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by rebalancing its workload, optimizing network usage, and reacting to changing
demands when its elastic partition shrinks or expands. Elastic partitions enable the
FFMK platform to allocate resources to an application dynamically during the life-
time of the application (see Figure 3b and 3c). The main task of the dynamic plat-
form management is to continuously optimize the utilization of the system by means
of an economic model. This economic model will include various aspects such as
throughput and energy efficiency, fairness among applications, resiliency, and qual-
ity of service. However, its details are still subject to research.

The dynamic platform management consists of two basic components: monitor-
ing and decision making. To achieve the scalability and resilience required for Ex-
ascale systems, we decided to use gossip algorithms for all cross-node information
dissemination of the monitoring component (see Section 4.2) and make decisions
decentralized where possible (see Section 4.3).

4.1 Application Model

To support dynamic management of applications on our platform, we require an ap-
plication model that is more flexible than the coarse-grained and static division of
work that common MPI implementations impose. In our model, the decomposition
of an application’s workload is decoupled from the number execution units or cores.
The units of decomposition are migratable tasks that communicate with each other
(see Figure 4). For example, a core may run multiple tasks (one after each other)
by preempting at blocking communication calls – a principle called overdecompo-
sition [2]. At an abstract level, tasks are units which generate load for different hard-
ware resources (e. g. cores, caches, memory, and network bandwidth) and the OS/R
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Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, "Decoupled: Low-Effort Noise-Free 
Execution on Commodity Systems", ROSS 2016, June 2016, Kyoto, Japan
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2x 12-core Xeon® E5-2680-v3, FDR InfiniBand 
OS based on RHEL 6.4 + Linux 2.6.32
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OS based on CentOS 7.2 + Linux 3.10

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, "Decoupled: Low-Effort Noise-Free 
Execution on Commodity Systems", ROSS 2016, June 2016, Kyoto, Japan
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Hannes Weisbach, Brian Kocoloski, Hermann Härtig, Yutaka Ishikawa, Balazs Gerofi, „Hardware Perfor-
mance Variation: A Comparative Study using Lightweight Kernels“, ISC’18, Frankfurt, Germany, June 2018
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Fig. 3. Cyclictest results on bare-metal Linux with and without load generated
by hackbench. The worst-case latencies are 6µs without load and 304µs with
load.

latency and the y-axis indicates the number of occurrences of
each latency. Cyclictest latencies without background load are
shown in blue, those with hackbench running in parallel are red.
Hardly visible in the diagram due to intentionally wide scaling
of the x-axis, the maximum latency without background load is
just about 6µs, with most of the measurements clustered around
2µs. With hackbench in the background, the maximum latency
increases dramatically by more than two orders of magnitude
to 304µs. The majority of latency values is between 15µs and
22µs, which is about three times as high as on the unloaded
system.

D. x86 – L4Linux with Decoupling

When we run the benchmark on L4Linux, with the decoupling
mechanism we described in Section II-A, we achieve much
lower latencies and significantly less variance. Figure 4
visualizes the results when the decoupled thread is placed on
the dedicated core of the quad-core CPU. The measurements for
running the decoupled thread on the same core as L4Linux are
shown in Figure 5. In this case it is crucial that the decoupled
thread runs at a higher priority than L4Linux under L4Re’s
fixed-priority scheduler. We changed the scale of the x-axis to
just 3µs for better readability.

Fig. 4. Cyclictest results on x86 running L4Linux with and without load
generated by hackbench. The decoupled thread runs on a different core. The
worst-case latencies are 1.1µs without load and 2.4µs with load.

Fig. 5. Same setup as shown in Figure 4 however the decoupled thread runs
on the same core as L4Linux. The worst-case latencies are 1.2µs without load
and 2.5µs with load.

For both the dedicated-core and the shared-core config-
urations, we observe on an idle system a maximum timer
latency of slightly more than 1µs. The majority of observed
latencies cluster around 0.7µs, which is about a third of what
we measure with bare-metal Linux. When loading the system
with hackbench as described previously, the maximum timer
latency increases to approximately 2.4µs, irrespective of the
placement of the decoupled benchmark thread. The majority
of latencies are at around 1µs on the dedicated core, and
about 1.7µs when the L4Re-aware cyclictest replacement (see
Section III-B) shares a core with L4Linux.

