
THE MODULAR SUPERCOMPUTING ARCHITECTURE

ZIH Colloquium I Estela Suarez (JSC)

Hardware composability for application diversity

OUTLINE
• Evolution of HPC architectures

- Global historical evolution
- Dual architecture at JSC
- Cluster-Booster
- Modular Supercomputing Architecture

• Software
- Software stack
- Network bridging
- Programming environment
- Scheduling and resource management

• Application experience
• Conclusions and Next steps

Suarez – 2019 4

Historical evolution in HPC Architectures
• 1940 – 1950: first computers are Supercomputers

– Specialized, very expensive

• 1960 – 1980: general purpose computers appear
– Still special machines needed to solve very complex problems
 Supercomputing (High Performance Computing - HPC)

• Focus: floating point operations (linear Algebra)
• Special purpose technologies (fast vector processors,

parallel architectures)
• Only few machines produced

• 1990 – 2000: integrate standard processors
– Many „computers“ connected through fast network

• Distributed memory  MPI
– Both in proprietary Massively Parallel (MPP) and Cluster Computing

• 2010 - today: heterogeneous cluster systems
– Use accelerator technologies (GPU, many-core)

Turing Bomb
(Source:

theregister.co.uk)

Cray-1
(Source: Wikipedia)

JURECA
(Source: FZJ)

Suarez – 2019 5

JSC DUAL APPROACH
5

E.Suarez - DEEP evolution - MSA Seminar Series

Suarez – 2019 6

Cluster vs. MPP

• General purpose systems
+ Highly flexible
– Relatively large energy consumption
+ Preferred by many applications

o Some code parts that could profit from massively parallel system

• Highly scalable systems (MPP)
+ Highly energy efficient
– Few (highly parallelizable) codes can fully exploit them

Example-systems at JSC

JURECA Cluster
Intel Haswell
~ 2,2 PFlop/s

JUQUEEN
IBM Blue Gene/Q
5.9 PFlop/s

Can one combine the best of these
two worlds into a single system?

So
ur

ce
 p

ic
tu

re
s:

 F
ZJ

Suarez – 2019 7

HOMOGENOUS CLUSTER
General purpose CPUs attached to a high-speed network

+: Easy to use
+: Very flexible

–: Power hungry

CN: Cluster Node (general purpose processor)

Suarez – 2019 8

Traditional HETEROGENEOUS CLUSTER
Attach accelerators (e.g. GPUs) to each CPU

CN: Cluster Node (general purpose processor)
GPU: Graphics Processing Unit (or any other accelerator)

+: Energy efficient
+: Easy management

–: Static assignment
of accelerators to
CPUs

–: Expensive scale-up

Suarez – 2019 9

CLUSTER-BOOSTER concept
System-level heterogeneity

CN: Cluster Node (general purpose processor)
BN: Booster Node (autonomous accelerator)

+: Energy efficient
+: Better scalability
+: High flexibility
+: Dynamic resource

assignment

N. Eicker, Th. Lippert, Th. Moschny, and E. Suarez, "The DEEP Project - An alternative approach to heterogeneous cluster-computing in the
many-core era", Concurrency and computation: Practice and Experience, Vol. 28, p. 2394–-2411 (2016), doi = 10.1002/cpe.3562.

Application 1

Application 2

Application 3

Suarez – 2019 10

THE DEEP PROJECTS

• DEEP (2011 – 2015)
- Introduced the

Cluster-Booster architecture

• DEEP-ER (2013 – 2017)
- Added I/O and resiliency functionalities

• DEEP-EST (2017 – 2021)
- Extends the concept to a

Modular Supercomputer Architecture

27 partners (>80 people)
EU funding: 30 M€
Budget: 45 M€

Suarez – 2019 11

THE DEEP PROTOTYPE

Cluster Booster

Node count 128 384

Processor Intel Xeon
(Sandy Bridge)

Xeon Phi
(KNC)

