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Overview

I Cell attraction and repulsion: some biological background.

I The nonlocal PDE model and its application.

I Analytical results.

I Derivation from a position-jump model.

I The need for efficient numerics.
I Approximation in a periodic setting.
I Generalizations and extensions

I Summary and outlook.
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Cell contact and response

I Cells can communicate via direct contacts, e.g.
membrane-membrane molecular binding.

I Contacts also occur at long distances, up to 50 cell
diameters, via cell protrusions. →

I Reality is full of detail: cells are complex, morphing
objects with a lot of structure and chemistry.

I Direct contact can lead to many responses, such
as movement.

Cells explore their
surrounding in search of
contact sites.

Filopodia (green) of
endothelial cell ↓

[Gerhardt et al., J. Cell Biol. (161), ’03]
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diameters, via cell protrusions. →

I Reality is full of detail: cells are complex, morphing
objects with a lot of structure and chemistry.

I Direct contact can lead to many responses, such
as movement.

Focus here: Direct contacts between cells

as, e.g., in cell-cell adhesion or contact inhibition.

Not considered: Indirect contacts between cells

as, e.g., mediated by diffusible chemical signalling (chemotaxis).
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Cell contact and response

Instructing others to move is fundamental for many animal/cellular populations.

Commands
I are transmitted by contact over variable

distances (short or long range),

I effect cells of the same (homotypic) or
different (heterotypic) type,

I give rise to an attractive or repelling
response.

These mechanisms can have a significant impact on the organisation of a tissue.
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Example 1: Cell adhesion
Molecular aspects and applications

[Gama&Schmitt, Veterinary Medicine International, ’12]

Adhesion [latin adhaesio] of cells in the
body determined by expression and reg-
ulation of cell adhesion molecules

I Cadherines (cell-cell adhesion)
I Integrines (cell-matrix adhesion)
I ...a few others.

Adhesion important for tissue integrity and cell migration!

Selected applications:
I Embryonic development: cells adhere selectively to each other and sort out to

form tissue and organs.
I Cancer invasion: modified adhesive properties of cancer cells are implicated

as an important factor.
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Example 1: Cell adhesion
Cell sorting

[Foty & Steinberg, Dev. Biol. (278), ’05]

2 cell types, differing in number of cadherin
molecules on their cell surface only.

Cell type with larger number sorts to the core
of the cell pellet.

Differential Adhesion Hypothesis (Steinberg)

A mixture of two cell types sorts always to the
same final configuration, independent of its ini-
tial distribution. This final configuration depends
solely on the adhesive properties (self- and cross-
adhesion parameters) of the cell types.

Randomly Mixed
Populations Configuration

Final Fragment fusionSpreadingCoalescence

Randomly Mixed
Populations

B

A < C

A < B B < C

(b) Hierarchial relationship (c) Various final configurations

(a) Two populations always approach the same final configuration

Complete sorting

Partial engulfment

Engulfment

Mixing

A

A

B C

C

Figure 1: Sketches showing the behaviour of two adhesive cell populations, as predicted by the DAH.
(a) The same populations always approach the same final configuration, regardless of initial distri-
bution. Starting from left, populations of mixed and dissociated cells coalesce before evolving to a
final configuration (shown here as “engulfment”). Starting from right, the same two populations,
when placed together as fragments, spread over one another before reaching the same pattern. (b)
Hierarchical relationships in adhesive populations. (c) Two populations, A and B evolve into various
final configurations according to their self-adhesion SAA, SBB (between A and A, between B and B)
and cross-adhesion CAB (between A and B) strengths. For two populations, the observed patterns
are mixing (in which the populations are uniformly distributed – requires dominant cross adhesion
CAB > SAA+SBB

2 ), engulfment (in which the more cohesive population is engulfed by the less cohesive
population – requires Sv < C < Su (or SAA < CAB < SBB)), partial engulfment (for which the cross
adhesion strength is less than both the self adhesion strengths – CAB < SAA and CAB < SBBv) and
complete sorting (for which CAB = 0 and the two populations form separate aggregations). Figures
adapted from Foty and Steinberg (2004).

and Heath 1976).