The results demonstrate that our decoupling approach is
highly effective for reducing average and tail latencies. They
also indicate that the L4Re microkernel has a more efficient
interrupt-to-wakeup path than Linux. As for the increased
latencies under load, we suspect that they are the result of
cache and TLB misses. The difference is more pronounced in
the shared-core configuration. This could be attenuated in a
dual-socket system, where no caches are shared [1]. However,
this would also significantly increase the cost of the system.

E. ARM – Bare-Metal Linux
Since our decoupling mechanism also works for the ARM

port of L4Linux, we repeated the experiments on that platform.
We chose an NXP Layerscape 1021A-TWR system with a dual-
core ARM Cortex-A7 CPU and attempted to build a vanilla
Linux 4.10 kernel for it; Linux 4.10 is the version we used
on x86 and also the one on which the latest L4Linux with
decoupling support is based on. Unfortunately, we did not
succeed in finding a kernel configuration where the generic
ARM timer of the CPU could operate in high resolution
mode; instead it only supported a resolution of 10 ms, which
is prohibitively inaccurate for our experiments. We therefore
installed the vendor-supplied kernel, which did not have this
problem. This kernel from NXP is based on Linux version 4.1
and has the real-time patch-set applied applied to it (“Linux-
rt”); our ARM build of L4Linux is still based on Linux 4.10.
Using different kernel version is acceptable in our benchmark
setup, because threads decoupled from L4Linux run on the
L4Re microkernel, which is completely different anyway.

Linux L4

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, „Predictable Low-Latency Interrupt 
Response with General-Purpose Systems“,  OSPERT 2017, Dubrovnik, Kroatia, June 2017

Work in progress: User-space handling of InfiniBand HCA interrupts
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For both the dedicated-core and the shared-core config-
urations, we observe on an idle system a maximum timer
latency of slightly more than 1µs. The majority of observed
latencies cluster around 0.7µs, which is about a third of what
we measure with bare-metal Linux. When loading the system
with hackbench as described previously, the maximum timer
latency increases to approximately 2.4µs, irrespective of the
placement of the decoupled benchmark thread. The majority
of latencies are at around 1µs on the dedicated core, and
about 1.7µs when the L4Re-aware cyclictest replacement (see
Section III-B) shares a core with L4Linux.

The results demonstrate that our decoupling approach is
highly effective for reducing average and tail latencies. They
also indicate that the L4Re microkernel has a more efficient
interrupt-to-wakeup path than Linux. As for the increased
latencies under load, we suspect that they are the result of
cache and TLB misses. The difference is more pronounced in
the shared-core configuration. This could be attenuated in a
dual-socket system, where no caches are shared [1]. However,
this would also significantly increase the cost of the system.

E. ARM – Bare-Metal Linux
Since our decoupling mechanism also works for the ARM

port of L4Linux, we repeated the experiments on that platform.
We chose an NXP Layerscape 1021A-TWR system with a dual-
core ARM Cortex-A7 CPU and attempted to build a vanilla
Linux 4.10 kernel for it; Linux 4.10 is the version we used
on x86 and also the one on which the latest L4Linux with
decoupling support is based on. Unfortunately, we did not
succeed in finding a kernel configuration where the generic
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mode; instead it only supported a resolution of 10 ms, which
is prohibitively inaccurate for our experiments. We therefore
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problem. This kernel from NXP is based on Linux version 4.1
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COORDINATED C/R

Parallel Jobs Checkpointing

Figure: Concurrent checkpointing of parallel jobs leads to longer

checkpoints in case of conflicts as the available IO bandwidth is shared
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Figure: Move conflicting checkpoints to minimize C/R overhead
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CORRELATED FAILURE

II. RELATED WORKS

Multilevel C/R is inspected in several works. A promising
model for multilevel C/R based on FTI [4] is introduced in
[6]. In the proposed model two types of correlated failures
namely power supply and switch group faults is explored.
Whereby a failure of such origins causes inaccessibility of a
group of nodes. This types of failures is denoted as correlated
faults and is considered in the calculations to define optimum
checkpointing interval.

