
Towards Scalable Machine Learning

Janis Keuper

itwm.fraunhofer.de/ml

Competence Center High Performance Computing
Fraunhofer ITWM, Kaiserslautern, Germany

Fraunhofer Center Machnine Larning

Outline

I Introduction / Definitions

II Is Machine Learning a HPC Problem?

III Case Study: Scaling the Training of Deep Neural Networks

IV Towards Scalable ML Solutions [current Projects]

V A look at the (near) future of ML Problems and HPC

Machine Learning @CC-HPC

Scalable distributed ML Algorithms
Distributed Optimization Methods
Communication Protocols

Distributed DL Frameworks

“Automatic” ML
DL Meta-Parameter Learning
DL Topology Learning

HPC-Systems for Scalable ML
Distributed I/O
Novel ML Hardware
Low Cost ML Systems

DL Methods:
Semi- and Unsupervised DL
Generative Models
ND CNNs

ML HPC

Industry Applications
DL Software optimization for Hardware / Clusters
DL for Seismic Analysis
DL Chemical Reaction Prediction
DL for autonomous driving

I Introduction

I Setting the Stage | Defnitions

Scalable ML vs Large Scale ML

● Large model size
(implies large data as well)

● Extreme compute effort

● Goals:

● Larger models
● (linear) strong an weak

scaling through (distributed)
parallelization

→ HPC

● Very large data sets
(online stream)

● “normal” model size and
compute effort
(traditional ML methods)

● Goals:

● Make training feasible
● Often online training

→ Big Data

Scaling DNNs

Layer 1

Layer 2

Layer n-1

Layer n

...

Simple strategy in DL
if it does not work: scale it!

Scaling in two dimensions:

1. Add more layers = more matrix mult
 more convolutions

2. Add more units = larger matrix mult
 more convolutions

Don't forget: in both cases

MORE DATA! → more iterations

Scaling DNNs

Network of Networks

137 billion free parameters !

II Is Scalable ML a HPC Problem?

● In terms of compute needed (YES)

● Typical HPC Problem setting: is communication bound
= non trivial parallelization (YES)

● I/O bound (New to HPC)

Success in Deep Learning is driven by
compute power:

https://blog.openai.com/ai-and-compute/

→ # FLOP needed to compute
leading model is

 ~ doubling every 3.5 months !

→ increase since 2012: factor

 ~300.000 !

Impact on HPC (Systems)

● New HPC Systems

● Like ONCL “Summit”
● Power 9
● ~30k NVIDIA Volta GPUs
● New storage hierarchies

● New Users (=new demands)

● Still limited resources

https://www.nextplatform.com/2018/03/28/a-first-look-at-summit-supercomputer-application-performance/

III Case Study: Training DNNs

I Overview: distributed parallel training of DNNs

II Limits of Scalability

Limitation I: Communication Bounds

Limitation II: Skinny Matrix Multiplication

Limitation III: Data I/O

Based on our paper from SC 16

Deep Neural Networks
In a Nutshell

Layer 1

Layer 2

Layer 3 Layer 4

Layer 5

Layer 6

At an abstract level, DNNs are:

● directed (acyclic) graphs
● Nodes are compute entities (=Layers)
● Edges define the data flow through the graph

Inference / Training

Forward feed of data through the network

Deep Neural Networks
In a Nutshell

At an abstract level, DNNs are:

● directed (acyclic) graphs
● Nodes are compute entities (=Layers)
● Edges define the data flow through the graph

Inference / Training

Forward feed of data through the network

Layer 1

Layer 2

Layer n-1

Layer n

...

Common intuition

Minimize Loss-Function via gradient descent (high dimensional and NON CONVEX!)

Computed via Back Propagation Algorithm:

1. feed forward and compute activation
2. error by layer
3. compute derivative by layer

Training Deep Neural Networks
The Underlying Optimization Problem

Optimization Problem

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

By Stochastic Gradient Descent (SGD)

1. Initialize weights W at random
2. Take small random subset X (=batch) of the train data
3. Run X through network (forward feed)
4. Compute Loss
5. Compute Gradient
6. Propagate backwards through the network
7. Update W

Repeat 2-8 until convergence

Parallelization
Common approaches to parallelize SGD for DL

Parallelization of SGD is very hard: it is an inherently sequential algorithm

1. Start at some state t (point in a billion dimensional space)
2. Introduce t to data batch d1
3. Compute an update (based on the objective function)
4. Apply the update →t+1

How to gain Speedup ?

