variability over time with and without network 
congestion.  Blue Gene systems (Mira & Intrepid) have isolated 

per-job network partitions, while Cray XE6 systems use a shared 
network. 

Slow	run	of	pf3d	on	Cray	XE6	system.	 25%	faster	messaging	rate	without	conges?on.	
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§  Network contention 

§  OS Noise
—  Non reproducible runs
—  Memory layout

§  Manufacturing variability leads to power variations
—  Under a power cap these lead to performance variability
—  ~10% on Sandybridge, up to 25% on Ivybridge

§  External factors
—  Temperature fluctuations

§  File system performance

Ø Makes comparing two runs increasingly hard
Ø  Performance analysis is turning into statistical analysis
Ø  Small improvements in performance eaten up by variability
Ø  Need to understand and track execution context for many runs

Variability Concerns
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Multi-level, Site-wide Monitoring is Necessary 
to Accurately Characterize Behavior

Clusters	
  send	
  data	
  to	
  the	
  database	
  to	
  be	
  analyzed,	
  visualized,	
  	
  
and	
  used	
  to	
  make	
  predicGons	
  for	
  future	
  runs.	
  

Flume 
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§  Context: program and system state
—  Spread across the software stack
—  Must be contributed independently by different modules
—  Should be used to annotate measurements

Capturing Application Context

ApplicaGon	
  

•  call	
  path,	
  
iteraGon	
  
count,	
  
calculaGon	
  
phase	
  

Library	
  

•  AMR	
  level,	
  
library	
  phase,	
  
solver	
  level	
  

RunGme	
  system	
  

•  thread	
  /	
  task	
  
id,	
  runGme	
  
state	
  

Context	
  

FLOPS,	
  Gme,	
  
memory	
  
accesses	
  

Measurement	
  
data	
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§  Modules define and update attributes independently
—  Attribute:Value pairs

§  Caliper maintains global context buffer
—  Process global

§  Caliper takes snapshots of current context + 
measurements
—  Written to context stream or given to third-party tool

The Caliper Approach

Module
API

Module
API

Module
API

Module
API

Context	Store

Caliper	Framework

External	Tool

Caliper	API	
A�r. Val.

A�r.	instan�a�on
A�r.	change	

Measurement
Service

Context	 MeasurementsContext
Stream
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§ cali::Annotation 
—  Encapsulates attribute

§  begin() 
—  Append new value

§  set() 
—  Set (overwrite) value

§  end() 
—  Remove last value

Annotation Interface
#include <Annotation.h> 

 

int main(int argc, char* argv[]) 

{ 

    cali::Annotation phase_ann("phase"); 

 

    phase_ann.begin("main”); 

    phase_ann.begin("init"); 

    // Perform initialization 

    initialize(); 

    phase_ann.end(); // ends “init” 

 

    phase_ann.begin("loop"); 

 

#pragma omp parallel for 

   for (int i; i < MAX; ++i) { 

        
cali::Annotation("iteration").set(i); 

        do_work(i); 

    } 

 

    phase_ann.end(); // ends “loop” 

    phase_ann.end(); // ends “main” 

} 
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Timer 
•  Timestamps, time durations 

Ompt 
•  OpenMP tools interface: get OpenMP runtime status 

Callpath 
•  Get call path using stack unwinding 

perf event 
•  Memory access info from Intel PEBS counters 

Measurement Services
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§  Replace code specific timer libraries
—  Expose measurement intervals via Caliper
—  Simple timing service provide day to day metrics
—  More complex tools can pick up the same context

§  Example: large physics at LLNL
—  Multiple libraries independently instrumented
—  Correlations across modules/libraries

Caliper Use Cases

Hydro
app

iteration

phase hypre phase

vcycle level

HYPRE
Caliper timer
service

iteration, phase, regrid level, amr phase,
vcycle level, hypre phase, MPI rank

duration

Caliper context store

amr phase

regrid level

SAMRAI

Figure 5: Caliper instrumentation overheads with
lulesh for di↵erent runtime configurations

5 times. While the run-to-run variation in each configura-
tion was at most 0.03 seconds for the small and medium
problem sizes, it exceeded 0.4 seconds with the large prob-
lem size, eclipsing the instrumentation overhead. Since the
Caliper annotation costs are independent of the problem size
in our setup, we therefore only report the results for small
and medium problem sizes, listing the fastest run for each
configuration. Figure 5 shows the results.

We can see that the stub library barely has any measur-
able execution overhead compared to the unmodified ver-
sion. With Caliper active, the instrumentation adds 0.04
seconds to the execution time, indicating an average cost of
about 0.47 microseconds per blackboard update. Snapshots
without additional measurement take about 2.4 microsec-
onds each on average. The snapshot costs are higher when
relatively expensive measurement services such as the call-
path service are enabled: due to the stack unwinding being
performed, snapshots with callpaths take 6.6 microseconds.
In contrast, taking timestamps does not significantly a↵ect
the snapshot performance.