In this work we use the idea of that paper and extend
the model to support all possible types of correlations in
a supercomputer. By generalizing the proposed model and
extending the related calculations we achieve a better insight
of supercomputers and deal with the correlations in order to
reduce their affect on multilevel C/R.

The implementation of multilevel C/R is also covered by
several approaches [4], [19]. Here we review the levels of
multilevel C/R used in the work done in SCR [19] and eval-
uate the efficiency and reliability of different schemes/levels.
Then according to the achievements optimum checkpointing
intervals are defined for each level.

III. CLUSTER MODEL

Formally a cluster consists of nodes grouped into several
correlated groups all together experiencing failures of a sin-
gle origin. For instance nodes sharing a network group are
connected by a switch, likewise nodes of a power supply
group use a shared power board. Malfunctioning of a power
supply or a network switch makes the corresponding group
of nodes inaccessible, such failures are denoted as correlated
faults. This demonstrates the importance of considering cluster
architecture in designing fault tolerance mechanisms.

Furthermore each node fails individually and independent
from other nodes (uncorrelated faults) due to internal soft-
ware/hardware problems. This proposes that a job would have
to tolerate uncorrelated failures along with correlated faults.
In this section we model a cluster in which correlated and
uncorrelated failures disturb the execution of a running job.

A. Correlated Faults
In Figure 1 an example of a cluster containing 16 nodes

divided into 4 switch - and 2 power supply groups is illus-
trated. Malfunctioning of a network switch makes 4 nodes
inaccessible and in case of a power supply failure 8 nodes get
disconnected.

In this case assume a job j uses n 2 N nodes supplied
by p 2 N power boards (p supply groups) and divided
by s 2 N switch components. Nodes sharing a group are
vulnerable against correlated power/switch failures. The failure
probability follows a Poisson distribution due to law of rare
events [9] and are exponentially distributed as discussed in
[5], [7], [14], [21]. We denote the failure rate of each network
component (switch fault rate) by �s and denote that of each
power supply component by �p. This means job j would
experience power faults with rate of p�p and switch failures
with rate of s�s.

Fig. 1. Cluster architecture example containing 4 switch components (S1,
S2, S3, S4) and 2 power groups (P1, P2)

Notice that different topologies of power/switch groups does
not change the rate of correlated failures affecting a job
containing p power groups (failure rate p�p) and s switch
components (failure rate s�s).

However in Fig. 1 groups of nodes are straight forward, in
such a way that each switch group is supplied by a single
power board (every couple of switch components are grouped
into one power supply group).

In a more complicated topology, a switch group might
be supplied by a number of power boards and conversely a
power group can contain a number of switch components.
Convincingly it is possible to have more groups of nodes
for instance group of nodes sharing a cooling hardware. An
example of this case is illustrated in Fig. 2 where each switch
component is supplied by 2 power boards and each power
group contains subsets of 4 different switch groups, also every
4 network components share a cooling hardware.

In a bigger prospective a cluster may have various types of
correlated failures. For instance different groups of nodes us-
ing a shared service node or sharing a device/resource, power
supplies, cooling hardware, network components or shared
burst-buffers/PFS. Some possible correlated/uncorrelated fail-
ures are explored in a work investigating the case of Blue
Waters supercomputer [17].

To be more general, a job runs on n nodes grouped into
m types of correlated groups G = {g1, g2, ..., gm}. Each type
gi 2 G suffers from correlated failures with rate of �i. Assume
the job contains ki 2 N number of correlated groups of type gi.
The total rate of correlated faults affecting the job is computed
as follows:

fcj =
mX

i=1

ki�i (1)

Whereby the total correlated failure rate is defined by con-
sidering all types of correlated faults disturbing the execution
of the job. In the next equation the total correlated failure rate
of a single node in the cluster is defined.
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CORRELATED FAILURE
Fig. 3. Multilevel Checkpoint/Restart: Different levels

cannot survive faults disabling the node/storage (for instance
if a node loses power or its connection).