Make faster updates
Make larger updates

State t State t+1
State t+2

d1 d2
d3

Parallelization
Common approaches to parallelize SGD for DL

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backwardInternal parallelization = parallel execution of the
 layer operation

● Mostly dense matrix multiplication:
● standard blas sgemm
● MKL, Open-Blas
● CuBlas on GPUs

● Task parallelization for special Layers
● Cuda-CNN for fast convolutions

Parallelization
Common approaches to parallelize SGD for DL

Layer 1

Layer 2

Layer n-1

Layer n

...

forward

External: data parallelization over the data batch

Layer 1

Layer 2

Layer n-1

Layer n

...

forward

Layer 1

Layer 2

Layer n-1

Layer n

...

forward

Master

1. Split batch
and send to
workers

Parallelization
Common approaches to parallelize SGD for DL

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

External: data parallelization over the data batch

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

Master

1. Split batch
and send to
workers

2. Workers compute
forward+backward
and send gradients
to master

Parallelization
Common approaches to parallelize SGD for DL

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

External: data parallelization over the data batch

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

Master

1. Split batch
and send to
workers

2. Workers compute
forward+backward
and send gradients
to master

3. Master combines
gradients and
computes updates
of W. Sends new
W' to workers

Parallelization
Common approaches to parallelize SGD for DL

External: data parallelization over the data batch

Master

1. Split batch
and send to
workers

2. Workers compute
forward+backward
and send gradients
to master

3. Master combines
gradients and
computes updates
of W. Sends new
W' to workers

Speedup

Limitation I
Distributed SGD is heavily Communication Bound

Gradients have the same size as the
model

● Model size can be hundreds of MB
● Iteration time (GPU) <1s

Communication Bound
Experimental Evaluation

Solving the Communication Bottleneck
Solutions in Hardware: example NVLink

NVIDIA DGX-1 / HGX-1

● 8x P100
● DGX-1: NVLink between all GPUs

NVLink spec: ~40GB/s (single direction)
NVLink II (Volta): ~75GB/s (single direction)

PCIe v3 16x: ~15GB/s

Diagram DGX-1 by NVIDIA

Solving the Communication Bottleneck
Solutions in Hardware: NVLink Benchmark

IBM Minsky

● 4x P100
● 2x10 core Power8 (160 hw threads)
● NVLink between all components

NVLink spec: ~40GB/s (single direction)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Minsky Benchmark Deep Learning

AlexNet Topology with NVIDIA-Caffe on ImageNet Data (batch_size 1024)

Linear Scaling
Theoretical Speedup Limit
Actual Speedup
PCIe 4x K80

GPUs used

S
p

e
e

d
u

p

Limitation I
Distributed SGD is heavily Communication Bound

How to solve this in distributed environments?

Limitation II
Mathematical Problems – aka the “Large Batch Size Problem”

Recall:

speedup comes from pure data-parallelism

→ splitting the batch over the workers

Problem: Batch size decreasing with distributed scaling

Hard Theoretic Limit: b > 0

→ GoogLeNet: No Scaling beyond 32 Nodes
→ AlexNet: Limit at 256 Nodes

External Parallelization hurts the internal (BLAS / cuBlas) parallelization
even earlier.

In a nutshell: for skinny matrices there is simply not enough work for
efficient internal parallelization over many threads.

“Small Batch Size Problem”
Data Parallelization over the Batch Size

“Small Batch Size Problem”
Data Parallelization over the Batch Size

256 128 64 32 16 8 4 2 1
1

2

4

8

16

32

64

128

256

MKL SGEMM

linear scaling

batch size
sp

ee
du

p

Computing Fully Connected Layers:

Single dense Matrix Multiplication

Experimental Evaluation
Increasing the Batch Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

256

512

1024

2048

Iteration

A
cc

u
ra

cy

Solution proposed in
literature:

Increase Batch size

But:

Linear speedup against
original Problem only if we can
reduce the number iterations
accordingly

This leads to loss of accuracy

AlexNet on ImageNet

The “large batch” Problem
Central Questions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

256

512

1024

2048

Iteration

A
cc

ur
ac

y

Why is this happening?

Is it dependent on the Topologie /
other parameters?

How can it be solved?

→ large batch size SGD would solve
most scalability problems!

The “large batch” Problem
What is causing this effect? [theoretical and not so theoretical explanations]

→ The “bad minimum”

→ gradient variance / coupling of learning rate and batch size

The “bad minimum”

Theory: larger batch causes degrease in gradient variance,
causing convergence to local minima...

→ empirical evaluation shows high correlation of sharp minima and weak generalization

Limitation II
Mathematical Problems – aka the “Large Batch Size Problem”

Problem not fully understood

No general solutions (yet) !

Do we need novel optimization methods ?!

