Towards Scalable Machine Learning

Janis Keuper

itwm.fraunhofer.de/ml

Competence Center High Performance Computing
Fraunhofer ITWM, Kaiserslautern, Germany

Fraunhofer Center Machnine Larning

\

~ Fraunhofer

Outline

Introduction / Definitions

Is Machine Learning a HPC Problem?

Case Study: Scaling the Training of Deep Neural Networks
Towards Scalable ML Solutions [current Projects]

A look at the (near) future of ML Problems and HPC

=

~ Fraunhofer

\

Introduction
Machine Learning @CC-HPC

Scalable distributed ML Algorithms
Distributed Optimization Methods
Communication Protocols

Distributed DL Frameworks
“Automatic” ML

DL Meta-Parameter Learning
DL Topology Learning

HPC-Systems for Scalable ML
Distributed 1/O
Novel ML Hardware

Low Cost ML Systems Industry Applications
_ DL Software optimization for Hardware / Clusters
DL Methods: . DL for Seismic Analysis
Semi- and Unsupervised DL DL Chemical Reaction Prediction
ﬁg”grl\‘m‘s’e Models DL for autonomous driving

\

~ Fraunhofer

Setting the Stage | Definitions

. e Very large data sets
(implies large data as well) (online stream)
« Extreme compute effort « “normal” model size and
compute effort
e Goals: (traditional ML methods)
« Larger models e Goals:
« (linear) strong an weak
scaling through (distributed) « Make training feasible
parallelization « Often online training
- HPC -~ Big Data

\

~ Fraunhofer

Scaling DNNs

Simple strategy in DL
If it does not work: scale it!
Scaling in two dimensions:

1. Add more layers = more matrix mult
more convolutions

2. Add more units = larger matrix mult
more convolutions

Don't forget: in both cases

MORE DATA! . more iterations

~ Fraunhofer

Scaling DNNs

OUTRAGEOUSLY LARGE NEURAL NETWORKS:
THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER

Noam Shazeer', Azalia Mirhoseini*!, Krzysztof Maziarz*?, Andy Davis', Quoc Le', Geoffrey MoE layer
Hinton' and Jeff Dean'

!Google Brain, {noam,azalia,andydavis,qvl,geoffhinton,jeff } @google.com
*Jagiellonian University, Cracow, krzysztof. maziarz @student.uj.edu.pl

Ginly| [GIx

.
ABSTRACT
e Gating
e Network _/)
The capacity of a neural network to absorb information is limited by its number of ~ .
parameters. Conditional computation, where parts of the network are active on a
per-example basis, has been proposed in theory as a way of dramatically increas-

ing model capacity without a proportional increase in computation. In practice,

however, there are significant algorithmic and performance challenges. In this

work, we address these challenges and finally realize the promise of conditional

computation, achieving greater than 1000x improvements in model capacity with

only minor losses in computational efficiency on modem GPU clusters. We in-

troduce a Sparsely-Gated Mixture-of-Experts layer (MoE), consisting of up to N t k f N t k

thousands of feed-forward sub-networks. A trainable gating network determines e Wo r O e WO r S

a sparse combination of these experts to use for each example. We apply the MoE

to the tasks of language modeling and machine translation, where model capacity

is critical for absorbing the vast quantities of knowledge available in the training =pg= I
corpora. We present model architectures in which a MoE with up to 137 billion 137 bl I I IO n free param ete rS .
parameters is applied convolutionally between stacked LSTM layers. On large

language modeling and machine translation benchmarks, these models achieve

significantly better results than state-of-the-art at lower computational cost.

\

~ Fraunhofer

Is Scalable ML a HPC Problem?

 In terms of compute needed (YES)

« Typical HPC Problem setting: is communication bound
= non trivial parallelization (YES)

 1/O bound ()

=

~ Fraunhofer

\

Success Iin Deep Learning is driven by
compute power:

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

— # FLOP needed to compute
leading model is

fraining)

— Increase since 2012: factor

day (

taflop/s

https://blog.openai.com/ai-and-compute/ ~ Fraunhofer

Impact on HPC (Systems)

« New HPC Systems

Like ONCL “Summit”
Power 9

~30k NVIDIA Volta GPUs
New storage hierarchies

 New Users (=new demands)

o Still imited resources

https://www.nextplatform.com/2018/03/28/a-first-look-at-summit-supercomputer-application-performance/

\

~ Fraunhofer

Case Study: Training DNNs

Overview: distributed parallel training of DNNs
Limits of Scalability
ommunication Bounds
kinny Matrix Multiplication
ata /O

Distributed Training of Deep Neural Networks:
Theoretical and Practical Limits of Parallel
Scalability.