The next C/R level will be the computation of XOR parity
data of nodes 1 and 2 (assuming the XOR group contains only
these two nodes). By defining a set of nodes (XOR group,
least-correlated nodes are potentially good choices V) XOR
parity data will be computed and stored along with the local
checkpoint of the job [19] using the algorithm introduced in
[12], [20]. This scheme can survive multiple node failures
as long as no two failed nodes belong to the same XOR
group (withstanding maximum one failure per group). Larger
group sizes reduces stability of the level (scheme fails to
recover checkpoints more often) whereas less data is written
in total by using larger XOR groups. This scheme writes
one full checkpoint file in local storage along with one XOR
parity segment (smaller segments by larger groups) [18].
The checkpointing duration at this level is denoted by w2

(w1 < w2).
The subsequent level is partner storage for which a check-

point is written to the local storage as well as one extra copy
of checkpoint to a partner node (two copies). We denote the
write duration of this level as w3 (w3 > w2). Other levels
are accordingly checkpointing on Burst-Buffers [1], [15] (w4)
and parallel file system [13] (w5). Whereby w1 < w2 < w3 <
w4 < w5. Note that the last two schemes are shared between
all nodes and processes.

In the Fig. 3 if due to a failure, node 1 completely goes
down then the last checkpoint can be retrieved from the XOR
data (level 2) and also alternatively from the storage of the
parter node (node 2). On the other hand if a transient fault
halts the execution of the job on node 1 (rank 0) the last
checkpoint is quickly restored from the local storage of node
1.

V. LEAST CORRELATED NODES

TODO: introduce the concept of least-correlated nodes and
how to find them

After modeling a cluster of correlated nodes, it is important
to detect uncorrelated/least-correlated nodes in the cluster. To
be more specific the objective is to find nodes that are less
likely to fail together because of failures of same origins. This
information is later in Sect. VI adopted to choose partner
nodes and arrange XOR-groups to increase the chance of
surviving correlated failures using XOR and Partner levels as
explained in Sect. IV. This information can also be deployed
to choose redundant service nodes (least correlated nodes).

To better inspect the correlation of cluster nodes we demon-
strate it as a graph. Vertices of the graph represent cluster
nodes. The total correlated failure rate of two nodes is ap-
peared as an edge in between of the two corresponding vertices
with total correlated failure rate as the weight of the edge (no
edges between uncorrelated nodes).

In Fig. V correlation graph of the nodes in cluster example
of Fig. 1 is illustrated. The edges between nodes represent the
correlation of two nodes (�p + �s or �p).

Fig. 4. Correlation graph representing the cluster example of Fig. 1. Thick
edges represent the weight of �p + �s and thin edges the weight of �p.
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Goal is to find the least-correlated nodes in the cluster. First
of all we define the exact meaning of least-correlated. To do
so, after observing power and switch correlations �p and �s

and also by considering weights of the edges in the correlation
graph (�p + �s and �p) a decision is made based on the
case. Assume in this case we find the power correlation �p

negligible enough to be omitted from the graph. The outcome
of this omission is a graph without edges of weight �p (Fig. V).

The resulting graph after omission of negligible power
correlation �p (Fig. V) consists of 4 complete sub graphs.
Two unconnected vertices in this graph represent least-
correlated/uncorrelated nodes in the cluster.

Hence the problem reduces to finding a set of disjoint un-
connected vertex chains or in other words disjoint independent
sets in the correlation graph where no two vertices in a set are
connected by an edge. For instance in this case a possible set
of unconnected vertex chains (disjoint independent sets) is as
follows:
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The subsequent level is partner storage for which a check-

point is written to the local storage as well as one extra copy
of checkpoint to a partner node (two copies). We denote the
write duration of this level as w3 (w3 > w2). Other levels
are accordingly checkpointing on Burst-Buffers [1], [15] (w4)
and parallel file system [13] (w5). Whereby w1 < w2 < w3 <
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all nodes and processes.
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down then the last checkpoint can be retrieved from the XOR
data (level 2) and also alternatively from the storage of the
parter node (node 2). On the other hand if a transient fault
halts the execution of the job on node 1 (rank 0) the last
checkpoint is quickly restored from the local storage of node
1.

V. LEAST CORRELATED NODES

TODO: introduce the concept of least-correlated nodes and
how to find them

After modeling a cluster of correlated nodes, it is important
to detect uncorrelated/least-correlated nodes in the cluster. To
be more specific the objective is to find nodes that are less
likely to fail together because of failures of same origins. This
information is later in Sect. VI adopted to choose partner
nodes and arrange XOR-groups to increase the chance of
surviving correlated failures using XOR and Partner levels as
explained in Sect. IV. This information can also be deployed
to choose redundant service nodes (least correlated nodes).