Cores / node 8 (×2 socket) 61

Threads /node 32 244

Frequency 2,7 GHz 1,2 GHz

Memory (GB) 32 – RAM 16 RAM

Interconnect InfiniBand
(QDR)

EXTOLL
(FPGA)

BW 32 Gbit/s 20 Gbit/s

Peak Perf. 45 TFlops/s 500 TFlop/s

Booster

Cluster

Decommissioned in Summer 2018

Suarez – 2019 12

CLUSTER-BOOSTER in Production

Cluster Booster

Processor Intel Xeon (Haswell) Xeon Phi (KNL)

Interconnect InfiniBand EDR OmniPath

Node count 1,872 1,640

Peak Perf. (PFlops) 1,8 (CPU) + 0.4 (GPU) 5

Suarez – 2019 13

2010 - 2018

Architecture Evolution

JUQUEEN

JUROPA

JURECA

JUWELS

Suarez – 2019 14

• E. Suarez*, N. Eicker, Th. Lippert, "Modular Supercomputing
Architecture: from idea to production", Chapter 9 in
Contemporary High Performance Computing: from Petascale
toward Exascale, Volume 3, pp 223-251, CRC Press. (2019)

• E. Suarez*, N. Eicker, and Th. Lippert, "Supercomputer
Evolution at JSC", Proceedings of the 2018 NIC Symposium,
Vol.49, p.1-12, (2018) [online: http://juser.fz-
juelich.de/record/844072].

MODULAR SUPERCOMPUTING

Module 2
Booster

BN

BN

BN

BN

BN BN

BN

BN

BN

Module 1
Cluster

CN

CN

CN

CN

Module 6
Multi-tier Storage

System

Storage
system

Storage
system

Module 3
Data Analytics

Module

AN AN AN

Module 5
Quantum
Module

QN QN
Module 4

Neuromorphic
Module

NN NN

Composability of
heterogeneous
resources

• Cost-efficient scaling
• Effective resource-sharing

Suarez – 2019 15

MODULAR SUPERCOMPUTING

• Cost-efficient scaling
• Effective resource-sharing
• Fit application diversity

- Large-scale simulations
- Data analytics
- Machine- and Deep Learning
- Artificial Intelligence

Module 2
Booster

BN

BN

BN

BN

BN BN

BN

BN

BN

Module 1
Cluster

CN

CN

CN

CN

Module 6
Multi-tier Storage

System

Storage
system

Storage
system

Module 3
Data Analytics

Module

AN AN AN

Module 5
Quantum
Module

QN QN
Module 4

Neuromorphic
Module

NN NN

High-scale
Simulation
workflow

Data Analytics
workflow

Deep
Learning
workflow

Composability of
heterogeneous
resources

Suarez – 2019 16

6

DEEP-EST prototype

Prototype co-designed with
Software and Applications

So
ur

ce
: F

ZJ

Early-Access program
in 2020!

OUTLINE
• Evolution of HPC architectures

- Global historical evolution
- Dual architecture at JSC
- Cluster-Booster
- Modular Supercomputing Architecture

• Software
- Software stack
- Network bridging
- Programming environment
- Scheduling and resource management

• Application experience
• Conclusions and Next steps

Suarez – 2019 19

SOFTWARE ENVIRONMENT
• Low-level SW: Inter-network bridging
• Scheduler: Torque/Maui  SLURM
• Filesystem: BeeGFS
• Compilers: Intel, gcc, PGI
• Debuggers: Intel Inspector, TotalView
• Programming: ParaStation MPI (mpich), OpenMP, OmpSs
• Performance analysis tools: Scalasca, Extrae/Paraver,

Intel Advisor, VTune…
• Benchmarking tools: JUBE
• Libraries: SIONlib, SCR, HDF5…

Suarez – 2019 20

NETWORK BRIDGING
• Classical Gateway approach

- Just one additional hop

• Forwarder daemons translate between
module-networks

E.Suarez - DEEP evolution - MSA Seminar Series

Application

psmpi

pscom
Gateway
Plugin .

