
CHARACTERIZING 
HPC I/O: 
FROM APPLICATIONS 
TO SYSTEMS

erhtjhtyhy

PHIL CARNS
carns@mcs.anl.gov
Mathematics and Computer 
Science Division
Argonne National Laboratory

April 20, 2017

TU Dresden



MOTIVATION FOR 
CHARACTERIZING PARALLEL I/O

� Most scientific domains are 

increasingly data intensive: climate, 

physics, biology and much more

� Upcoming computing platforms include 

complex, hierarchical storage systems

How can we maximize productivity in this 

environment?

Times are changing in HPC storage!

2

Example visualizations from 

the Human Connectome

Project, CERN/LHC, and the

Parallel Ocean Program

The NERSC burst buffer

roadmap and architecture,

including solid state burst 

buffers that can be used in 

a variety of ways



KEY CHALLENGES

� Instrumentation:

– What do we measure?

– How much overhead is acceptable and when?

� Analysis:

– How do we correlate data and extract actionable information?

– Can we identify the root cause of performance problems?

� Impact:

– Develop best practices and tune applications

– Improve system software

– Design and procure better systems

3



CHARACTERIZING APPLICATION I/O

WITH DARSHAN



WHAT IS DARSHAN?

Darshan is a scalable HPC I/O characterization tool. It captures an accurate but 

concise picture of application I/O behavior with minimum overhead.

� No code changes, easy to use

– Negligible performance impact: just “leave it on”

– Enabled by default at ALCF, NERSC, and NCSA 

– Used on a case-by-case basis at many other sites

� Produces a summary of I/O activity for each job, including:

– Counters for file access operations

– Time stamps and cumulative timers for key operations

– Histograms of access, stride, datatype, and extent sizes

� Use cases: observe and tune individual applications, or capture a broad view of 

the platform workload

5



DARSHAN DESIGN PRINCIPLES

� The Darshan run time library is inserted at link time (for static executables) or 

at run time (for dynamic executables) 

� Transparent wrappers for I/O functions collect per-file statistics

� Statistics are stored in bounded memory at each rank

� At shutdown time:

– Collective reduction to merge shared file records

– Parallel compression

– Collective write to a single log file 

� No communication or storage operations until shutdown

� Command-line tools are used to post-process log files

6



DARSHAN ANALYSIS
EXAMPLE
Example: Darshan-job-summary.pl 

produces a 3-page PDF file 

summarizing various aspects of I/O 

performance

This figure shows the I/O behavior of a 

786,432 process turbulence simulation 

(production run) on the Mira system

Percentage of runtime in I/O

Access size histogram

Access type histograms

File usage

7



DARSHAN DATA MINING EXAMPLE

� With a sufficient archive of performance 

statistics, we can develop heuristics to 

detect anomalous behavior

Use cases for continuous workload characterization

8

� This example highlights large jobs that 

spent a disproportionate amount of time 

managing file metadata rather than 

performing raw data transfer

� Worst offender spent 99% of I/O time in 

open/close/stat/seek

� This identification process is not yet 

automated; alerts/triggers are needed 

for greater impact

Example of heuristics applied to a population of 

production jobs on the Hopper system in 2013:

Carns et al., “Production I/O Characterization on the Cray XE6,” In 

Proceedings of the Cray User Group meeting 2013 (CUG 2013). 



ASCR Base (2008-2011)

•Darshan was conceived to address 
the need for greater understanding 
of I/O behavior in diverse scientific 
applications 

•Enabled unprecedented insight into 
the behavior of the most data-
intensive scientific applications at 
Argonne National Laboratory

SciDAC (2012-2017)

•Darshan was generalized and 
ported to multiple computational 
platforms (IBM BG/Q, Cray XE and 
XC, Linux clusters) and deployed at 
every major ASCR facility

•Widespread deployment enabled 
both cross-platform studies and 
targeted optimizations to improve 
scientific productivity

Impact Going Forward

•Darshan is supported by the ALCF, 
NERSC, OLCF, and NCSA facilities 
on their largest systems

•Vendors are contributing features

•Darshan is being leveraged in new 
projects

DARSHAN PROJECT TIMELINE

Syst em peak - 240 GB/ s

10 USB

1 USB

1 B/s

1 KB/ s

1 MB/ s

1 GB/s

1TB/s

1 B 1 KB 1 MB 1 GB 1 TB 1 PB

Number of bytes transferred

I/
O

T
h
ro

u
g
h
p
u
t

Jobs Count

1 - 10

11 - 100

101 - 500

501 - 1k

1k1 - 5k

5k1 - 10k



WHAT’S NEW? 
MODULARIZED INSTRUMENTATION

� Frequently asked question:

Can I add instrumentation for X?