To better inspect the correlation of cluster nodes we demon-
strate it as a graph. Vertices of the graph represent cluster
nodes. The total correlated failure rate of two nodes is ap-
peared as an edge in between of the two corresponding vertices
with total correlated failure rate as the weight of the edge (no
edges between uncorrelated nodes).

In Fig. V correlation graph of the nodes in cluster example
of Fig. 1 is illustrated. The edges between nodes represent the
correlation of two nodes (�p + �s or �p).

Fig. 4. Correlation graph representing the cluster example of Fig. 1. Thick
edges represent the weight of �p + �s and thin edges the weight of �p.
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Goal is to find the least-correlated nodes in the cluster. First
of all we define the exact meaning of least-correlated. To do
so, after observing power and switch correlations �p and �s

and also by considering weights of the edges in the correlation
graph (�p + �s and �p) a decision is made based on the
case. Assume in this case we find the power correlation �p

negligible enough to be omitted from the graph. The outcome
of this omission is a graph without edges of weight �p (Fig. V).

The resulting graph after omission of negligible power
correlation �p (Fig. V) consists of 4 complete sub graphs.
Two unconnected vertices in this graph represent least-
correlated/uncorrelated nodes in the cluster.

Hence the problem reduces to finding a set of disjoint un-
connected vertex chains or in other words disjoint independent
sets in the correlation graph where no two vertices in a set are
connected by an edge. For instance in this case a possible set
of unconnected vertex chains (disjoint independent sets) is as
follows:

Graph problem: 

Find disjoint 
independent sets 
Find dominating 
subgraphs („least 
correlated nodes“) 

Optimization problem: 

least correlated nodes 
for checkpoint 
distribution  
Consider: job run time, 
C/R cost, MTTI 
Minimize run time 
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LOAD BALANCING

 12

Four objectives of dynamic load balancing

– Balance workload

Dynamic Load Balancing

Balance workload
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Four objectives of dynamic load balancing

– Balance workload

Dynamic Load Balancing

 13

Four objectives of dynamic load balancing

– Balance workload

– Reduce communication between parti-
tions (due to data dependencies)

Dynamic Load Balancing

Balance workload

Minimize communication 
between partitions
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Four objectives of dynamic load balancing

– Balance workload

– Reduce communication between parti-
tions (due to data dependencies)

– Reduce migration, i.e. communication 
when changing the partitioning

Dynamic Load Balancing

 12

Four objectives of dynamic load balancing

– Balance workload

Dynamic Load Balancing

Minimize migration

Balance workload

Minimize communication 
between partitions
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Four objectives of dynamic load balancing

– Balance workload

– Reduce communication between parti-
tions (due to data dependencies)

– Reduce migration, i.e. communication 
when changing the partitioning

Dynamic Load Balancing

 14

Four objectives of dynamic load balancing

– Balance workload

– Reduce communication between parti-
tions (due to data dependencies)

– Reduce migration, i.e. communication 
when changing the partitioning

Dynamic Load Balancing

 13

Four objectives of dynamic load balancing

– Balance workload

– Reduce communication between parti-
tions (due to data dependencies)

Dynamic Load Balancing

 12

Four objectives of dynamic load balancing

– Balance workload

Dynamic Load Balancing

Minimize migration

Balance workload

Minimize communication 
between partitions

Compute new partitions fast



The Hebrew University  
of Jerusalem

FFMK: Building an Exascale Operating System �43

DIFFUSION

Slide 9

Progress since Jerusalem 2016 Workshop

Diffusion Graph Topology from App Topology

• Ignoring hardware topology

• Diffusion coefficient weighted by interface length

• Effect:

• Tasks only migrated between neighbor partitions

• Better partition shape

Diffusion graph topology from application topology 

Diffusion coefficient weighted by interface length: 
  • Tasks migrated between neighbor partitions 
  • Better partition shape
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DIFFUSION EXAMPLE

Slide 12

Comparison Benchmark

Artificial Scenario on a 2D Rectangular Grid

Partitioning with Diffusion

Workload over 1720 time steps

Low workload

High workload

Sphere is moving

...