Cluster Module

InfiniBand

Application

psmpi

pscom
Gateway
Plugin .

Application

psmpi

pscom
Gateway
Plugin .

Booster Module

Extoll

Application

psmpi

pscom
Gateway
Plugin .

pscom

Plugin Plugin

Forwarder
Daemon

OpenIB Velo /
RMA2

OpenIB OpenIB

InfiniBand
Plugin

Velo / RMA2Velo / RMA2

Extoll
Plugin

GW

InfiniBand
Plugin

Extoll
Plugin

• Eicker et al., Bridging the DEEP Gap - Implementation of an Efficient Forwarding Protocol,
Intel European Exascale Labs - Report 2013 34-41, (2014)

InfiniBand/Extoll
Gateway

Suarez – 2019 21

PROGRAMMING ENVIRONMENT

• Clauss et al., Dynamic Process Management with Allocation-internal Co-Scheduling
towards Interactive Supercomputing, COSH@HiPEAC, (2016)

• ParaStation Global MPI
– Enables distributing code
– Uses MPI_Comm_spawn()

 Collective spawn groups of processes
from Cluster to Booster (or vice-versa)

– Inter-communicator
 Connects the 2 MPI_Comm_worlds

• One application can run:
– Using only Cluster nodes
– Using only Booster nodes
– Distributed over Cluster and Booster

 In this case two executables are created
 Collective offload process

- One can also start two parts of a code and connect
them via MPI_Connect()
- Or have one single common MPI_Comm_World() and
split it into subcommunicators via MPI_Comm_Split()

Suarez – 2019 22

COMPILE AND RUN
• Compilation

- Creates two executables
o One for __CLUSTER__ code
o One for __BOOSTER__ code

• Batch system
- Reserves required resources

• Execution
- Script starts Booster code
- This code calls MPI_Comm_spawn()

with name of Cluster executable

• Runtime + Scheduler + FS
- Detect ParaStation MPI calls
- Distribute child binaries

salloc --partition=cluster -N 4
: --partition=booster -N 12

srun --pack-group=0 -N 4 -n 8
./hi_booster

Suarez – 2019 23

RESOURCE MANAGEMENT

App1
part 1

App1.2

App
1.3CPU

Accel. n

GPU App 2.1

Accel. 2

App
3.1

App 3.2

App 2.2
App 4.1

App
4.2

resource

time

App 5.1

App
5.2

App1
part 1

App1.2

App
1.3CPU

Accel. n

GPU
Accel. 2

App
3.1

App 3.2

App 4.1
App
4.2

resource

time

App 5.1

App
5.2

App 2.1

App 2.2

Current
behaviour

Ideal
behaviour

Resource
reservation window

Application
execution
parts

Application execution part

=
Resource reservation window

Suarez – 2019 24

IMPROVED WORKFLOW SUPPORT
• Simple workflows realizable using dependent jobs

- Costly data buffering to secondary memory

• Goal: Overlapping job execution
- Currently not supported by Slurm
o Whole job pack either accepted or rejected
o All jobs allocated and run in parallel
o All jobs wait for allocation if any of the jobs can not be

allocated at the moment

• New parameter --delay introduced in sbatch
command for job packs
- Amount of time, the next job should wait after start of the

first job in a job pack

Time

Job 1

Job 2

Job 3

Typical Workflow supported
by Slurm

Time

Job 1

Job 2

Job 3

Workflow we are trying to
achieve

OUTLINE
• Evolution of HPC architectures

- Global historical evolution
- Dual architecture at JSC
- Cluster-Booster
- Modular Supercomputing Architecture

• Software
- Software stack
- Network bridging
- Programming environment
- Scheduling and resource management

• Application experience
• Conclusions and Next steps

Suarez – 2019 26

Application-driven HW+SW developments

Suarez – 2019 27

Architecture Use-Modes

Cluster-Booster
use mode

Code partition
Workflow
I/O forward

• Kreuzer, et al., Application Performance on a Cluster-Booster System. IPDPSW – HCW (2018) [10.1109/IPDPSW.2018.00019]
• Kreuzer et al. The DEEP-ER project: I/O and resiliency extensions for the Cluster-Booster architecture. HPCC’18 proceedings (2018)