� Darshan has been re-architected as a modular 

framework to help facilitate this, starting in v3.0

� Instrumentation modules: 

– Instruments a source of I/O data

(I/O API, file system, etc.)

– Creates/registers/updates data records 

characterizing application I/O workload

� Darshan core library:

– Exposes interface for modules to coordinate 

– Compresses and writes module data to log

10

Snyder et al. Modular HPC I/O Characterization with Darshan. In Proceedings 

of 5th Workshop on Extreme-scale Programming Tools (ESPT 2016), 2016. 

Self-describing log format



DARSHAN MODULE EXAMPLE
� We are using the modular framework to 

integrate more data sources and simplify 

the connections between various 

components in the stack

11

http://www.mcs.anl.gov/research/projects/darshan/



DARSHAN MODULE EXAMPLE
� We are using the modular framework to 

integrate more data sources and simplify 

the connections between various 

components in the stack

12

� Enables new insights into the link between 

application behavior and system behavior

� In this case we observe how application I/O 

maps to Lustre file servers

� Combined with system logs, this revealed a 

bottleneck caused by failover

Per-server I/O load on Edison for 

a 6,144 process simulation



WHAT’S NEW?
DARSHAN EXTENDED TRACING (DXT)

� DXT module provides optional fine-grained instrumentation without recompiling
– Detailed tracing of POSIX & MPI-IO interfaces

– Enabled at runtime using environment variable

– Individual I/O accesses can be mapped to specific Lustre OSTs

� First available in Darshan 3.1.3

� Contributed by Cong Xu and Intel’s High Performance Data Division (HPDD)

13Xu et al. DXT: Darshan eXtended Tracing.  In Proceedings of 

the Cray User Group meeting 2017 (CUG 2017). TO APPEAR



WHAT’S NEW?
DARSHAN EXTENDED TRACING (DXT)

� Future work in leveraging fine-grain instrumentation capability:

– When should it be enabled?  Dynamic triggers?

– Can we analyze parts of it at run time?

14



THE NEED FOR ONGOING CHARACTERIZATION

� We’ve used Darshan to improving application productivity with case studies, 

application tuning, and user education

� ... But challenges remain:

– What other factors influence performance?

– What if the problem is beyond a user’s control?

– The user population evolves over time; how do we stay engaged?

15



BEYOND APPLICATION CHARACTERIZATION:

HOLISTIC I/O CHARACTERIZATION FOR “TOTAL 

KNOWLEDGE OF I/O” (TOKIO)



“I OBSERVED PERFORMANCE XYZ.”

� Consider a climate vs. weather analogy: 

“It is snowing in Atlanta, Georgia.” Is that normal?

� You need context to know:

– Does it ever snow there?

– What time of year is it?

– What was the temperature yesterday?

– Do your neighbors see snow too?

– Should you look at it first hand?

� It is similarly difficult to understand a single application performance 

measurement without broader context

� How do we differentiate typical I/O climate from extreme I/O weather events?

Is that normal?

17

+ = ?



HPC I/O VARIABILITY EXAMPLE

18

Consider the “I/O fingerprint” for two 

example systems on the right

� Data gathered with standardized, periodic, 

regression sampling of performance for 

diverse workloads

� More than just a single scalar number for 

expected I/O performance

� Indicates strengths, weaknesses, and 

susceptibility to variance

This data also confirms that I/O performance 

has extraordinary day to day variability.

• This preliminary example show the median 

performance of several workloads over 

time on two major computing platforms.  

• Performance is normalized to the maximum 

observed rate on each system, to focus on 

trends rather than absolute throughput.

• Whiskers indicate minimum and maximum 

sample values.



WHAT CAUSES VARIABILITY?

� The load on the storage system plays is a major factor.  HPC I/O workloads are:

– Inherently bursty

– With intervals of simulation or analysis punctuated intervals of data 

movement

� HPC facilities also optimize utilization and reduce cost by sharing major I/O 

systems across computing systems

� What about network contention, faults, etc.?  There may be many factors!
19

I/O traffic on the ALCF’s IBM 

BG/Q platforms, averaged over 

one minute intervals.  This 

example window captured 

individual traffic bursts, regular 

patterns, and intense read 

activity.