Partitioning for 256 processes over 1720 time steps

...
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DIFFUSION EXAMPLE

Slide 12

Comparison Benchmark

Artificial Scenario on a 2D Rectangular Grid

Partitioning with Diffusion

Workload over 1720 time steps

Low workload

High workload

Sphere is moving

...

Partitioning for 256 processes over 1720 time steps

...

Zoltan
Space-filling 

Curves Diffusion



The Hebrew University  
of Jerusalem

FFMK: Building an Exascale Operating System �46

DIFFUSION RESULTS

Slide 19

Comparison Benchmark - Results

Slide 19

Comparison Benchmark - Results
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Best method to reduce: 
Migrations (less data movement) 
Edge cut (less communication) 

Load balance good, but not superior 

Flexible: uses communication graph 
specific to application

�47

DIFFUSION SUMMARY
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Runtime
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Node 
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Figure 3: PTRANS performance in GB/s (higher is better).
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Figure 4: MPI-FFT runtime (lower is better). Inner red part indicates the MPI portion.
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Figure 5: COSMO-SPECS+FD4 runtime (lower is better). Inner red part indicates the MPI portion.
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Figure 5: COSMO-SPECS+FD4 runtime (lower is better). Inner red part indicates the MPI portion.
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Figure 4: MPI-FFT runtime (lower is better). Inner red part indicates the MPI portion.
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Figure 5: COSMO-SPECS+FD4 runtime (lower is better). Inner red part indicates the MPI portion.
COSMO-SPECS+FD4 on BG/Q “JUQUEEN“

Quality of information: 
Average age at nodes in 
the order of 2–3 s with 
gossip interval of 256 ms

E. Levy, A. Barak, A. Shiloh, M. Lieber, C. Weinhold, and H. Härtig, „Overhead of a Decentralized 
Gossip Algorithm on the Performance of HPC Applications“, ROSS 2014
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GOSSIP VS FAULTS
Table 6: Simulations of the average master’s age with failed nodes.

Number of Circulating local
failed nodes windows of size
per colony 16 32 64 128 256

0 11.74 9.67 8.66 8.20 8.07
1 11.71 9.72 8.67 8.21 8.07
2 11.75 9.68 8.70 8.21 8.08
4 11.81 9.73 8.70 8.23 8.11
8 11.83 9.79 8.72 8.28 8.17
16 11.95 9.90 8.79 8.34 8.20
32 12.12 10.05 8.96 8.48 8.36

Standard deviation 0.49 0.42 0.37 0.36 0.36
Increase rate 3.2% 3.9% 3.5% 3.4% 3.6%

5.2.2 Using multiple masters

For increased resilience, the algorithm must continue to work even when the master fails. We

therefore extended the push algorithm to have several masters, where colony nodes send their

global windows to a randomly selected master. In addition, the masters exchange their latest

information, whereby each master sends one master window to a randomly selected master each

unit of time (not necessarily the same as the unit of time of the colonies). The master window

contains a fixed number of the youngest entries per colony.

Given a cluster with m masters and assuming that each colony node sends a global window with

probability k
n , on average each master receives k

m global windows from each colony each unit of time.

The analysis performed for a single master can now be used by multiplying k in the single-master

analysis by m, the number of masters.

We verified the feasibility of the above extensions by running simulations with various sets of

parameters and found that the exchange of information between the masters significantly improves

the average master-age. Both the size and the frequency of sending master windows contributed

to this improvement.

Table 7 shows the simulation results of the average master-age with different numbers of masters

and master-failures. For this table, the following parameters were selected: colony size n = 1, 024

nodes; local windows of 64 entries; global windows of quarter-colony size, i.e. 256 entries and master

windows of the same size per colony; update rate k = m; and the masters’ unit of time is identical

to that of the colonies. Each result in Table 7 shows the average of 500 simulations.

The columns of Table 7 show that the penalty when masters fail is not too high: for example

only 17.1% when 4 out of 8 masters fail. This demonstrates the resilience of the extended algorithm.

The main diagonal, which presents the average master-age when only one node is active, is almost

fixed for any number of nodes.