Janis Keuper
Fraunbofer ITWM
Competence Center High Performance Computing
Kaiserslautern, Gemany
Email: janis keuper @ itwm.fhy.de

Abaracr—This paper presents a theoretical analysis and prae-
tical evaluation of the main bottlenecks towards a scalable
distributed solution for the training of Deep Neural Networks
(DNNsh. The presented results show, that the current state of
the art approach, usng data-parallelized Stochastic Gradient
Descent {SGD), s quickly turning into a vastly communicatio
bowsd problem. In addition, we present simple but fixed theoretic
canstraints, preventing effective scaling of DNN training beyon
anly a few dozen nedes. This leads 1o poor scakability of DNN
training in most practical scenarivs.

L INTRODUCTION

The tremendous suceess of Deep Newral Metworks (DNNs)
[18], [14] in a wide mnge of practically relevant applications
has triggered a race 1o build larger and larger DNNs [20]
which need 1o be tmined with more and more daa, 1o solve
learning problems in fast extending ficlds of applications
However, trining DNNs is a compuie and data intensive

| CPU_ K80 TmnX KNL
0% s
[k 1IH 2% 10] TS
[
Wih 100
TABLE |

TWITHBATE

1w B

1000k 1TERATINS. KNL 15 LANDING”} &
wiTH MKLIT. TitasX with Pascas GPULS Tioe B3

task: current models take severnl ExaFLOF to compute, while
processing hundreds of petbyte of data |20). Table
impression of the compute complexity and shows, that even
the latest compute hardware will take days 10 train the medium
sized benchmark networks used in our experiments. While
a pamallelization of the training problem over up to & GPUs
hosted in a single compule node can be considered 10 be the
cument state of the ant, available distributed approaches [4]
[15], [1], (2], |7) yield disappointing results [19] in terms of
scalability and efficiency. Figure | shows representative exper-
imental evalutions, where strong scaling is stalling afler only

ves an

Competence Center High Peformance Computing

afew dozen nodes. In this paper, we invest
and practical constraints preventi
model distribution overheads {in section 10, dat
matrix multiplication (section 1) and traini
{scction IV).

A Siochastic Gradiens Descens

Deep Neural Networks are trained using the Backprapagation
Algarithn [16]. Numerically, this is formulated as a hig
non-convex optimiz
space, which is typ
scent (SGD') [3] &
provides stable comvergence at fair computational costs on 2

swlly, SGD with add
this has oo i e

r clifferere DNNs with varying
e box” intallatin of faelCaj
n in section 1B}

Franz-Josef Preundt
Fruunhofer [TWM

serslautem, Gemany
Email: franz-josef pireundt @ itwm fhy de

srang scaling
aich 5 I R from an “om
an 3 cammem HPC system {Dietails are

ate the theoretical
¢ better sealability, namely

ion problem in a very high dimensional
ally solved via Stochastic Gradient De-
D, using moderste mini-hatch sizes £

il 2nd ondes terms (moments) as osed, b
anlkelizgion

Based on our paper from SC 16

~Z Fraunhofer

Deep Neural Networks

In a Nutshell

At an abstract level, DNNs are:

« directed (acyclic) graphs

« Nodes are compute entities (=Layers)

e Edges define the data flow through the graph
Inference / Training

Forward feed of data through the network

~Z Fraunhofer

Deep Neural Networks

In a Nutshell

Common intuition

At an abstract level, DNNs are:

« directed (acyclic) graphs

« Nodes are compute entities (=Layers)

« Edges define the data flow through the graph
Inference / Training

Forward feed of data through the network

\{

~ Fraunhofer

Training Deep Neural Networks

Computed via Back Propagation Algorithm:

1. feed forward and compute activation

2. error by Ia er . 6'11‘ — (?n-'. %”y _ hﬂ-",b(x)llz _ _(y?' . a,gni;l) . f;(z.n‘)
3. compute derivative by layer 8z,™
6 (1) (1)
I (Wb z,y) = a5
61.1.;2_';