[10.1109/HPCC/SmartCity/DSS.2018.00046]
• Wolf et al., PIC algorithms on DEEP: The iPiC3D case study. PARS-Mitteilungen 32, 38-48 (2015)
• Christou et al., EMAC on DEEP, Geoscientific model devel.(2016) [10.5194/gmd-9-3483-2016]
• Kumbhar et al., Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations, Lecture Notes in Computer Science 9697 (2016)

[10.1007/978-3-319-41321-1_19]
• Leger et al., Adapting a Finite-Element Type Solver for Bioelectromagnetics to the DEEP-ER Platform. ParCo 2015, Advances in Parallel

Computing, 27 (2016) [10.3233/978-1-61499-621-7-349]

Suarez – 2019 30

Application use case: xPic
• Space Weather simulation

- Simulates plasma produced in solar eruptions and its
interaction with the Earth magnetosphere

- Particle-in-Cell (PIC) code
- Authors: KU Leuven

• Two solvers:
- Field solver: Computes electromagnetic (EM) field

evolution
o Limited code scalability
o Frequent, global communication

- Particle solver: Calculates motion of charged particles
in EM-fields

o Highly parallel
o Billions of particles
o Long-range communication

A. Kreuzer, J. Amaya, N. Eicker, E. Suarez*, "Application performance on a Cluster-Booster system", 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), HCW (20th International
Heterogeneity in Computing Workshop), Vancouver (2018), p: 69 - 78. [doi: 10.1109/IPDPSW.2018.00019]

Suarez – 2019 31

xPic – ORIGINAL CONFIGURATION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

for (auto i=beg+1; i<=end; i++){
fld.solver->calculateE();
fld.cpyToArr_F();

pcl.cpyFromArr_F();
for (auto is=0; is<nspec; is++) {
pcl.species[is].ParticlesMove();
pcl.species[is].ParticleMoments();

}
pcl.cpyToArr_M();

fld.solver->calculateB();
fld.cpyFromArr_M();

}

fld: Field Solver

plc: Particle Solver

Copy information
between solvers

Suarez – 2019 32

xPic – CODE PARTITION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

#ifdef __CLUSTER__
for (auto i=beg+1; i<=end; i++){
fld.solver->calculateE();
fld.cpyToArr_F();
ClusterToBooster();
// Auxiliary computations
ClusterWait();

BoosterToCluster();

BoosterWait();
fld.solver->calculateB();
fld.cpyFromArr_M();

}
#endif

#ifdef __BOOSTER__
for (auto i=beg+1; i<=end; i++){

ClusterToBooster();

ClusterWait();
pcl.cpyFromArr_F();
for (auto is=0; is<nspec; is++) {
pcl.species[is].ParticlesMove();
pcl.species[is].ParticleMoments();

}
pcl.cpyToArr_M();
BoosterToCluster();
// I/O and auxiliary computations
BoosterWait();

}
#endif

Suarez – 2019 33

xPic – (1-NODE) PERFORMANCE RESULTS

E.Suarez – BrainComp2019

• Field solver: 6× faster on Cluster
• Particle solver: 1.35 × faster on Booster
• Overall performance gain:

– 3%-4% overhead per solver for C+B
communication (point to point)

A. Kreuzer et al. "Application Performance on a Cluster-Booster System“, 2018 IEEE IPDPS Workshops
(IPDPSW), Vancouver, Canada, p 69 - 78 (2018) [10.1109/IPDPSW.2018.00019]

#cells per node 4096

#particles per cell 2048

Compilation flags -openmp, -mavx (Cluster)
-xMIC-AVX512 (Booster)