An interesting observation from Table 7 is that the average master-age always decreases as the

number of masters increase. We would expect the average master-age to drastically increase as

21

Average age at master (1024 nodes per colony)
Gossip is fault tolerant: 
Only slight increase in average age when substantial 
number of nodes fail (up to 32 of 1024 in each colony)

A. Barak, Z. Drezner, E. Levy, M. Lieber, and A. Shiloh, „Resilient gossip algorithms for 
collecting online management information in exascale clusters“, Concurrency and 
Computation: Practice and Experience, 2015
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Spread load+health info among nodes 

Analytic model ∼ simulation ∼ emulation 

Negligible overhead (64–256 ms intervals) 

Good quality of information (2–3 s old) 

Fault tolerant (simulated for up to 32 of 
1024 nodes failing)
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GOSSIP ALGORITHMS

E. Levy, A. Barak, A. Shiloh, M. Lieber, C. Weinhold, and H. Härtig, „Overhead of a Decentralized 
Gossip Algorithm on the Performance of HPC Applications“, ROSS 2014

A. Barak, Z. Drezner, E. Levy, M. Lieber, and A. Shiloh, „Resilient Gossip Algorithms for 
Collecting Online Management information in Exascale Clusters“, Concurrency and 
Computation: Practice and Experience, 2015
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NODE ARCHITECTURE
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GOSSIP
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STEP 1: GOSSIP
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STEP 2: CORRECTION
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Fault-tolerant broadcast: published[*] 

Fault-tolerant Reduce + Allreduce, 
collectives with builtin fault-detection 

Formal analysis, measurements show: 
log-scalable, sturdy in most cases 

Resiliency for tree-based collectives: 
Succeed / complete with failing nodes 
Latency comparable to non-ft algorithms
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[*] Torsten Hoefler, Amnon Barak, Amnon Shiloh and Zvi Drezner, "Corrected Gossip Algorithms 
for Fast Reliable Broadcast on Unreliable Systems", IPDPS'17, Orlando, FL, USA

FT COLLECTIVES
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Decoupled execution: low noise + latency 

Checkpointing: Coordinated + optimized 

Diffusion: Promising 

Corrected Gossip & Trees: fault-tolerant 
collective operations (maybe for MPI) 

Integrated: gossip + decision making  

WIP: integrate monitoring + migration
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SUMMARY

SPPEXA – Findings & Goals

   Massive parallelism (on- and cross-chip) 
requires fundamentally new concepts

   Not “racks without brains”, but software is 
the key to this paradigm shift

   Fundamental research (   DFG), in contrast to 
other (more application-oriented) initiatives 
(   German Federal Ministry of E & R)

   Establish collaborative, interdisciplinary 
co-design of HPC applications and HPC 
methods

   Focus on six research directions:
 Computational algorithms
 Application software
 Programming
 System software
 Data management and exploration
 Software tools

SPPEXA – Implementation

  Two three-year funding 
phases

  Overall budget of 
3,7 M E per year

  Funded via DFG’s 
strategy fund

  Interdisciplinary consortia 
of 3–5 groups

  Consortia address at least two 
of SPPExa’s six research directions

  Two-stage application process with 
(1) sketches and (2) full proposals

  Global strategic coordination, following 
the established procedures of Collaborative 
Research Centres (SFB)

  Close collaboration with respective inter-
national programmes intended

w w w . s p p e x a . d e

SPPEXA – Chronology

   2006: discussion in the German Research 
Foundation (DFG) on the necessity of a 
funding initiative for HPC software

   2010: initiative out of German HPC commu-
nity, referring to increasing activities on HPC 
software elsewhere (USA: NSF, DOE; Japan; 
China; G8)

   2010: discussion with DFG’s Executive 
Committee, suggestion of a fl exible, 
strategically initiated SPP

   2011: submission of the proposal, inter-
national reviewing, and formal acceptance

   2012: Review of project sketches and full
proposals

SPPEXA – Current Status

   68 sketches handed in, overall volume 
of 19 M E per year applied for

   80 different universities, institutes and 
companies represented by 240 national 
and 15 international PIs

  24 sketches invited for full proposals 
  13 full proposals accepted for funding
   Launch of programme and projects in 

January 2013

German Priority Programme 1648
“Software for Exascale Computing”
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