1.1 Cell adhesion during pattern formation and development

In a series of classical experiments, Townes and Holtfreter (1955) demonstrated the intrinsic capacity for
certain embryonic cell populations, when dissociated and randomly mixed, to spontaneously reorganise
into their original embryonic relationship, a process attributed at the time to “tissue-affinity”. The
underlying mechanisms governing this “cell-sorting” have been the subject to a significant degree of
speculation and experimentation over the years, with the Differential Adhesion Hypothesis (DAH) of
Steinberg (see the reviews of Foty and Steinberg 2004; Steinberg 2007) to the fore of theories. The
series of experiments by Steinberg in the 1960s (Steinberg 1962a,b,c) demonstrated that embryonic
cell types obey strict rules: whatever the initial distribution for two separate populations was, the
cells always rearranged into the same configuration, Figure 1 (a). Furthermore, populations formed
hierarchical relationships: if cells of type B are engulfed by cells of type A and cells of type C are

3

[G. & Painter, ’10]
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Example 1: Cell adhesion
Cancer invasion

I Invasion is the process of extension of the cancer into surrounding tissue.
I It is part of the metastatic cascade, giving cancer its deadly characteristic.
I Modulation of adhesive properties of cancer cells is one of the hallmarks of

cancer [Hanahan & Weinberg, ’00 & ’11]

ductal carcinoma in
situ, intermediate grade,
[www.breastpathology.info]

lung squamous cell carcinoma,
types (a) to (c) of tumour infiltrative pattern,
[Masuda et al., ’12]
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Example 2: Contact repulsion
Contact inhibition in neural crest cell migration

Certain cells “repel” each other on contact, a process known as “contact inhibition
of locomotion” [Abercrombie & Heaysman, Exp Cell Res, 5, ’50], [Abercrombie, Nature, 281, ’79].

Contact inhibition of locomotion controls
neural crest cell directional migration

[Carmona-Fontaine et al., Nature, 456, ’08]
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Example 3: Mixed interaction
Zebrafish pigmentation pattern

Certain heterogeneous populations: attracting and repelling interactions observed.

“run-and-chase” behaviour (xanthophores chase melanophores)

[Yamanaka & Kondo, PNAS, ’14]
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Modelling of attraction and repulsion
Focus on cell adhesion

Two general classes of models
I individual cell based (discrete) models
 dynamics of individual cells,

I continuous models
 dynamics of population level behaviour.
I Cells represented through their density at the tissue level.

I Cellular scale events captured in model parametrisation.
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Modelling of attraction and repulsion
Focus on cell adhesion

Examples of continuous modelling approaches
I Cell-matrix adhesion:

I haptotactic migration, modelled by advective type flux term (cf. chemotaxis).

I Cell-cell adhesion: Is problematic!
I Some aspects of adhesion captured by density-dependent cell motility

coefficients.

I Direct incorporation of surface tension (e.g. Byrne, Chaplain, Lowengrub,
Cristini,...)
 Cahn-Hilliard type PDE models arising from expansion of nonlocal terms.

I Nonlocal PDE model: [Armstrong, Painter & Sherratt, J Theor Biol, 243, ’06].
Had and has a substantial influence on the subject with ≈140 citations to date!
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The Armstrong-Painter-Sherratt model
Underlying idea

In a fluid (extracellular space) with dynamic viscosity η ...

Using images from: www.cameolight.com/produkte/fluide/ | www.stockfreeimages.com/8823208/Color-sphere-collection.html |
commons.wikimedia.org/wiki/File:Zebrafish.png | www.smtnet.com/media/images/md_Chain.jpg
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The Armstrong-Painter-Sherratt model
Underlying idea
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... is a spherical object (cell) with radius R̂ ...
... being dragged along with velocity v .

What is the
(drag) force F
on the sphere?
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Given by Stokes’s law: F = 6πηR̂v or v = 1
6πηR̂

F
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Given by Stokes’s law: F = 6πηR̂v or v = 1
6πηR̂

F

Assume cells with density u(t , x) move with velocity v (t , x) due to adhesion.

 flux of cells u(t , x)v (t , x) = u(t , x)
1

6πηR̂
F (t , x) ,

where F (t , x) is now the net force (due to adhesion) acting on a cell at (t , x).
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6πηR̂

F

Assume cells with density u(t , x) move with velocity v (t , x) due to adhesion.

 flux of cells u(t , x)v (t , x) = u(t , x)
1

6πηR̂
F (t , x) ,

where F (t , x) is now the net force (due to adhesion) acting on a cell at (t , x).

Slight difficulty:

Stokes’s law is for a single cell, not for interacting cell populations.