Minimize Loss-Function via gradient descent

1 m \ mn—1 5 8141 0
JW,b) = | =" J(W, b2, ¢)| + 2 "y (H{_F)
i=1 =1 i=1 j=1

\

~ Fraunhofer

Optimization Problem
By Stochastic Gradient Descent (SGD)

forward backward

Initialize weights W at random

Take small random subset X (:batchg of the train data
Run X through network (forward feed

Compute Loss

Compute Gradient

Propagate backwards through the network

Update W

NogOhWNE

Repeat 2-8 until convergence

\

~ Fraunhofer

Parallelization

Parallelization of SGD is very hard: itis an inherently sequential algorithm

1. Start at some state t (point in a billion dimensional space)
2. Introduce t to data batch d1 o _
3. Compute an update (based on the objective function)

4. Apply the update - t+1 43

dl d2
How to gain Speedup ?

State t+2
State t State t+1

\

~ Fraunhofer

Parallelization
Common approaches to parallelize SGD for DL

forward backward

Internal parallelization = Iparallel execution of the
ayer operation
x W)
« Mostly dense matrix multiplication:
 standard blas sgemm
« MKL, Open-Blas a2
e CuBlas on GPUs

« Task parallelization for special Layers
e Cuda-CNN for fast convolutions

gn=2)pyn-1)

(-1 pym

\

~ Fraunhofer

Parallelization
Common approaches to parallelize SGD for DL

External: data parallelization over the data batch

1. Split batch
and send to
workers

forward

forward forward

\{

~ Fraunhofer

Parallelization
Common approaches to parallelize SGD for DL

External: data parallelization over the data batch

1. Split batch
and send to
workers

2. Workers compute
forward+backward
and send gradients
to master mus

forward backward forward backward forward backward

\

~ Fraunhofer

1.

2.

. Master combines

Parallelization
Common approaches to parallelize SGD for DL

External: data parallelization over the data batch

Split batch
and send to
workers
Workers compute
forward+backward
and send gradients
to master mus mas

gradients and
computes updates
of W. Sends new
W' to workers

forward backward forward backward forward backward

\

~ Fraunhofer

Parallelization

External: data parallelization over the data batch

~Master | - A

— i 1

1. Split batch /D/Lﬁan” 1 B Laverl o g Layer1 t
and send to Speedup

workers |- e —
2. Workers compute W\Lﬁ‘fﬂd 2 L -
forward+backward @ | @
and send gradients
to master BEE D D
3. I\/Iaat_er comboilnes N N] N N %
gradients an = —
computes updates a ayern-t
of W. Sends new
W' to workers

Layer2 2 L Fayer2 =

N ST - N S -
= Layer n-1 = Layer n-1

7 N .~/

SN\ JA[? [A) — A\ N/E — \/(DN\ /) A —
Eayelrn Eayeirn Eayerin

CAr Y.Vialiaa aYaYa V.Viallda NSV Y2l s a¥alal \ A 1D IF (T ///’\ V.Viallaa N e V.Vialida

Qs
D

§

~Z Fraunhofer

Limitation |
Distributed SGD is heavily Communication Bound

Gradients have the same size as the
model

« Model size can be hundreds of MB
e Iteration time (GPU) <1s

forward backward forward backward forward backward

\

~ Fraunhofer

Communication Bound
Experimental Evaluation

il COM. time AlexNet
= = =4 = =: Time/lter. AlexNet GPU (B=256)

gy CoM. time GoogLeNet
= = =p= = =+ Time/lter. GoogLeNet GPU (B=32)

Linear (Com. time AlexNet)
v Timelliter. AlexNet GPU (B=1024)
—————— Linear (Com. time GoogLeNet)
v Timeliter. GoogleNet GPU (B=256)

time (s)

~Z Fraunhofer

Solving the Communication Bottleneck

N

— PCle PCle +
= Switch Switch [

— | F100 P100 | +—

— | P100 P100 | +—— — | P100 PlU0 | «+—

> PCle R am—
e Switch S

— | P100 P100 | -—

+—» PCle

Diagram DGX-1 by NVIDIA

NVIDIA DGX-1 | HGX-1

« 8X P100

e DGX-1: NVLink between all GPUs
NVLink spec: ~40GB/s (single direction)
NVLink Il (Volta): ~75GB/s (single direction)

PCle v3 16x: ~15GB/s

—

~ Fraunhofer

Solving the Communication Bottleneck

Speedup

4.5

3.5

2.5

15

0.5

0

Minsky Benchmark Deep Learning

AlexNet Topology with NVIDIA-Caffe on ImageNet Data (batch_size 1024)

== Linear Scaling

=== Theoretical Speedup Limit
Actual Speedup

== PCle 4x K80

0.5 1 1.5 2 2.5 3 3.5 4 4.5
GPUs used

IBM Minsky

« 4x P100

« 2x10 core Power8 (160 hw threads)
e NVLink between all components

NVLink spec: ~40GB/s (single direction)

\

~ Fraunhofer

Limitation |

How to solve this In distributed environments?