Limitation III
Data I/O

Hugh amounts of training data need to
Be streamed to the GPUs

● Usually 50x – 100x the training data set
● Random sampling (!)
● Latency + Bandwidth competing with

optimization communication

Distributed I/O
Distributed File Systems are another Bottleneck !

● Network bandwidth is already exceeded by the SGD communication
● Worst possible file access pattern:

● Access many small files at random

This problem already has effects on local multi-GPU computations

E.g. on DG-X1 or Minsky, single SSD (~0.5 GB/s) to slow to feed >= 4 GPUs

-> solution: Raid 0 with 4 SSDs

Distributed I/O

256 128 64 32 16 8 4 2 1
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Compute time by Layer

AlexNet (GPU + cuDNN)

Split

SoftmaxWithLoss

ReLU

Pooling

LRN

InnerProduct

Dropout

Data

Convolution

Concat

batch size

Results shown for SINGLE node access
to a Lustre working directory
(HPC Cluster, FDR-Infiniband)

Distributed File Systems are another Bottleneck !

256 128 64 32 16 8 4 2 1
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Compute time by Layer

AlexNet (GPU + cuDNN)

Split

SoftmaxWithLoss

ReLU

Pooling

LRN

InnerProduct

Dropout

Convolution

Concat

batch size

Results shown for SINGLE node
Data on local SSD.

IV Towards Scalable Solutions

Distributed Parallel Deep Leaning with HPC tools + Mathematics

CaffeGPI:
Distributed Synchronous SGD Parallelization
With asynchronous communication overlay

Better scalability using asynchronous
PGAS programming of optimization
algorithms with GPI-2.

Direct RDMA access to main and GPU
memory instead of message passing

Optimized data-layers for distributed
File systems

2

CaffeGPI: Approaching DNN Communication

● Communication Reduction Tree
● Communication Quantization
● Communication Overlay
● Direct RDMA GPU→GPU

● Based on GPI

● Optimized distributed data-layer

CC-HPC Current Projects

CaffeGPI:
Open Source

https://arxiv.org/abs/
1706.00095

https://github.com/cc-hpc-itwm/CaffeGPI

Projects: Low Cost Deep Learning Setup:
Build on CaffeGPI

GTX1080:0

GTX1080:1

SSD:0

IB:1 FDR

IB:0 FDR

GTX1080:2

GTX1080:3

SSD:1

IB:1 FDR

IB:0 FDR CaffeGPI

Workstation 1 Workstation 2

Price: <8000 EUR standard components

Specs:

● 32 GB GPU Mem
● 64 GB PGAS Mem
● 2TB BeeGFS for Train Data
● GPU interconnect: PCIe

CaffeGPI:
Benchmarks: Single Node

Specs:

4x K80 GPU (PCIe Interconnect)
Cuda 8
CuDNN 5.1

Topology: AlexNet
Batch Size (global) (1024)

Low Cost Deep Learning Setup:
Build on CaffeGPI

Specs: Topology: GoogLeNet, Cuda 8, cuDNN 5.1, CaffeNV 16.4, Batch Size/Node: 64

1 2 4 8
0

50

100

150

200

250

300

350

Time till Convergence

DGX-1 CaffeNV
ITWM CaffeGPI

#GPUs

T
ra

in
in

g
 ti

m
e

 in
 h

1 2 4 8
1.00

10.00

1.00

1.96

3.80

6.84

1.00

1.73

3.21

Scaling

DGX-1 CaffeNV
ITWM CaffeGPI

#GPUs

S
p

e
e

d
u

p

CaffeGPI:
Benchmarks

Specs:

1x K80 GPU (per node)
Cuda 8
CuDNN 5.1

Topology: GloogleNet
Batch Size: 64 per node

1 2 4 8 16
1.00

10.00

100.00

1.00

1.97

3.97

7.97

15.93

Distrubuted Scaling of CaffeGPI

#Nodes

S
p

e
e

d
u

p

New Project: Low Cost Deep Learning Cluster

GPU Cluster for Fraunhofer Consortium @ITWM

● Low cost Hardware
● Consumer GPUs
● Novel AMD architecture
● Hosting Cost per GPU ~ 1.25 k EUR. Compared to DGX-1 ~ 10k

● Fast Interconnect and Data I/O
● Parallel FS with local NVMe

● Open Source Multi-User Management
● Reservation system
● Scheduling
● Custom Containers
● Web Interface

