\ y

Towards a standard C++
asynchronous programming model

Hartmut Kaiser (hkaiser@cct.Isu.edu)




08/26/2021

Todayos Parall e

60s 80s 100 s 120s

thread 8
thread 9
thread 10
thread 11
thread 12
thread 13
thread 14
thread 15
thread 16
thread 17
thread 18
thread 19
thread 20
thread 21
thread 22
thread 23
thread 24
thread 25

o
=
&
S
@
S
>
<
a
0
>
)
c
o
P —
=
3}
<
>
7
@®©
+
+
O
o
P —
@
o
c
T
=
7
©
0
e
P —
c
2
)
'_

)
0
©
X
5
IS
T
I
=
Q
o
@
L
o
)
}_
L
)
)
XS]
o
=

@ STE||AR GROUP




08/26/2021

Real-world Problems

Alnsufficient parallelism imposed by the programming
model
1 OpenMP : enforced barrier at end of parallel loop
1 MPI: global (communication) barrier after each time step

AOver-synchronization of more things than required by algorithm
1 MPI: Lock -step between nodes (ranks)

Alnsufficient coordination between on -node and off-node parallelism
1 MPI+X: insufficient co -design of tools for off -node, on-node, and accelerators

ADistinct programming models for different types of parallelism
1 Off-node: MPI, On -node: OpenMP, Accelerators: CUDA, etc.

Towards a standard C++ asynchronous programming

model (ZIH, TU Dresden) Hartmut Kaiser
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The Challenges

AWe need to find a usable way to fully parallelize
our applications

AGoals are:

fExpose asynchrony to the programmer without exposing
additional concurrency

fMake data dependencies expl
and Ocommunicationdo

fProvide manageable paradigms for handling parallelism
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A (CppCon 2017: Asynchronous C++ Programming Model )
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HPX

The C++ Standards Library for Concurrency and  Parallelism
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https ://qithub.com/STEIIAR -GROUP/hpx
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https://github.com/STEllAR-GROUP/hpx
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HPX 0 The C++ Standards Library for
Concurrency and Parallelism

AEXposes a coherent and uniform, standards -oriented
API for ease of programming parallel, distributed,
and heterogeneous applications.

{Enables to write fully asynchronous code using hundreds of
millions of threads.

{Provides unified syntax and semantics for local and remote
operations.

AEnables using the Asynchronous C++ Standard
Programming Model
{{Emergent auto -parallelization, intrinsic hiding of latencies,
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HPX 0 An Asynchronous Many -task
Runtime Syste m

AAt 1 tds heart HPX iIs a very efficient

A Several functional layers are implemented on top:

1 C++ standards -conforming API exposing everything related to parallelism
and concurrency

1 Full set of C++17/C++20 parallel algorithms
1 One of the first full openly available implementations
1 Extensions:
i asynchronous execution
9 parallel range based algorithms
1 Vectorizing execution policies simd/par_simd
1 Distributed operation
1 Extending the standard interfaces
1 Global address space, load balancing
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HPX 0 The API

A As close as possible to C++11/14/17/20 standard library, where appropriate, for  instang

1 std::thread, std:: jthread hpx::thread (C++11), hpx:: jthread (C++20)
1 std::mutex hpx ::mutex g
1 std::future hpx::future (including N453 8, 06 Concur r§Ese
M std::async hpx ::async (including N3632) S
Mstd:for each( par, é), et tpx:parallel: for each (N4507, C++17) S 3
1 std::experimental:: task block hpx::parallel:: task block (N4411) %é
1 std::latch, std::barrier, std:: for_loop hpx::latch, hpx::barrier, hpx:: parallel:for loop (TS V2) g;:
1 std::bind hpx::bind 58
1 std::function hpx::function :E =
1 std::any hpx::any (N3508 ) Gz
1 std:: cout hpx:: cout 8=
g
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Parallel Algorithms (C++17)
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Parallel Algorithms (C++17)

A Add Execution Policy as first argument

A Execution policies have associated default executor and default executor

parameters

1 execution:: parallel_policy , generated with par
1 parallel executor, static chunk size

1 execution:: sequenced policy , generated with seq

1 sequential executor, no chunking
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Parallel Algorithms (Extensions)
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Execution Policies (Extensions)