... but let’s go ahead!
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The Armstrong-Painter-Sherratt model
Net force due to adhesion

The net force F in (t , x) is the sum of “local” forces: F (t , x) :=
∫ R

−R
f (t , x , r ) dr

sensing region︷ ︸︸ ︷
local force in x + r :
f (t , x , r ) = sign(r ) g(u(t , x + r ))Ω(|r |)

︸ ︷︷ ︸
rx − R x x + r x + R

sign(r ) = r
|r | force direction between the cell at x and those at x + r .

g(u) force magnitude between the cell at x and those at x + r :

One cell type: g(u) = Cu or g(u) = Cu(1− u)+;
Two cell types: g1(u1, u2) = (C11u1 + C12u2)(1− u1 − u2)+.

Ω(|r |) ≥ 0 radial dependency: e.g. constant or decaying on [0, R].
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The Armstrong-Painter-Sherratt model
The nonlocal PDE model

Results in nonlocal adhesion velocity Ai{u(t , ·)}(x) for cell type i

Ai{u(t , ·)}(x) :=
1
ΦR

∫
S

r
|r |

gi (u(t , x + r ))Ω(|r |) dr ,

where S now denotes the sensing region relative to but independent of x .

Conservation of mass framework leads to nonlocal PDE model

∂tui =−∇ ·
(
−Di∇ui + uiAi{u(t , ·)}

)
where
I −Di∇ui is a Fickian diffusive flux and
I +uiAi{u(t , ·)} is the flux due to adhesion.

The system is complemented with initial and (periodic) boundary conditions.
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Application: Cell sorting
[G. & Painter, ’10]

I Two cell populations with densities uA(t , x) and uB(t , x) for x ∈ (0, 10)2.
I Model equations

∂tuA = −∇ ·
(
−D∇uA + uAAA{u(t , ·)}

)
∂tuB = −∇ ·

(
−D∇uB + uBAB{u(t , ·)}

)
where S is the unit circle, D = R = Φ = 1, Ω ≡ 1, and

gA(u) = (CAAuA + CABuB)(1− uA − uB)+

gB(u) = (CBAuA + CBBuB)(1− uA − uB)+

with self-adhesion coefficents CAA and CBB

and cross-adhesion coefficents CAB = CBA.
I Equations complemented with initial and periodic boundary conditions.
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Application: Cell sorting
[G. & Painter, ’10]
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[G. & Painter, ’10]
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Application: cancer invasion
[Domschke et al., J Theor Biol, 361, ’14], also [G. & Chaplain, J Theor Biol, 250, ’08]

Model with three time- and space-dependent variables:
I the cancer cell density, c : IT ×D → R ,
I the extracellular matrix (ECM) density, v : IT ×D → R , and
I the matrix-degrading enzyme (MDE) concentration, m : IT ×D → R.

∂c
∂t

= −∇ ·
[
−D1∇c + cA{t , u(t , ·)}

]
+ µ1,1c(1− u − v )) ,

∂v
∂t

= −γmv + µ2(1− u − v ))+ ,

∂m
∂t

= −∇ · [−D3∇m] + α1c − λm ,

where u := (c, v ) and function g of the nonlocal term A specified by:

g(t , u) = [Scc(t)c + Scv (t)v ] · (1− u − v )+ .

Complemented with initial and zero-flux boundary conditions.
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Application: cancer invasion
[Domschke et al., J Theor Biol, 361, ’14], also [G. & Chaplain, J Theor Biol, 250, ’08]

I Heterogeneous initial ECM density; ECM remodelling at rate µ2 = 0.05.

I Cell-matrix adhesion coefficient increases from 0.25 to 0.5 at t = 10

I Cell-cell adhesion coefficient decreases from 0.5 to 0.25 at t = 40.

I Plots of cell density (top row) and ECM density (bottom row) at various times t .
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Application: zebrafish pigmentation patterning
[Painter et al., Bull Math Biol, 77, ’15]

I Stripe/interstripe pattern with thin separating strip without pigment cells:
I black melanophores (u) and some light reflecting iridophores;
I yellowish xanthophores (v ) and light reflecting iridophores.

I Turing-type, morphogen-based models in the ’90, but...
...no chemical morphogenes were found!

I Here: minimal set of
pattern-generating interactions,
cf. [Yamanaka & Kondo, PNAS, ’14].

I “Run and Chase” proposed to
explain pigmentation in zebrafish
and related species:

u is repelled by v , i.e. Cuv < 0, v is attracted by u, i.e. Cvu > 0.
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Application: zebrafish pigmentation patterning
[Painter et al., Bull Math Biol, 77, ’15]

(b,c) no homotypic interaction no pattern; (d) Cuu > 0 mixed aggregates;
(e) Cvv > 0 realistic pattern; (f) Cuu , Cvv > 0 no robust pattern.