\

~ Fraunhofer

Limitation |
Mathematical Problems - aka the “Large Batch Size Problem”

Recall:

speedup comes from pure data-parallelism

- splitting the batch over the workers

forward backward forward backward forward backward

\

~ Fraunhofer

“Small Batch Size Problem”

Problem: Batch size decreasing with distributed scaling

- GoogLeNet: No Scaling beyond 32 Nodes
— AlexNet: Limit at 256 Nodes

External Parallelization hurts the internal (BLAS / cuBlas) parallelization
even earlier.

for skinny matrices there is simply not enough work for
efficient internal parallelization over many threads.

=

~ Fraunhofer

\

“Small Batch Size Problem”

Computing Fully Connected Layers:

256
Single dense Matrix Multiplication 128
64
Layer | # operations matrix sizes
Fully Connected 1 bx1+1xQO 32
Convolutional b CxIxIxZ
Softmax b Ix1%x1x1 -516
TN &é’_ == MKL SGEMM
_ elinitions: 2 8 === |inear scaling
I: Input size from top layer
O: Output size of this layer
b: local Batch size (train or validation) 4
C: Number of filters
c: Number of input channels (RBG image: ¢ = 3) 2 B
P: Patch size (1.e. pixel) .
k: kernel size 1
Z: Effective size after kernel application. 256 128 64 32 16 8 4 2 1
2
For convolution Z := (/P — L(kj2)) batch size
TABLE III
SIZE AND NUMBER OF OF THE MATRIX MULTIPLICATIONS (SGEMM) PER
FORWARD PASS FOR SELECTED LAYERS.
=

~Z Fraunhofer

Experimental Evaluation

Solution proposed in o7
literature:

0.6

But:

— 256

m— 512
1024

= 2048

Accuracy

Linear speedup against
original Problem only if we can
reduce the number iterations
accordingly

This leads to loss of accuracy

AlexNet on ImageNet

Iteration

\

~ Fraunhofer

The “large batch” Problem

Why is this happening?

0.6

Is it dependent on the Topologie /
other parameters?

How can it be solved? .

— 256

=512
1024

= 2048

—

~ Fraunhofer

The “large batch” Problem

- The “bad minimum”

- gradient variance /| coupling of learning rate and batch size

) -
. K g : 5 < SO ML
a0 i e — - SB-Training|"" e 5 ~_ SB-Training |
30_&&. — SB- Testing |.. i i 40_: — SB-Testing [............... i
20 L - - LB -Training 3{)1 -- LB-Training | &]
e e LB - Testing |~ e : LB - Testing :
10 I L I I I 20 1 I I |
20 40 60 80 100 0 20 40 60 B0 100
Epoch Epoch
(a) Network F5 (b) Network

Figure 2: Training and testing accuracy for SB and LB methods as a function of epochs.

\

~ Fraunhofer

The “bad minimum”

.) . On Large-Batch Training for Deep Learning:
Theory: larger batch causes degrease in gradient variance, Generalization Gap and Sharp Minima
causing convergence to local minima...

Nitish Shirish Keskar® Dheevatsa Mudigere
Northwestern University Intel Corporation
Evanston, IL 60208 Bangalore. India

keskar .nitish®u.northvestern.edu dheevatsa.mudigere@intel.com
Jorge Nocedal Mikhail Smelyanskiy
Northwestern University Intel Corporation
Evanston, IL 60208 Santa Clara, CA 95054
j-nocedal@northwestern.edu mikhail.smelyanskiy@intel.com

Ping Tak Peter Tang
Intel Corporation
Santa Clara, CA 95054
peter .tanglintel .com

Training Function

L]
' Testing Function
Abstract

i

The stochastic gradient descent method and its varants are algorithms of choice
for many Deep Leaming tasks. These methods operate in a small-batch regime
wherein a fraction of the training data, usually 32-512 data points, is sampled to
compule an approximation to the gradient. It has been observed in practice that
dation in the quality of the

fiz)
41 1 . - ;
I when using a larger batch there is a significant deg
model, as measured by its ability to generalize. There have been some attempts to