28% × gain compared to Cluster alone
21% × gain compared to Booster alone

1×
node

38% × gain compared to Cluster only
34% × gain compared to Booster only

8×
nodes

Suarez – 2019 35

xPic – STRONG SCALING on JURECA

• Code portions can be scaled-up
independently
- Particles scale almost linearly on Booster
- Fields kept constant on the Cluster (4CNs)

• A configuration is reached where same
time is spent on Cluster and Booster
- Additional 2× time-saving is enabled via

overlapping

J. De Amicis*, E.Suarez*, J. Amaya, N. Eicker, G.Lapenta, Th.Lippert,
“Assessing the scalability of the xPic code on a large-scale modular
supercomputer", In preparation

#cells per node 36864

#particles per cell 1024

#blocks per MPI process 12, 32 or 64

Compilation flags -mavx (Cluster)
-openmp, xMIC-AVX512 (Booster)

(4 Cluster nodes)

Suarez – 2019 37

xPic worfklow – mapping on DEEP-EST

E.Suarez – MPCDF – 18.06.2019, Garching

DLMOS

Infe-
rence

DPP

Training

xPiCField
Solver

Particle
Solver

GMM

DLMOS xPiC GMM

OUTLINE
• Evolution of HPC architectures

- Global historical evolution
- Dual architecture at JSC
- Cluster-Booster
- Modular Supercomputing Architecture

• Software
- Software stack
- Network bridging
- Programming environment
- Scheduling and resource management

• Application experience
• Conclusions and Next steps

Suarez – 2019 41

CONCLUSIONS
• The Modular Supercomputing Architecture (MSA)

- Orchestrates heterogeneity at system level
- Allows scaling hardware in economical way (Booster  Exascale)
- Serves very diverse application profiles
o Maximum flexibility for users, without taking anything away (still can use individual modules)

• Distribute applications on the MSA give each code-part a suitable hardware
- Straight-forward implementation for workflows
- Partition at MPI-level interesting for multi-physics / multi-scale codes
- Monolithic codes do not need to be divided

• Current / Upcoming implementations of MSA
- DEEP prototypes, JURECA, JUWELS (in 2020)
- MELUXINA (Luxembourgh EuroHPC Petascale system)
- Tianhe-3 (heterogeneous flexible architecture)
o https://www.r-ccs.riken.jp/R-CCS-Symposium/2019/slides/Wang.pdf

Suarez – 2019 42

NEXT STEPS
• Hardware deployments

- DEEP-EST Booster (January 2020)
- JUWELS Booster (Mid 2020)
o Integrating later JUNIQ (Quantum Annealer)

- And if everything goes well, then…. Exascale!
• Software development

- Develop tools to map applications to hardware
- Improve scheduling of heterogeneous jobs/workflows
- Facilitate exploitation of new memory technologies
- Modularize more codes

THANK YOU!

The DEEP projects have received funding from
the European Union’s Seventh Framework
Programme (FP7) for research, technological
development and demonstration and the
Horion2020 (H2020) funding framework under
grant agreement no. FP7-ICT-287530 (DEEP),
FP7-ICT-610476 (DEEP-ER) and H2020-
FETHPC-754304 (DEEP-EST).

www.deep-projects.eu
@DEEPprojects

	The Modular Supercomputing Architecture
	outline
	Historical evolution in HPC Architectures
	JSC dual approach
	Cluster vs. MPP
	Homogenous cluster
	Traditional heterogeneous cluster
	Cluster-Booster concept
	The DEEP Projects
	The DEEP Prototype
	Cluster-Booster in Production
	Architecture Evolution
	Modular Supercomputing
	Modular Supercomputing
	DEEP-EST prototype
	outline
	Software environment
	Network bridging
	Programming Environment
	Compile and Run
	Resource management
	Improved workflow support
	outline
	Application-driven HW+SW developments
	Architecture Use-Modes
	Application use case: xPic
	xPic – original configuration
	xPic – code partition
	xPic – (1-node) Performance Results
	xPic – strong scaling on JURECA
	xPic worfklow – mapping on DEEP-EST
	outline
	Conclusions
	NEXT steps
	Thank you!