More likely: include the impact of iridophore cells to explain patterning.
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The Armstrong-Painter-Sherratt model
Analytical results

I Existence and boundedness of solution
I [Sherratt et al., ’09] boundedness in 1D requires additional assumptions on g and Ω.
I [Chaplain et al., ’11] local and global existence for nonlocal cancer-ECM adhesion

model.
I [Hillen et al., ’17] local and global existence and boundedness for

Armstrong-Painter-Sherratt and cancer invasion model.

I One cell population: aggregation takes place for C > 0 sufficiently large.

I For sensing radius R → 0: nonlocal model reduces to [G., Chaplain, ’08]

I standard taxis model for linear g,
I volume-filling taxis [Hillen, Painter, ’01] model for logistic (volume filling) g.
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Derivation of the nonlocal PDE model from a
position-jump model

In [Gerisch & Painter, ’10] we state:

A highly desirable objective is to develop continuous models for cellular adhesion
as the appropriate limit from an underlying individual model for cell movement [...].

We propose to fill this gap via a position-jump model (spatial stochastic random
walk).
[Buttenschön et al, J Math Biol, 76, ’18]

Goals:
I a better understanding of underlying modelling assumptions and
I a framework to modify the continuous model as needed.
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A position-jump model

Master equation for a position jump process [Othmer, Dunbar, Alt, ’88]:

∂tu(t , x) = λ
∫
D

T (x , y )u(t , y )− T (y , x)u(t , x) dµ(y )

where
I (D,µ) measure space representing physical space (domain or grid),
I λ jump rate,
I T (x , y ) probability density function for jump from y to x .
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A position-jump model

∂tu(t , x) = λ
∫
D

T (x , y )u(t , y )− T (y , x)u(t , x) dµ(y )

Define:
I Heading z := x − y , such that Ty (z) := T (y + z, y ) = T (x , y ),
I symmetric set Dy , the set of possible headings from y .

Lemma (Even and Odd Decomposition)

There is a decomposition

Ty (z) = Sy (z) + Ay (z) · z
|z|

,

where Sy (z) = Sy (−z) and Ay (z) = Ay (−z) are symmetric.
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A position-jump model

Ty (z) = Sy (z) + Ay (z) · z
|z|

,

I Sy (z) will become the motility and lead to the diffusion term.
I Ay (z) will define the cell polarization and lead to the adhesion integral term.
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A position-jump model

I Consider myopic random walk, that is Sy (z) = Sy and Ay (z) = Ay .

I Substitute Ty (z) into the master equation and rearrange.

I Consider small jumps of length h in any direction in Sn−1.

I Use Taylor expansion in h.

Then

∂tu = λhn−1
[

h2|Sn−1|
2n

∆ (Sx u(t , x))− h|Sn−1|
n

∇ · (Ax u(t , x))
]

+ h.o.t .

ZIH Kolloquium, Technische Universität Dresden (Germany) | 25 October 2018 | FB Mathematik, TU Darmstadt | A. Gerisch | 25



A position-jump model
Advection-diffusion limit

Assume Ax = O(h) and consider the parabolic scaling, i.e. 1/λ ∼ hn+1.
Then the following limits exist:

lim
h→0,λ→∞

λhn|Sn−1|
n

Ax = α(x) and lim
h→0,λ→∞

λhn+1|Sn−1|
n

Sx = D(x)

...leading to the following limit equation

∂tu(t , x) +∇ · (α(x)u(t , x)) = ∆ (D(x)u(t , x))

Note: spatial diffusion parameter appears inside Laplacian (expected for
transition rates based on local information, cf. [Stevens & Othmer, ’97]).

We assume
I Sx is constant, i.e. D is constant.
I Ax is given by the net adhesive force acting on the cell that is located at x .
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A position-jump model
Microscopic biological assumptions

on

Vh: small test volume inside sensing region of cell at x .
I The distance from Vh to the cell body is r .
I Direction of generated force is r/|r |.
I The free space in Vh is f (x + r ).
I The part of the cell protrusion that is inside Vh is

independent of x and called Ω(r ).
I The density of adhesion bonds formed with

background population in Vh is called Nb(x + r ).
I The adhesive strength per bond is γ.

 adhesive force generated in Vh

Fh(x + r ) =
r
|r |

γ hnNb(x + r )︸ ︷︷ ︸
#of adhesion bonds

f (x + r )︸ ︷︷ ︸
free space

hΩ(r )︸ ︷︷ ︸
amt. of cell in Vh .
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A position-jump model
Net adhesive force

Summing Fh(x + r ) over all test volumina in the sensing region S

 net adhesive force Fnet(x) = O(h)

and we let Ax := Fnet(x).