Overall, we find that the performance impact of Caliper
annotations is generally low. More importantly, costs oc-
cur only when needed: Caliper does not perform expensive
operations like call-stack unwinding unless they are explic-
itly enabled in the runtime configuration, allowing for great
flexibility in balancing overheads with information gathering
requirements for each individual use case.

7. CASE STUDIES
In the following, we demonstrate two Caliper use cases.

First, we show how Caliper was used to explain perfor-
mance behavior in a large multi-physics code by correlating
attributes from di↵erent libraries. In the second example,
we show how we collect Caliper attributes to create pre-
dictive performance models, which are then used together
with attributes collected online to select optimal settings at
runtime.

7.1 Using Caliper to Instrument a Large
Parallel Multi-Physics Code

ARES [4, 10] is a 1, 2 and 3D radiation hydrodynamics
code capable of running small serial to large massively par-
allel simulations. It is used primarily in munitions modeling
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Figure 6: By relating data from independent Caliper
context annotations in the HYPRE and SAMRAI
libraries, we learn that regrid phases in SAMRAI
cause re-setup of HYPRE matrices in the following
time step and a longer timestep length as a result.

and inertial confinement fusion simulations.
ARES relies on several numeric libraries, including a struc-

tured AMR library SAMRAI [7] and a linear solver library
HYPRE [5]. We use Caliper to instrument the individual
components used by ARES. While each component is in-
strumented separately1, Caliper’s shared context allows us
to look at how the components impact each other. For exam-
ple, the ability to annotate the regrid phases in SAMRAI will
enable the application developers to anticipate the update
of data structures needed for HYPRE along with increased
timestep length of the application. This goes beyond classi-
cal performance analysis, which provides simple metrics like
time spent in a given function, and is a step towards true
algorithmic performance debugging. Moreover, any instru-
mentation in a commonly shared library, such as the widely
used HYPRE package, can be reused for studying other sim-
ulation applications built on top of the same library. This
enables enhanced tool support in applications that have no
direct use of Caliper in their main code and without any
further e↵orts on the side of the user. Further, existing
Caliper instrumentation does not interfere with new Caliper
instrumentation, making it easy to add and remove annota-
tions as application developers see fit. Such instrumentation
reusability and composability is key for large software like
ARES.

To demonstrate these capabilities, we annotate ARES and
its libraries to provide the following context information:

We used the Caliper C++ interface to annotate ARES:

1. Attribute phase (“main,”“loop”);

2. Annotated variables: “MPI Rank”, “iteration.”

Because HYPRE is written in C, we used Caliper’s C
wrapper layer to annotate HYPRE:
1In practice the development team for each library as well
as for the application itself would insert Caliper annotation
unknowingly from each other, enabling true modularity.

Example: 
Combine data 
from multiple 
components 

in an IC code 
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From Information to Insight
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§  Visual exploration useful to find new phenomena
—  Collaboration with SciVis and InfoVis communities
—  Goal: increase intuition for tool user
—  Map data from measurement to analysis/visualization domain

From Information to Insight
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§  Example: Performance data of a 256 core CFD run
—  Dense matrix on 8x32 cores
—  Floating point operations

Picking the Right Analysis/Visualization Domain

!"##$%#&'

!"(#$%#&'

("##$%#&'

("(#$%#&'

)"##$%#&'

)"(#$%#&'

&"##$%#&'

&"(#$%#&'

#' *)' +,' !-' )!' -#' .)' **,' *,-' *!!' *)#' *&)' *.,' ,#-' ,,!' ,!#'

!"
#
$
%
&
'
()
#
*&
+(
,
-
.
/$
%
#
&
0(

)/#1.00#/23#/.(4567./(

§  Second Effect 
•  Visible in dots in L2CM 
•  Not related to physics 
•  Map to same core on each node 

L2CM 

Aluminum  

FP Ops 

L2CM 

Aluminum  

FP Ops 
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§  Single view on data is insufficient
—  Different perspectives for different problems
—  Need to support correlation between views

§  Map data from one domain to the 
one of the other domains
—  Comparable data
—  Enable correlation
—  Understand interactions
—  Access to visualization techniques

§  Increase intuition for users
—  Display data in domains  

familiar to users
—  Make abstract measurements tangible

Correlating Performance Domains

Performance Data 
in Network Topology 

Communication 
Patterns 

Physical 
Simulation 
Data 
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The Boxfish Tool Embodies This Approach	

Input data from 

multiple 
measurements 

Available 
Visualization 

domains 

Selected 
visualization: 

3D Torus 

Choice of 
mappings: 

Present data on 
nodes or links? 