GTX1080ti:0

GTX1080ti:1

SSD:0

IB:1 FDR

IB:0 FDR

Low Cost Deep Learning Setup
Currently building: Prototype 16-Node System

CC-HPC - Fraunhofer ITWM, Kaiserslautern

N0 N1 N2 N3 N4 N5 N6 N7

N8 N9 N10 N11 N12 N13 N14 N15

HPC IB Switch 32 Ports FDE

BeeGFS Storage Server

BeeGFS Storage Server

BeeGFS Parameter Server

M
a

n
a

g
e

m
e

n
t

N
o

d
e

Test +
Backup
Node

B
e

e
G

F
S

 M
a

n
a

g
e

m
e

n
t

 S
e

rv
e

r

L
D

A
P

 S
e

rv
e

r

P
ro

x
y

 N
o

d
e

A
cc

e
ss

 C
o

n
tr

o
l

S
L

U
R

M
 S

e
rv

e
r

 P
ro

x y

M
o

n
ito

rin
g

 S
e

rv
e

r

11.11.11.253

E
xt

er
n a

l I
P

USV

USV

N
E

A
N

E
A

E
xt

e
rn

a
l I

P

User
Access

Project Carme
An open source software stack for multi-user GPU clusters

Carme (/ˈkɑːrmiː/ KAR-mee; Greek: Κάρμη) is a Jupiter moon, also giving the name for a Cluster of
Jupiter moons (the carme group).

Or in our case:

an open source frame work to mange resources for multiple users running Jupyter notebooks on a
Cluster of compute nodes.

Project Carme
An open source software stack for multi-user GPU clusters
Common problems in GPU-Cluster oppration:

● Interactive, secure multi user environment
● ML and Data Science users want interactive GUI access to compute resources

● Resource Management
● How to assign (GPU) resources to competing users?

● User management
● Accounting
● Job scheduling
● Resource reservation

● Data I/O
● Get user data to compute nodes (I/O Bottleneck)

● Maintenance
● Meet (fast changing and diverse) software demands of users

Project Carme
An open source software stack for multi-user GPU clusters

Carme core idea:

● Combine established open source ML and DS tools with HPC back-ends
● Use containers

● (for now) Docker
● Use Jupyter Notebooks as main web based GUI-Frontend

● All web front-end (OS independent, no installation on user side needed)
● Use HPC job management and scheduler

● SLURM
● Use HPC data I/O technology

● ITWM’s BeeGFS
● Use HPC maintenance and monitoring tools

CC-HPC - Fraunhofer ITWM, Kaiserslautern

Project Carme
An open source software stack for multi-user GPU clusters

N0 N1 N2 N3 N4 N5 N6 Nn

BeeGFS Storage Server

BeeGFS Parameter Server

Proxy / Management Server

User DB
SLURM

Container Storage
BeeGFS Manger

Monitoring

User 2

User 1

...

Compute nodes

HP-DLF

High Performance Deep Learning Framework

Hardware
Topologie
Hardware
Topologie

Unterstützte
Hardware

Unterstützte
Hardware

CompilerCompiler
DNN Graph

(Import aus Caffe,
TensorFlow, ...)

DNN Graph
(Import aus Caffe,

TensorFlow, ...)

Performance
Model

Performance
Model

Petri Netz Petri Netz Daten ModellDaten Modell

Runtime System
Workflow Engine

Scheduler

Runtime System
Workflow Engine

Scheduler

DatenflussDatenfluss
Global Address SpaceGlobal Address Space

...

● Scalable
● Transparent
● generic
● Auto-parallel
● Elastic
● Automatic data flow
● Automatic Hardware

selection
● Portable
● Monitoring
● Simulation
● New optimization methods

Our asynchronous optimization algorithm

● Sparse communication for multi model optimization
● Lower demands on the communication bandwidth
● Superior convergence

Optimization for HP-DLF

V A Look a the near Future

For HPC:

● New Hardware Accelerators
● New Interconnects
● New Architectures

From ML

● Models are still growing!
● Learning to learn

Automatic Design
Of Deep Neural Networks

Layer 1

Layer 2

Layer 3 Layer 4

Layer 5

Layer 6

Basically, a graph optimization problem :

● Select Node Types
● And their Meta-Parameters

● Connect Edges to define the data flow through
the graph

Optimization target: minimize test error

Problems:
● Huge and difficult search space
● Each iteration requires training of a DNN

Automatic Design
Current Approaches: Reinforcement Learning

Evaluation on CIFAR-10:
Better than “State of the Art” (hand designed)
performance
● After ~12500 iterations
● Compute time: ~ 10000 GPU days

DeToL

Deep Topology Learning ● Genetic Algorithms
● Reinforcement Learning
● Early Stopping
● Graph Embedding
● Meta-Learning
● Pruning

On application size problems

Data basis generartion

Discussion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