CHARACTERIZING THE I/O SYSTEM

� We need a big picture view

� No lack of instrumentation methods 

for system components…

– but with wildly divergent data 

formats, resolutions, and scope

What were the contributing factors to a job’s performance?

20



CHARACTERIZING THE I/O SYSTEM

� We need a big picture view

� No lack of instrumentation methods 

for system components…

– but with wildly divergent data 

formats, resolutions, and scope

� This is the motivation for the TOKIO

(TOtal Knowledge of I/O) project:

– Integrate, correlate, and analyze 

I/O behavior from the system as a 

whole for holistic understanding

– Leverage and extend existing 

technology where possible
21

Holistic I/O 

characterization

Collaboration between LBL and ANL

PI: Nick Wright

What were the contributing factors to a job’s performance?

https://www.nersc.gov/research-and-development/tokio/



TOKIO DEPLOYMENT

� No new database and (probably) no new instrumentation tool either

� Index and query existing data sources in their native format

– Infrastructure to align and link data sets

– Adapters/parsers to produce coherent views on demand

– Not all systems will have the same data

� Tools sharing a common format for analysis

– correlation, data mining, dashboards, etc.

� Example of analysis tool: UMAMI

22



UMAMI
TOKIO Unified Measurements And Metrics Interface

23

� UMAMI is a pluggable dashboard that 

displays the I/O performance of an 

application in context with system 

telemetry and historical records

Each metric is shown 

in a separate row

Historical samples (for a 

given application) are 

plotted over time

Box plots relate current 

values to overall 

variance

(figures courtesy of Glenn Lockwood, NERSC)



UMAMI
TOKIO Unified Measurements And Metrics Interface

24

System background 

load is typical

Performance for this job 

is higher than usual

Server CPU load is low 

after a long-term steady 

climb

Corresponds to data 

purge that freed up 

disk blocks

� Broader contextual clues simplify 

interpretation of unusual performance 

measurements



UMAMI
TOKIO Unified Measurements And Metrics Interface

25

� UMAMI still requires some level of expert interpretation

� Can we automate the analysis?

– Automatic root cause determination with Spark

– Mathematical methods for quantifying correlations and variance



We can also leverage holistic I/O 

instrumentation to develop broader 

metrics and methodology to 

understand parallel I/O variability 
– Combines SDAV expertise on large-scale 

I/O with SUPER expertise on performance 

modeling and multi-metric inference

– Uses server-side and application-level 

monitoring to analyze job times of 

prototypical I/O-heavy applications on a 

BlueGene system at Argonne

– Previous studies ignored effect of parallel 

system state and workloads

MODEL-BASED
I/O OPTIMIZATION

Madireddy et al. Analysis and Correlation of Application 
I/O Performance and System-Wide I/O Activity. Preprint 
ANL/MCS-P7036-0417, 2017.

�����

Earth Science Application I/O time on IBM BG/P: 
Less variable when system-wide activity is accounted for

System-wide reads not 
accounted for

System-wide reads 
accounted for



TOKIO OUTCOME

� Standardized data formats and analysis tools

� Prototypes running at the ALCF (Mira IBM platform) and NERSC (Cori and 

Edison Cray platforms)

� Software components will be released open source as they are cleaned up from 

initial prototype

� Data repositories will be published as well

– This is a secondary but important impact for TOKIO: enabling better data 

sharing between facilities for comparative studies and best practice 

development

27



MORE INFORMATION

� Darshan: http://www.mcs.anl.gov/research/projects/darshan

� TOKIO: http://www.nersc.gov/research-and-development/tokio/

carns@mcs.anl.gov

28



www.anl.gov

THANK YOU!

THIS WORK WAS SUPPORTED BY THE U.S. DEPARTMENT OF 

ENERGY, OFFICE OF SCIENCE, ADVANCED SCIENTIFIC COMPUTING 

RESEARCH, UNDER CONTRACT DE-AC02-06CH11357.

THIS RESEARCH USED RESOURCES OF THE ARGONNE LEADERSHIP 

COMPUTING FACILITY, WHICH IS A DOE OFFICE OF SCIENCE USER 

FACILITY SUPPORTED UNDER CONTRACT DE-AC02-06CH11357.

THIS RESEARCH USED RESOURCES OF THE NATIONAL ENERGY 

RESEARCH SCIENTIFIC COMPUTING CENTER, A DOE OFFICE OF 

SCIENCE USER FACILITY SUPPORTED BY THE OFFICE OF SCIENCE 

OF THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT NO. DE-

AC02-05CH11231. 