Now, letting h→ 0 and λ→∞ yields

α(x) =
∫
S
γ Nb(x + r ) f (x + r )︸ ︷︷ ︸

=g(u(t ,x+r ))

r
|r |

Ω(r ) dr .

Next task: define specific Nb, f , and Ω for particular models.
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A position-jump model
The linear Armstrong-Painter-Sherratt model

1. One dimensional domain with sensing region S = [−R, R].
2. Assume law of mass action kinetics for the adhesion bonds, i.e.

Nb(x) ∼ u(x)

3. Assume there is always free space, i.e. f ≡ 1.
4. Let Ω(r ) be the uniform distribution on S, i.e. Ω(r ) = 1

2R .

∂tu = Duxx −

(
u
∫ R

−R
γu(t , x + r )

r
|r |

1
2R

dr

)
x
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A position-jump model
Adhesion with volume filling

1. Assume law of mass action kinetics for the adhesion bonds, i.e.

Nb(x) ∼ u(x)

2. Assume space is limited f (u(t , x)) = (1− u(t , x))+.
3. Let Ω(r ) be the uniform distribution on S.

∂tu = D∆u −∇ ·
(

u
∫
S
γu(t , x + r )(1− u(t , x + r ))+ r

|r |
Ω(r ) dr

)

Objective from spatial constraint:
Areas of high cell density in x + S contribute less to the adhesive force in x .
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A position-jump model
Non-local background population

1. Assume cells in the background have spatial distribution of adhesion bonds
η(r ) around their cell center:

Nb(x) ∼
∫
S

u(t , x + r )η(r ) dr .

2. Assume there is always free space, i.e. f ≡ 1.

∂tu = D∆u −∇ ·
(

u
∫
S
γ

∫
S

u(t , x + y + r )η(y ) dy
r
|r |

Ω(r ) dr
)
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Numerical technique
The need for efficient numerics

∂tui (t , x) = −∇ ·
(
ui (t , x)Ai{u(t , ·)}(x)

)
+ ...

I Spatial discretisation (FV, FD, FE) [we use 2nd order finite volumes]:
Ai{u(t , ·)}(x) must be evaluated for given approximations of u(t , ·)
in many points x, related to the spatial grid, of spatial domain D.

I Time integration [we use linearly implicit Runge-Kutta method ROWMAP]:
The spatial discretisation must be evaluated
repeatedly over time for changing u(t , ·).

The evaluation of the nonlocal term quickly becomes
the computational bottleneck of any numerical scheme.
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Numerical technique
Nonlocal term approximation — periodic setting

A{u(t , ·)}(x) :=
1
ΦR

∫
S

r
|r |

g(u(t , x + r ))Ω(|r |) dr ,

I Uniform N1 × N2 × · · · × Nd grid on spatial domain D.
I Grid cells Di of size h1 × h2 × · · · × hd indexed with i ∈ N (multi-index set).
I Assume u is given as centre value or volume average ui for each Di .
I Define gi := g(ui ) for all i ∈ N and extend periodically beyond N .
I Approximate g(u(t , x)) by piecewise constant reconstruction from

g(u(t , x)) ≈ g̃(x) :=
∑
i∈N

giχi (x)

The replacement of g(u(t , ·)) by g̃ is the only approximation in the scheme.
From now on everything will be essentially exact.

ZIH Kolloquium, Technische Universität Dresden (Germany) | 25 October 2018 | FB Mathematik, TU Darmstadt | A. Gerisch | 33



Numerical technique
Nonlocal term approximation — periodic setting

Nonlocal term after approximation for x∗ ∈ D

v (x∗) :=
1
ΦR

∫
S

r
|r |

g̃(x∗ + r )Ω(|r |) dr =
∑
i∈N

gi
1
ΦR

∫
S

r
|r |
χi (x∗ + r )Ω(|r |) dr︸ ︷︷ ︸

:=w∗
i (integration weight)

.

All points x∗m := x∗ + (mjhj )d
j=1 with m ∈ Zd share the same integration weights!

v (x∗m) =
∑
i∈N

gi+mw∗i .