[

[investigate the cause for this generalization drop in the large-batch regime. however
the precise answer for this phenomenon is, hitherto unknown. In this paper, we

present ample numerical evidence that supports the view that large-batch methods

tend to converge to sharp minimizers of the training and testing functions — and

' .- i

L that sharp minima lead to poorer generalization. In contrast, small-batch methods

a consistently converge to flat minimizers, and our experiments support a commaonly

LI T held view that this is due to the inherent noise in the gradient estimation. We

Flat Minimum Shdrp Minimum also discuss several empirical strategies that help large-batch methods eliminate

the generalization gap and conclude with a set of future research ideas and open
questions.

Figure 1: A Conceptual Sketch of Flat and Sharp Minimizers (Y-axis indicates value of the loss
function and X-axis indicates the weights)

— empirical evaluation shows high correlation of sharp minima and weak generalization

~Z Fraunhofer

Limitation 1l

Problem not fully understood
No general solutions (yet) !

Do we need novel optimization methods ?!

\

~ Fraunhofer

Limitation il
Data I/O

Hugh amounts of training data need to
Be streamed to the GPUs

« Usually 50x — 100x the training data set
« Random sampling (!)

« Latency + Bandwidth competing with
optimization communication = = ﬂ

forward backward forward backward forward backward

\

~ Fraunhofer

Distributed 1/0

* Network bandwidth is already exceeded by the SGD communication
* Worst possible file access pattern:
* Access many small files at random

This problem already has effects on local multi-GPU computations

-> solution: Raid 0 with 4 SSDs

—

~ Fraunhofer

Distributed 1/0

Compute time by Layer

AlexNet (GPU + cuDNN)

100% — — Split
90% l I . B SoftmaxWithLoss
80% i RelLU

70% B Pooling

60% LRN

50% B InnerProduct
40% B Dropout
30% Data

20% B Convolution
10% W Concat

0% — | — — e W NN W W

256 128 64 32 16 8 4 2 1

batch size

Results shown for SINGLE node access
to a Lustre working directory
(HPC Cluster, FDR-Infiniband)

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

256 128 64

Compute time by Layer

AlexNet (GPU + cuDNN)

Split

B SoftmaxWithLoss
RelLU
B Pooling
= LRN
B InnerProduct
B Dropout
B Convolution
m Concat
||
4 2 1

batch size

Results shown for SINGLE node
Data on local SSD.

\

~ Fraunhofer

Towards Scalable Solutions

Distributed Parallel Deep Leaning with HPC tools + Mathematics

- ::iE?h Global
<4 II ;Awmmrcci Address Space GPI""' 1, SPACE
"':;13555: ;5 Programming Interface
‘222" GASPI

GFS

\

Z Fraunhofer

Distributed Synchronous SGD Parallelization
With asynchronous communication overlay

<aness. Global
- . ,:EEEF “““ . Address Space
Better scalability using asynchronous 32820 Programming Interface
PGAS programming of optimization ‘SI22" GASPI

algorithms with GPI-2.

Direct RDMA access to main and GPU
memory instead of message passing

Optimized data-layers for distributed
File systems

\

Z Fraunhofer

CC-HPC Current Projects
CaffeGPI: Approaching DNN Communication

« Communication Reduction Tree
CaffeGPI: « Communication Quantization

Distributed Synchronous SGD Parallelization . Sf}re“CTgrB‘,i,?X%‘p%"f”é‘%’u

« Based on GPI

AAEEESRE

' S=Eaiof Programming Interface
ﬁ. “mmmEs’ CASP]

« Optimized distributed data-layer
—@ @
=@ © <’

ZeeGFS

forward Local backward global update
———

\

~ Fraunhofer

Open Source

O Features Business Explore Marketplace Pricing This repository Sign in or Sign up
I cc-hpe-itwm / CaffeGPI ©wach 1 | ksar 0 YFok o
<> Code Issues 0 Pull requests 0 Projects 0 Insights

No description, website, or topics provided.

