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I Introduction



I Setting the Stage | Defnitions

Scalable ML  vs Large Scale ML

● Large model size 
(implies large data as well)

● Extreme compute effort
 

● Goals:

● Larger models
● (linear) strong an weak 

scaling through (distributed) 
parallelization

→ HPC 

● Very large data sets 
(online stream)

● “normal” model size and 
compute effort
(traditional ML methods)

● Goals:

● Make training feasible
● Often online training

→ Big Data



Scaling DNNs

Layer 1

Layer 2

Layer n-1

Layer n

...

Simple strategy in DL 
if it does not work: scale it!

Scaling in two dimensions:

1. Add more layers = more matrix mult
                                 more convolutions

2. Add more units =  larger matrix mult
                         more convolutions

Don't forget: in both cases

MORE DATA! → more iterations



Scaling DNNs

Network of Networks

137 billion free parameters !



II Is Scalable ML a HPC Problem?

● In terms of compute needed (YES)

● Typical HPC Problem setting: is communication bound 
= non trivial parallelization (YES) 

● I/O bound (New to HPC)



Success in Deep Learning is driven by 
compute power:

https://blog.openai.com/ai-and-compute/

→ # FLOP needed to compute 
leading model is 
    
    ~ doubling every 3.5 months !

→ increase since 2012: factor
   
    ~300.000 !



Impact on HPC (Systems)

 
● New HPC Systems

● Like ONCL “Summit”
● Power 9
● ~30k NVIDIA Volta GPUs
● New storage hierarchies 

● New Users (=new demands)

● Still limited resources 

https://www.nextplatform.com/2018/03/28/a-first-look-at-summit-supercomputer-application-performance/



III Case Study: Training DNNs

I Overview: distributed parallel training of DNNs

II  Limits of Scalability

Limitation I: Communication Bounds

Limitation II: Skinny Matrix Multiplication

Limitation III:  Data I/O

Based on our paper from SC 16



Deep Neural Networks
In a Nutshell 

Layer 1

Layer 2

Layer 3 Layer 4

Layer 5

Layer 6

At an abstract level, DNNs are:

● directed (acyclic) graphs
● Nodes are compute entities (=Layers)
● Edges define the data flow through the graph

Inference / Training

Forward feed of data through the network 



Deep Neural Networks
In a Nutshell 

At an abstract level, DNNs are:

● directed (acyclic) graphs
● Nodes are compute entities (=Layers)
● Edges define the data flow through the graph

Inference / Training

Forward feed of data through the network 

Layer 1

Layer 2

Layer n-1

Layer n

...

Common intuition



Minimize Loss-Function via gradient descent (high dimensional and NON CONVEX!)

Computed via Back Propagation Algorithm:

1. feed forward and compute activation
2. error by layer
3. compute derivative by layer 

Training Deep Neural Networks
The Underlying Optimization Problem 



Optimization Problem

Layer 1

Layer 2

Layer n-1

Layer n

...

forward       backward

By Stochastic Gradient Descent (SGD) 

1.  Initialize weights W at random 
2.  Take small random subset X (=batch) of the train data
3.  Run X through network (forward feed)
4.  Compute Loss
5.  Compute Gradient
6.  Propagate backwards through the network
7.  Update W

Repeat 2-8 until convergence    



Parallelization 
Common approaches to parallelize SGD for DL 

Parallelization of SGD is very hard:  it is an inherently sequential algorithm

1. Start at some state t (point in a billion dimensional space)
2. Introduce t to data batch d1
3. Compute an update (based on the objective function)
4. Apply the update →t+1

How to gain Speedup ?

Make faster updates
Make larger updates

State t State t+1
State t+2

d1 d2
d3



Parallelization 
Common approaches to parallelize SGD for DL 

Layer 1

Layer 2

Layer n-1

Layer n

...

forward       backwardInternal parallelization = parallel execution of the 
   layer operation 

● Mostly dense matrix multiplication: 
● standard blas sgemm
● MKL, Open-Blas
● CuBlas on GPUs

● Task parallelization for special Layers
● Cuda-CNN for fast convolutions



Parallelization 
Common approaches to parallelize SGD for DL 

Layer 1

Layer 2

Layer n-1

Layer n

...

forward

External: data parallelization over the data batch

Layer 1

Layer 2

Layer n-1

Layer n

...

forward

Layer 1

Layer 2

Layer n-1

Layer n

...

forward

Master

1. Split batch
and send to 
workers



Parallelization 
Common approaches to parallelize SGD for DL 

Layer 1

Layer 2

Layer n-1

Layer n

...

forward       backward

External: data parallelization over the data batch

Layer 1

Layer 2

Layer n-1

Layer n

...

forward       backward

Layer 1

Layer 2

Layer n-1

Layer n

...

forward       backward

Master

1. Split batch
and send to 
workers

2. Workers compute 
forward+backward 
and send gradients 
to master



Parallelization 
Common approaches to parallelize SGD for DL 
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Parallelization 
Common approaches to parallelize SGD for DL 