Drag selection 
to map data to 
visualization 
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Boxfish Usage: Network Visualization
§ Study contention in networks

— Map link counters to 3D torus on BG/P
— Example: AMG2000

§ Processor Neighborhoods
— Visualize job allocations around own job
— Understand performance impact

§ Visualization of fat tree networks
— Dominant topology in cluster systems
— Study impact of routing algorithms

§ Power optimization for networks
— Turn off unused links in torus networks
— Boxfish used to show simulation data

Credit: Tokyo-Tech 

Credit: Kyushu Uni. 
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Visualizing Dragonfly Network
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MemAxes: Visualizing Memory Traffic

§  Shows data mapped to of code and machine characteristics 
§  Hardware topology 
§  Location within the mesh 
§  Code locations 
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§  Efficient Sampling using PEBS
—  Access to cache miss address
—  Ability to map to data structures (and more)

§  Collection of application metadata
—  Tracking of user allocations
—  Parsing of debug symbols for code mappings
—  Integration with Caliper context

§  Case Study: LULESH
—  Shock Hydrodynamics challenge problem
—  Solves Sedov problem
—  Unstructured hex mesh
—  Implemented in a wide range of models  

(incl. OpenMP, which we use here)

MemAxes: Details and Case Study

Calculation step: 2051 

Calculation step: 616 
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Cache Misses è LULESH Unstructured Grid

Total Cycles 

Compulsory 
cache 

misses at 
first element 
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§  Parallel coordinates view shows 
correlation between array index 
and core id in LULESH

§  Linked node topology view 
shows data motion for 
highlighted memory operations

§  A contiguous chunk of an array 
is initially split between threads 
on four cores

§  Using an optimized affinity 
scheme, we improve locality

§  Performance improved by 10%

Case Study: Optimization of On-node Locality

Default thread affinity with poor locality 

Optimized thread affinity with good locality 
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§  Trace visualization is a helpful tool to show message details
—  Physical timeline view can create a hairball
—  We need new techniques to unravel this hairball -> virtual time

Ravel: Making Message Traces Readable
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§  Step 1: Identifying time slices
—  Concept of connected components
—  Start with send/recv pairs and grow from there
—  Heuristics on when to stop growing

§  Step 2: Mapping timing metrics
—  Mapping to virtual time loses physical time
—  Reintroduction of time using lateness metric

•  Time	
  difference	
  to	
  end	
  of	
  aligned	
  phase	
  
•  Shows	
  propagaGons	
  of	
  delays	
  

§  Step 3: Cross process clustering
—  Aggregate traces with similar lateness
—  Use of representative traces to show data

Ravel: Visualizing Traces in Virtual Time

Lateness

Logical Time
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Ravel: Trace Visualization Using Logical Time

Original View Based 
on 

Wall-Clock Time 

Global Timelime with  
Lateness Metric 

Cluster View 

Logical Time View 
With Lateness Metric 
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§  Communication benchmark  
for physics simulation 
—  Several process counts
—  Traces at process counts show  

inverting gradient of lateness

Case Study: Optimizing Communication Patterns

1k processes 8k processes 32k processes 

Gradients 
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Case Study: Optimizing Communication Patterns
Before 

After 
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§  Visualize tasks and their dependencies
§  Left shows mess of tasks considering  message receive order
§  Right shows messages reordered to ignore nondeterminism, 

colored by lateness.

Unraveling Task Based Execution  
An Example Based on Charm++
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§  We need more insights into performance data
—  Mappings between domains
—  Attribution and correlation with meta-data
—  Visualization, in particular InfoVis
—  Implicit and in-situ analysis of performance data

§  Major steps necessary
—  Include more metrics (power, environmental, network, …)
—  Continuous and facility wide monitoring
—  Extract the necessary context across the SW stack
—  Correlate and visualize context to provide new views on performance

§  Examples that embody this approach:
—  Sonar: global NoSQL store and query interface
—  Caliper: flexible context annotation and storage
—  Boxfish: mapping performance data across domains
—  MemAxes: fine grained memory access visualization
—  Ravel: making message traces viable for analysis

Conclusions
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q  Performance analysis tools and optimization
q  Correctness and debugging (incl. STAT, AutomaDeD, MUST)
q  Power-aware and power-limited computing (incl. Adagio, Conductor)
q  Resilience and Checkpoint/Restart (incl. SCR)
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§  We need more insights into performance data
—  Mappings between domains
—  Attribution and correlation with meta-data
—  Visualization, in particular InfoVis
—  Implicit and in-situ analysis of performance data

§  Major steps necessary
—  Include more metrics (power, environmental, network, …)
—  Continuous and facility wide monitoring
—  Extract the necessary context across the SW stack
—  Correlate and visualize context to provide new views on performance

§  Examples that embody this approach:
—  Sonar: global NoSQL store and query interface
—  Caliper: flexible context annotation and storage
—  Boxfish: mapping performance data across domains
—  MemAxes: fine grained memory access visualization
—  Ravel: making message traces viable for analysis

Conclusions http://scalability.llnl.gov/ 