(D 3,887 commits # 1 branch © O releases 23 237 contributors

Find file Clone or download

Latest commit 85c57a9 5 days ago

Branch: master = | | New pull request

Martin Kuehn Extending README.md

i .github Add Github issue template o curb misuse. 8 months ago
i cmake bug fixes 2 months ago
[data Merge pull request #4455 from ShaggQ/spaceSuppoertLSVRC12MNIST 11 months ago
[docker Document switch to explicit flags for docker: cpu / gpu 4 months ago
[docs fix broken link to hinge loss 4 months ago
I examples Merge pull request #5121 from yrevar/patch-2 5 months ago
I include/caffe fixed parallel data layer, added inMem data layer and added auto gpu 2 months ago
I matlab Merge pull request #4737 from rokm/matcaffe-individual-destruct 4 months ago
m models minor typo 5 months ago
i python Merge pull request #4809 from intelfx/BVLC-work-buildsystem 4 months ago
i scripts Merge pull request #5148 from caffe-help/caffe-docs-PR1 5 months ago
i src bug fixes 2 months ago
i test bug fixes 2 months ago
[tools gpu auto added amonth ago

https://github.com/cc-hpc-itwm/Caffe GPI

Using GPI-2 for Distributed Memory Paralleliziation of the Caffe Toolbox to
Speed up Deep Neural Network Training
Martin Kuehn, Janis Keuper and Franz-Josef Pfreundt
Competence Center High Performance Computing

Fraunhofer Institute for Industrial Mathematics
Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany

May 31,2017

Abstract

Deep Neural Network (DNN) are currently of great inter-
est in research and application. The training of these net-
works is a compute intensive and time consuming task. To
reduce training times to a hearable amount at reasonahle
cost we extend the popular Caffe toolbox for DNN with
an efficient distributed memory communication pattern.
To achieve good scalability we emphasize the overlap of
computation and communication and prefer fine granu-
lar synchronization patterns over global barriers. To im-
plement these communication patterns we rely on the the
“Gilobal address space Programming Interface” version 2
(GPL-2) communication library. This interface provides a
light-weight set of asynchronous one-sided communica-
tion primitives supplemented by non-blocking fine gran-
ular data synchronization mechanisms. Therefore, Caf-
feGPI is the name of our parallel version of Caffe. First
benchmarks demonstrate better scaling behavior com-
pared with ather extensions, e.g., the Intel™Caffe. Even
within a single symmetric multiprocessing machine with
four graphics processing units, the CaffeGPI scales bet-
ter than the standard Caffe toolhox. These first results
demonstrate that the use of standard High Performance
Computing (HPC) hardware is a valid cost saving ap-
proach o train large DDNs. YO is an other bottleneck
to work with DDNs in a standard parallel HPC setting,
which we will consider in more detail in a forthcoming
paper.

1 Introduction

Deep Neural Network (DNN) architectures have im-
proved considerably the accuracy in data classificadon
apening the door for a plethora of use cases in image clas-
sification, speech recognition or semantic text understand-
ing. However, the training of DNNs is a very compute
intensive task. So, the raising interest in these architec-
tures created a tremendous demand for compute resources
which is further intensified by a race to greater sizes of
DNNs.

Anaother important factor is the time necessary for train-
ing DNNs. To tain a popular architecture like. e.g..
GoogLeNet can easily take several days on a Graphics
Pragcessing Unit (GPU). To make things warse the train-
ing usually is an iterative process of trials and modifica-
tions in the DNN architecture. So. keeping training times
tolerably is a key requirement to actually apply DNNs in
research and industry.

In response to this challenge, hardware vendors
brought to market special hardware, e.g.. the DGX-1 sold
by NVIDIA ar the S822LC ("Minsky”) sold by IBM.
They try to integrate as much compute power in terms
of floating point operations per second (FLOP/s) as possi
ble in a single compute node. While this special hardware
comes also with a special price it is also not as flexible
to apply to other problems in computer science. On the
other hand, there already exists a plethora of compute sys-
tems in the world used for High Performance Computing

https://arxiv.org/abs/

1706.00095

~Z Fraunhofer

>

‘---.
U4

'---

Projects: Low Cost Deep Learning Setup:

Build on CaffeGPI

1

Price: <8000 EUR standard components

Workstation 1

Workstation 2

s s s EEs

Specs:

32 GB GPU Mem

64 GB PGAS Mem

2TB BeeGFS for Train Data
GPU interconnect: PCle

\{

~ Fraunhofer

Benchmarks: Single Node

! Specs:
3.5
4x K80 GPU (PCle Interconnect)
° Cuda 8
25 CuDNN 5.1
% 2 —a— Original Caff Topology: AlexNet
g 15 B e CaTeGP Batch Size (global) (1024)
1
0.5
0
1 2 4