Integration weights w∗i
I depend only on known quantities,
I can be precomputed with your favourite method to arbitrary accuracy, and
I can be applied to evaluate the nonlocal term for arbitrary g̃ and all x∗m.
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Numerical technique
Nonlocal term approximation — periodic setting

v (x∗m) =
∑
i∈N

gi+mw∗i .

Do we need all w∗i ? — If {x∗ + S} ∩ Di = ∅ then w∗i = 0.

Let Ñ ⊂ Zd be an interval such that for all i ∈ N \ {i∗ + Ñ } holds w∗i = 0.

I Apply integration rule by executing the sum. Can become expensive!
I Combined evaluation at same location within each grid cell Dn, ∀n ∈ N :

vn := v (x∗n−i∗ ) =
∑
i∈Ñ

gi+nwi , wi := w∗i+i∗ .

This provides a linear map from G := (gn)n∈N to V := (vn)n∈N .
Structure of corresponding matrix W :
d = 1: (banded) circulant matrix W of weights;
d = 2: (banded) block-circulant matrix with (banded) circulant blocks; ...

ZIH Kolloquium, Technische Universität Dresden (Germany) | 25 October 2018 | FB Mathematik, TU Darmstadt | A. Gerisch | 35



Numerical technique
Nonlocal term approximation — periodic setting

v (x∗m) =
∑
i∈N

gi+mw∗i .

Do we need all w∗i ? — If {x∗ + S} ∩ Di = ∅ then w∗i = 0.
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Numerical technique
Nonlocal term approximation — periodic setting

Evaluation of the matrix-vector product V = WG (case d = 1).

I Circulant matrix W defined by its first column, denoted w .
I Any circulant W is diagonalized by the Fourier transform matrix F and

WF = F diag(Fw) .

I Thus
V = WG = F diag(Fw)F∗G = FFT(FFT(w). ∗ iFFT(G)) ,

where FFT denotes the Fast Fourier Transform algorithm and iFFT its inverse;
.∗ is element-wise multiplication.

I This cuts the operaton count down from O(N2
1 ) to O(N1 log(N1)) operations.

General d : replace FFT by its d-dimensional counterpart FFTd .
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Numerical technique
Nonlocal term approximation — extensions

I From periodic to non-periodic boundary conditions:
I Need to specify values of g(u) outside of D for definition of the integral.

I Banded circulant matrices replaced by banded Toeplitz matrices.

I Toeplitz-to-circulant embedding saves efficient FFT-based algorithm.

I From uniform to non-uniform grids:
I The integration weights independent of evaluation position property breaks down

and so the combined evaluation via FFT.

I Combined evaluation via fixed uniform intermediate grid works (it’s not perfect).
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Numerical technique
Nonlocal term approximation — Accuracy

I D ⊂ R
I g̃(x) = sin(8πx)

I S = B(0, 0.1)

I Ω ≡ 1

 nonlocal term in analytical form

error for decreasing grid width→

Nonlocal term evaluation converges with order two for grid width to zero.
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Numerical technique
Nonlocal term approximation — Efficiency

d = 2-dimensional square domain D with N × N grid, periodic BCs.

Tests for increasing
sensing region S.

FFT2 vs. summation:
reduction of operations (h = 1

N )
∼ N4 → ∼ N2log(N).

Matrix-vector product:
speed-up: 10− 100
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Summary

I Cell attraction and repulsion are important basic mechanisms in biology.

I A flexible nonlocal continuous model is available and successfully applied in
models in developmental and cancer biology.

I These models can be efficiently simulated by making use of the FFT;
spatially highly resolved long time simulations are feasible.

I The requirements of periodic boundary conditions and uniform spatial grids
can be relaxed while maintaining favourable algorithmic properties.

I The nonlocal continuous model can be derived from a stochastic random walk.
This allows for better insight into the parametrisation of the continuous model.
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Ongoing work and outlook

I Cross-diffusion, instead of Fickian diffusion, in models with multiple cell types
can significantly sharpen interfaces.

I Modelling neural crest cell invasion requires nonlocal term on growing
domains. Efficient numerics?

I More tests and experience for non-uniform grids.

Many thanks to collaborators:
M. Chaplain (St. Andrews), K. Painter (HW), Th. Hillen (Alberta),

A. Buttenschön (UBC), D. Trucu (Dundee), P. Domschke (Darmstadt), ...

Thank you very much for your attention!
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