External: data parallelization over the data batch

Master

1. Split batch
and send to 
workers

2. Workers compute 
forward+backward 
and send gradients 
to master

3. Master combines 
gradients and 
computes updates 
of W. Sends new 
W' to workers

Speedup



Limitation I
Distributed SGD is heavily Communication Bound 

Gradients have the same size as the 
model

● Model size can be hundreds of MB
● Iteration time (GPU) <1s 



Communication Bound
Experimental Evaluation 



Solving the Communication Bottleneck 
Solutions in Hardware: example NVLink  

NVIDIA DGX-1 / HGX-1

● 8x P100
● DGX-1: NVLink between all GPUs

NVLink spec: ~40GB/s (single direction)
NVLink II (Volta): ~75GB/s (single direction)

PCIe v3 16x:  ~15GB/s 

Diagram DGX-1 by NVIDIA



Solving the Communication Bottleneck 
Solutions in Hardware: NVLink Benchmark  

IBM Minsky

● 4x P100
● 2x10 core Power8 (160 hw threads)
● NVLink between all components

NVLink spec: ~40GB/s (single direction)
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Limitation I
Distributed SGD is heavily Communication Bound 

How to solve this in distributed environments?



Limitation II
Mathematical Problems – aka the “Large Batch Size Problem” 

Recall:
 
speedup comes from pure data-parallelism 

→ splitting the batch over the workers



Problem: Batch size decreasing with distributed scaling

Hard Theoretic Limit: b > 0   

→  GoogLeNet: No Scaling beyond 32 Nodes
→ AlexNet: Limit at 256 Nodes

External Parallelization hurts the internal (BLAS / cuBlas) parallelization
even earlier.

In a nutshell: for skinny matrices there is simply not enough work for 
efficient internal parallelization over many threads. 

   

“Small Batch Size Problem”
Data Parallelization over the Batch Size 



“Small Batch Size Problem”
Data Parallelization over the Batch Size 
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Experimental Evaluation
Increasing the Batch Size 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

256

512

1024

2048

Iteration

A
cc

u
ra

cy
 

Solution proposed in 
literature:

Increase Batch size

But:

Linear speedup against 
original Problem only if we can 
reduce the number iterations 
accordingly 

This leads to loss of accuracy  

AlexNet on ImageNet



The “large batch” Problem
Central Questions
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Why is this happening?

Is it dependent on the Topologie / 
other parameters?

How can it be solved?

→ large batch size SGD would solve 
most scalability problems!



The “large batch” Problem
What is causing this effect? [theoretical and not so theoretical explanations] 

→ The “bad minimum”  

→ gradient variance / coupling of learning rate and batch size 



The “bad minimum”
 
Theory: larger batch causes degrease in gradient variance, 
causing convergence to local minima... 

→ empirical evaluation shows high correlation of sharp minima and weak generalization



Limitation II
Mathematical Problems – aka the “Large Batch Size Problem” 

Problem not fully understood 

No general solutions (yet) !

Do we need novel optimization methods ?!



Limitation III
Data I/O 

Hugh amounts of training data need to
Be streamed to the GPUs

● Usually 50x – 100x the training data set
● Random sampling (!)
● Latency + Bandwidth competing with 

optimization communication 



Distributed I/O
Distributed File Systems are another Bottleneck ! 

● Network bandwidth is already exceeded by the SGD communication 
● Worst possible file access pattern:

● Access many small files at random

This problem already has effects on local multi-GPU computations

E.g. on DG-X1 or Minsky, single SSD (~0.5 GB/s) to slow to feed >= 4 GPUs

-> solution: Raid 0 with 4 SSDs

  



Distributed I/O
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Results shown for SINGLE node access 
to a Lustre working directory 
(HPC Cluster, FDR-Infiniband) 

Distributed File Systems are another Bottleneck ! 
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IV Towards Scalable Solutions

Distributed Parallel Deep Leaning with HPC tools + Mathematics



CaffeGPI: 
Distributed Synchronous SGD Parallelization
With asynchronous communication overlay

Better scalability using asynchronous 
PGAS programming of optimization
algorithms with GPI-2.

Direct RDMA access to main and GPU
memory instead of message passing

Optimized data-layers for distributed
File systems

2



CaffeGPI: Approaching DNN Communication  

● Communication Reduction Tree
● Communication Quantization
● Communication Overlay
● Direct RDMA GPU→GPU

● Based on GPI

● Optimized distributed data-layer

CC-HPC Current Projects



CaffeGPI: 
Open Source

https://arxiv.org/abs/
1706.00095

https://github.com/cc-hpc-itwm/CaffeGPI



Projects: Low Cost Deep Learning Setup: 
Build on CaffeGPI

GTX1080:0

GTX1080:1

SSD:0

IB:1 FDR

IB:0 FDR

GTX1080:2

GTX1080:3

SSD:1

IB:1 FDR

IB:0 FDR CaffeGPI

Workstation 1 Workstation 2

Price: <8000 EUR standard components

Specs:

● 32 GB GPU Mem
● 64 GB PGAS Mem
● 2TB BeeGFS for Train Data
● GPU interconnect: PCIe 



CaffeGPI: 
Benchmarks: Single Node

Specs:

4x K80 GPU (PCIe Interconnect)
Cuda 8
CuDNN 5.1

Topology: AlexNet
Batch Size (global) (1024)



Low Cost Deep Learning Setup: 
Build on CaffeGPI

Specs: Topology: GoogLeNet, Cuda 8, cuDNN 5.1, CaffeNV 16.4, Batch Size/Node: 64
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CaffeGPI: 
Benchmarks

Specs:

1x K80 GPU (per node)
Cuda 8
CuDNN 5.1

Topology: GloogleNet
Batch Size: 64 per node
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New Project: Low Cost Deep Learning Cluster  

GPU Cluster for Fraunhofer Consortium @ITWM

● Low cost Hardware
● Consumer GPUs
● Novel AMD architecture
● Hosting Cost per GPU ~ 1.25 k EUR. Compared to DGX-1 ~ 10k

● Fast Interconnect and Data I/O
● Parallel FS with local NVMe

● Open Source Multi-User Management
● Reservation system
● Scheduling
● Custom Containers
● Web Interface 

GTX1080ti:0

GTX1080ti:1

SSD:0

IB:1 FDR

IB:0 FDR



Low Cost Deep Learning Setup
Currently building: Prototype 16-Node System

CC-HPC - Fraunhofer ITWM, Kaiserslautern
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Project Carme 
An open source software stack for multi-user GPU clusters

Carme (/ˈkɑːrmiː/ KAR-mee; Greek: Κάρμη) is a Jupiter moon, also giving the name for a Cluster of 
Jupiter moons (the carme group).

Or in our case:

an open source frame work to mange resources for  multiple users running Jupyter notebooks on a 
Cluster of compute nodes.  



Project Carme 
An open source software stack for multi-user GPU clusters
Common problems in GPU-Cluster oppration:

● Interactive, secure multi user environment
● ML and Data Science users want interactive GUI access to compute resources  

● Resource Management
● How to assign (GPU) resources to competing users?  

● User management
● Accounting 
● Job scheduling 
● Resource reservation 

● Data I/O
● Get user data to compute nodes (I/O Bottleneck) 

● Maintenance 
● Meet (fast changing and diverse) software demands of users



Project Carme 
An open source software stack for multi-user GPU clusters

Carme core idea:

● Combine established open source ML and DS tools with HPC back-ends
● Use containers 

● (for now) Docker 
● Use Jupyter Notebooks as main web based GUI-Frontend

● All web front-end (OS independent, no installation on user side needed)   
● Use HPC job management and scheduler

● SLURM
● Use HPC data I/O technology

● ITWM’s BeeGFS  
● Use HPC maintenance and monitoring tools 



CC-HPC - Fraunhofer ITWM, Kaiserslautern

Project Carme 
An open source software stack for multi-user GPU clusters

N0 N1 N2 N3 N4 N5 N6 Nn

BeeGFS Storage Server

BeeGFS Parameter Server

Proxy / Management Server

User DB
SLURM

Container Storage
BeeGFS Manger

Monitoring

User 2

User 1

...

Compute nodes



HP-DLF 

High Performance Deep Learning Framework  

Hardware 
Topologie
Hardware 
Topologie

Unterstützte 
Hardware

Unterstützte 
Hardware

CompilerCompiler
DNN Graph

(Import aus Caffe, 
TensorFlow, ...)

DNN Graph
(Import aus Caffe, 

TensorFlow, ...)

Performance 
Model

Performance 
Model

Petri Netz Petri Netz Daten ModellDaten Modell

Runtime System
Workflow Engine

Scheduler

Runtime System
Workflow Engine

Scheduler

DatenflussDatenfluss
Global Address SpaceGlobal Address Space

...

● Scalable
● Transparent
● generic 
● Auto-parallel 
● Elastic 
● Automatic data flow
● Automatic Hardware 

selection
● Portable
● Monitoring
● Simulation
● New optimization methods



 

Our asynchronous optimization algorithm

● Sparse communication for multi model optimization
● Lower demands on the communication bandwidth
● Superior convergence  

Optimization for HP-DLF 
 



V A Look a the near Future

For HPC:

● New Hardware Accelerators 
● New Interconnects
● New Architectures 

From ML

● Models are still growing!
● Learning to learn



Automatic Design
Of Deep Neural Networks 

Layer 1

Layer 2

Layer 3 Layer 4

Layer 5

Layer 6

Basically, a graph optimization problem :

● Select Node Types 
● And their Meta-Parameters 

● Connect Edges to define the data flow through 
the graph

Optimization target: minimize test error

Problems: 
● Huge and difficult search space 
● Each iteration requires training of a DNN  

 



Automatic Design
Current Approaches: Reinforcement Learning  

Evaluation on CIFAR-10:
Better than “State of the Art” (hand designed) 
performance
● After ~12500 iterations
● Compute time: ~ 10000 GPU days

 



DeToL 

Deep Topology Learning  ● Genetic Algorithms
● Reinforcement Learning
● Early Stopping
● Graph Embedding 
● Meta-Learning
● Pruning

On application size problems

Data basis generartion



Discussion
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