GPUs

\

~ Fraunhofer

Training time in h

Build on CaffeGPI

Time till Convergence Scaling

350 10.00

300 6.84

250
3.80

200
== DGX-1 CaffeNV

150 = |TWM CaffeGPI

== DGX-1 CaffeNV
== | TWM CaffeGPI

Speedup

100 1

50

1.00
0 1.00

#GPUs #GPUs

Specs: Topology: GoogLeNet, Cuda 8, cuDNN 5.1, CaffeNV 16.4, Batch Size/Node: 64

\

~ Fraunhofer

Benchmarks

Distrubuted Scaling of CaffeGPI Specs:
100.00
1x K80 GPU (per node)
Cuda 8
CuDNN 5.1

Topology: GloogleNet
Batch Size: 64 per node

15.93

10.00

Speedup

1.00
1.00
1 2 4 8 16

#Nodes

\

~ Fraunhofer

fiir Bildung
und Forschung

New Project: Low Cost Deep Learning Cluster éﬁlaundesmm.-mm

GPU Cluster for Fraunhofer Consortium @ITWM

« Low cost Hardware
e Consumer GPUs
« Novel AMD architecture
e Hosting Cost per GPU ~ 1.25 k EUR. Compared to DGX-1 ~ 10k

@\
S/

‘am
« Fast Interconnect and Data I/O <’
« Parallel FS with local NVMe ReeGFS’
« Open Source Multi-User Management °A'
« Reservation system jupyter
« Scheduling N
e Custom Containers ®

Web Interface

\

~ Fraunhofer

Low Cost Deep Learning Setup
Currently building: Prototype 16-Node System

CC-HPC - Fraunhofer ITWM, Kaiserslautern o
~ Fraunhofer

% Bundesministerium
fiir Bildung

und Forschung

An open source software stack for multi-user GPU clusters

Carme (/'ka:rmi:/ KAR-mee; Greek: Kappun) is a Jupiter moon, also giving the name for a Cluster of
Jupiter moons (the carme group).

Or In our case;

an open source frame work to mange resources for multiple users running Jupyter notebooks on a
Cluster of compute nodes.

\

~ Fraunhofer

An open source software stack for multi-user GPU clusters

Common problems in GPU-Cluster oppration:

« Interactive, secure multi user environment
« ML and Data Science users want interactive GUl access to compute resources

« Resource Management
« How to assign (GPU) resources to competing users?
User management
Accounting
Job scheduling
Resource reservation

« Datal/O
« Get user data to compute nodes (1/0 Bottleneck)

« Maintenance _ _
« Meet (fast changing and diverse) software demands of users

\

~ Fraunhofer

Carme core idea:

An open source software stack for multi-user GPU clusters ’s

« Combine established open source ML and DS tools with HPC back-ends

Use containers

 (for now) Docker

Use Jupyter Notebooks as main web based GUI-Frontend

» All web front-end (OS independent, no installation on user side needed)
Use HPC job management and scheduler

« SLURM

Use HPC data I/O technology

 ITWM’s BeeGFS

Use HPC maintenance and monitoring tools

slurm

workload manager

Ju pyt.eli_r

<ji’
GFS’

\

~ Fraunhofer

Project Carme
An open source software stack for multi-user GPU clusters

» Userl

» User 2

Compute nodes

CC-HPC - Fraunhofer ITWM, Kaiserslautern

\

~ Fraunhofer

HP-DLF

Automatic data flow

(Import aus Caffe,

High Performance Deep Learning Framework mlfw
und Farschung
« Scalable
« Transparent Hardware -
° generic Topaode - Z Fraunhofer
- Auto-parallel i i WM
« Elastic DNN Graph

Automatic Hardware
selection

Portable

Monitoring

Simulation

New optimization methods

TensorFlow, ...)

Daten Modell

® UNIVERSITAT

o> < 0 0
-! - TECHNISCHE

§

([EE @

@ DRESDEN

!