A Extensions: asynchronous execution policies

1 parallel_task execution_policy (asynchronous version of
parallel _execution_policy ), generated with

1 sequenced_task execution_policy (asynchronous version of
sequenced_execution_policy ), generated with

1 In all cases the formerly synchronous functions return a future<>
1 Instruct the parallel construct to be executed asynchronously
1 Allows integration with asynchronous control flow

@ STE||AR GROUP

par(task)

se((task)
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Execution Policies (Extensions)

A Extensions: vectorizing execution policies (for Parallelism TS V2)

1 simd_execution_policy , simd_task execution_policy , generated with
simd, simd(task)
1 par_simd_execution_policy , par_simd_task execution_policy , generated with

par_simd, par_simd (task)

1 Calls iteration function with C++ types that represent vector registers (see:
std ::experimental:: simd, gccvll/clang v12, N4755 & Parallelism TS V2)
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The Future of Computation
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What is a (the) Future?

A Many ways to get hold of a (the) future, simplest way is to use (  std) async:

int universal_answer () {return 42;}

void deep thought ()

S

=
S
future< int > promised_answer = async(&universal _answer ); g%
B e © —
// do other things for 7.5 million years + 5
O3
cout << promised_answer.get ()<< endl; I prints 42 5P
} s T
o N
g3
3
~ £
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What is a (the) future

A A future is an object representing a result which has not been calculated yet

Locality 1 A Enables transparent synchronization =

1 S

Future object Locality 2 with producer %
Suspend VA S . Execute A Hides notion of dealing with  threads o 8
consumer ————=14" 1 Future: 3 % X
thread i - A Represents a data -dependency 5 E
1 i 3T
Execute 2 A e e AMakes asynchrony manageable -
L L 5%
thread N A it T 9
B Result is being A Allows for composition of several 59
Resume returned asynchronous operations gF
] : : o &
thread A(Turns concurrency into parallelism) EE
cE
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Recursive Parallelism
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Parallel Quicksort
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Parallel Quicksort: Parallel
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Parallel Quicksort: Futurized
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Parallel Quicksort: co await
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Asynchronous Channels

AHIgh level abstraction of communication operations
{{Perfect for asynchronous boundary exchange

AModelled after Go -channels

ACreate on one thread, refer to it from another thread
{{Conceptually similar to bidirectional P2P (MPI) communicators

AAsynchronous in nature
{fchannel::get() and channel::set() return futures

Channel (pipe)
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Futurized 2D Stencil: Timestep |

B Timestep: |

@ Channels
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Futurized 2D Stencil: Timestep i+1

B Timestep: |

B Timestep: i+l
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Towards a standard C++ a
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Futurized 2D Stencll

B Timestep: |
B Timestep: i+l
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2D Stencll

APartitions are distributed across machine

AMore partitions per node (locality) than cores
{'Oversubscription

ACode equivalent regardless whether neighboring
partition is on the same node

AOverlap of communication and computation
{More parallelism (work) than compute resources (cores)
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Futurized 2D Stencil: Main Loop
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One Timestep : Update Boundaries
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One Timestep : Interior
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Asynchrony Everywhere
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Futurization

ATechnique allowing to automatically transform code
{Delay direct execution in order to avoid synchronization
fTurns O0str ai tutorizedl 6c cdal ei nt o O

fCode no longer calculates results, but generates an execution tree
representing the original algorithm

{1f the tree is executed it produces the same result as the original
code

{1 The execution of the tree is performed with maximum speed,
depending only on the data dependencies of the original code

AEXxecution exposes the emergent property of being auto -
parallelized

(@)
£
&
S
@
S
(@)
9
o
%))
=
o
=
o
P —
d=
(&)
=
>
0
©
+
+
O
©
P —
)
©
(=
IS
0
©
1%2]
o
c
=
o
|_

)
0
©
X
5
IS
T
I
=
@)
o
@
Qo
(@)
D)
}_
L
)
)
XS]
o
=

@ STE||AR GROUP



lasiey iInwyeH (uspsal ‘ apouwl
1202/92/30 ey nwreH (uspsaid NL ‘HIZ) 18P

Buiwwelfold snouolyduAse ++J plepuels e spJemo |

L
-
)
D
nd
)
-
D
O
D
nd

@ STE||AR GROUP



Merging White Dwarfs
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