2\ | UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT 1386

\{

~ Fraunhofer

Optimization for HP-DLF

Our asynchronous optimization algorithm

'@

e Sparse communication for multi model optimization
 Lower demands on the communication bandwidth

 Superior convergence

Asynchronous Parallel Stochastic Gradient Descent

A Numeric Core for Scalable Distributed Machine Learning Algorithms

Janis Keuper and Franz-Josef Pfreundt
Fraunhofer ITWM

Gompetence Center High Performance Computing
Kaiserslautern, German
{janis_keuper | franz-josef.pfreundt}@itwm.thg.de

ABSTRACT

1. INTRODUCTION

~Z Fraunhofer

A Look a the near Future

For HPC:

« New Hardware Accelerators
« New Interconnects
« New Architectures

From ML

« Models are still growing!

—

~ Fraunhofer

Automatic Design
Of Deep Neural Networks

Basically, a graph optimization problem :

« Select Node Types
« And their Meta-Parameters

« Connect Edges to define the data flow through
the graph

Optimization target: minimize test error
Problems:

« Huge and difficult search space
« Each iteration requires training of a DNN

~Z Fraunhofer

Automatic Design

Under review as a conference paper at ICLR 2017

Model Error rate | # params (x10°) e
Maxout [7] 9.38 — REINFORCEMENT LEARNING

Network in Network [19] 8.81 - R
VGG [27] ! 7.94 15.2

O
— Neural networks are powerful and flexible models that work well for many diffi-
- cult leaming tasks in image, speech and natral language understanding. Despite
c c t 1 0 6 6 1 1 ? o] their success, neural networks are still hard to design. In this paper, we use a re-
" " > current network to generate the model descriptions of neural networks and train
=] this RNN with reinforcement learning to maximize the expected accuracy of the
2 nn Q F;r 7z, generated architectures on a validation set. On the CIFAR-10 dataset, our method,
E ta 1 g B - . starting from scratch, can design a novel network architecture that rivals the best
= " a2l human-invented architecture in terms of test set accuracy. Our CIFAR-10 model
— achieves a test error rate of 3.84, which is only 0.1 percent worse and 1.2x faster
. ™ than the current state-of-the-art model. On the Penn Treebank dataset. our model
Neural Architecture Searc 30 3.84 32.0 Q can compase novel recurrent oel hat cutperforms the widely-used LSTM ecl,
- " : and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4
vl on the Penn Treebank. which is 3.6 perplexity better than the previous state-of-
CGP-CNN (ConvSet) 6.75 1.52 -
>
= 1 INTRODUCTION
l GP —CNN (R ESSE t) 5 98 1 68 .r; The kst few years have seen much success of deep neural networks in many challenging uppll-
= - — cations. such as speech recognition (Hinton et al| E'I! image mcagmuon
o and machine wranslation (Sutskever et al] [3005: mg
o . Along with this success is a paradigm m.f: from feature deugnmg to architecture
- deugnmg ie. from SIFT (Lowe. . and HOG ||_-mm [2005). to AlexNet m
O Erall [M01%). VGGNet {Simanyan & Zisserman, 3014). GoogleNet (Szegedy et all [J015).
—_— ResNet \L‘m 2U164). Although it has become easier. designing architectures stll nzqulresa
- o lot of expert knowledge and takes ample time
™ >
Evaluation on CIFAR-10: =

F

Better than “State of the Art” (hand designed = =
performance

Scale il by 115 update
the contmadr

o After ~12500 iterations

This paper presents Neural Architecture Search, a gradient-based method for finding good architec-
‘Our work is based on the observation that the structure and connectivity of a
neural network can be typically specified by a variable-length string. It is therefore possible to use

“Work done as a member of the Google Brain Residency program (. co/ brainrasidencyl)

\

Z Fraunhofer

DeTolL
Deep Topology Learning

-
2
c
-
2
=
Q
7]
@
1]

Genetic Algorithms
Reinforcement Learning
Early Stopping

Graph Embedding
Meta-Learning

Pruning

On application size problems

Data basis generartion

@ Bundesministerium
fiir Bildung
und Forschung

LUNIVERSITAT

¥ MANNHEIM

|
UNI
FRE:BURG

Leibniz-Rechenzentrum
der Bayerischen Akademie der Wissenschaften

1]
PSIORI

Pr(E|H,) x Pr(H,)

\

~ Fraunhofer

Discussion

THIS 15 YOUR MACHINE LEARNING SYSTETT?

YUP! YOU POUR THE DATA INTD THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLIEERS ON THE OTHER SIDE.

MFTHEMER&HRELM.G?J

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

\

~ Fraunhofer

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

