\ y

Towards a standard C++
asynchronous programming model

Hartmut Kaiser (hkaiser@cct.Isu.edu)

08/26/2021

Todayos Parall e

60s 80s 100 s 120s

thread 8
thread 9
thread 10
thread 11
thread 12
thread 13
thread 14
thread 15
thread 16
thread 17
thread 18
thread 19
thread 20
thread 21
thread 22
thread 23
thread 24
thread 25

o
=
&
S
@
S
>
<
a
0
>
)
c
o
P —
=
3}
<
>
7
@®©
+
+
O
o
P —
@
o
c
T
=
7
©
0
e
P —
c
2
)
'_

)
0
©
X
5
IS
T
I
=
Q
o
@
L
o
)
}_
L
)
)
XS]
o
=

@ STE||AR GROUP

08/26/2021

Real-world Problems

Alnsufficient parallelism imposed by the programming
model
1 OpenMP : enforced barrier at end of parallel loop
1 MPI: global (communication) barrier after each time step

AOver-synchronization of more things than required by algorithm
1 MPI: Lock -step between nodes (ranks)

Alnsufficient coordination between on -node and off-node parallelism
1 MPI+X: insufficient co -design of tools for off -node, on-node, and accelerators

ADistinct programming models for different types of parallelism
1 Off-node: MPI, On -node: OpenMP, Accelerators: CUDA, etc.

Towards a standard C++ asynchronous programming

model (ZIH, TU Dresden) Hartmut Kaiser

@ STE||AR GROUP

08/26/2021

The Challenges

AWe need to find a usable way to fully parallelize
our applications

AGoals are:

fExpose asynchrony to the programmer without exposing
additional concurrency

fMake data dependencies expl
and Ocommunicationdo

fProvide manageable paradigms for handling parallelism

o)
=
E
£
G
S
(o)
o
S
0
=
o
c
S
P —
d=
(S
=
>
(%2]
@
+
+
O
T
G
e
=
IS
7
o
2]
e,
G
=
o
|_

)
0
©
X
5
IS
T
I
=
3]
X
?
Qo
(@)
D)
l_
L
)
)
XS]
o
=

A (CppCon 2017: Asynchronous C++ Programming Model)

@ STE||AR GROUP

08/26/2021

HPX

The C++ Standards Library for Concurrency and Parallelism

o
=
E
S
@
S
>
<
a
0
>
)
c
o
P —
=
3}
<
>
7
©
+
+
O
©
@
o
c
=
7
©
0
©
c
=
)
'_

)
0
©
X
5
=
T
I
=
@)
o
@
Qo
(@)
D)
l_
L
)
)
XS]
o
=

https ://qithub.com/STEIIAR -GROUP/hpx

@ STE||AR GROUP

https://github.com/STEllAR-GROUP/hpx

08/26/2021

HPX 0 The C++ Standards Library for
Concurrency and Parallelism

AEXposes a coherent and uniform, standards -oriented
API for ease of programming parallel, distributed,
and heterogeneous applications.

{Enables to write fully asynchronous code using hundreds of
millions of threads.

{Provides unified syntax and semantics for local and remote
operations.

AEnables using the Asynchronous C++ Standard
Programming Model
{{Emergent auto -parallelization, intrinsic hiding of latencies,

o)
=
E
S
@
S
o)
=
S
%
S
o
c
o
P —
<
O
c
=
0
@
+
+
@]
B
@
°
c
IS
%)
©
%
°
[
=
o
|_

)
0
©
X
5
IS
T
I
=
@)
o
@
Qo
(@)
D)
l_
L
)
)
XS]
o
=

@ STE||AR GROUP

08/26/2021

HPX 0 An Asynchronous Many -task
Runtime Syste m

AAt 1 tds heart HPX iIs a very efficient

A Several functional layers are implemented on top:

1 C++ standards -conforming API exposing everything related to parallelism
and concurrency

1 Full set of C++17/C++20 parallel algorithms
1 One of the first full openly available implementations
1 Extensions:
i asynchronous execution
9 parallel range based algorithms
1 Vectorizing execution policies simd/par_simd
1 Distributed operation
1 Extending the standard interfaces
1 Global address space, load balancing

o)
=
E
£
G
S
(o)
o
S
0
=
o
c
S
P —
d=
(S
=
>
(%2]
@
+
+
O
T
G
e
=
IS
7
o
2]
e,
G
=
o
|_

)
0
©
X
5
IS
T
I
=
@)
o
@
Qo
(@)
D)
l_
L
)
)
XS]
o
=

@ STE||AR GROUP

-
AN
o
N
~
(o}
N
~
(ce)
o

HPX 0 The API

A As close as possible to C++11/14/17/20 standard library, where appropriate, for instang

1 std::thread, std:: jthread hpx::thread (C++11), hpx:: jthread (C++20)
1 std::mutex hpx ::mutex g
1 std::future hpx::future (including N453 8, 06 Concur r§Ese
M std::async hpx ::async (including N3632) S
Mstd:for each(par, é), et tpx:parallel: for each (N4507, C++17) S 3
1 std::experimental:: task block hpx::parallel:: task block (N4411) %é
1 std::latch, std::barrier, std:: for_loop hpx::latch, hpx::barrier, hpx:: parallel:for loop (TS V2) g;:
1 std::bind hpx::bind 58
1 std::function hpx::function :E =
1 std::any hpx::any (N3508) Gz
1 std:: cout hpx:: cout 8=
g

@ STE||AR GROUP

Parallel Algorithms (C++17)

adjacent difference

CoOpy
count if
fill n

find if
generate
inner product

iz partitioned
max element
mizmatch

partial sort
reduce

remove if
replace if
rotate_ copy

Zet _intersection
stable partition
uninitialized copy

unigue

adjacent find

copy if

equal

find

find if not
generate n

inplace merge

iz sorted

merge

mowve
partial sort copy
remove

replace

reverse

search

get symmetric difference
stable sort
uninitialized copy n

unigue copy

all of

copy n
exclusive scan
find end

for each
includes

iz _heap

iz sorted until
min element
none of
partition
remove copy
replace copy
reverse copy
search n

Zet union

swap ranges
uninitialized fill

any of

count

fill

find first of
for each n
inclusgive =Scan
iz _heap until

lexicographical compare

minmax element
nth element
partition copy
remove copy if
replace copy if
rotate
set_difference
Zart

transform

uninitialized_fill_n

@ STE||AR GROUP

o)
=
E
S
@
S
o
=
S
%
S
o
c
o
P —
s
O
c
=
0
@
+
+
O
©
P —
@
°
c
&
%)
©
%
°
[
=
o
|_

)
0
©
X
5
IS
T
I
=
@)
o
@
Qo
o
)
}_
L
)
o
XS]
o
=

08/26/2021

Parallel Algorithms (C++17)

A Add Execution Policy as first argument

A Execution policies have associated default executor and default executor

parameters

1 execution:: parallel_policy , generated with par
1 parallel executor, static chunk size

1 execution:: sequenced policy , generated with seq

1 sequential executor, no chunking

@ STE||AR GROUP

Parallel Algorithms (Extensions)

@ STE||AR GROUP

Execution Policies (Extensions)

A Extensions: asynchronous execution policies

1 parallel_task execution_policy (asynchronous version of
parallel _execution_policy), generated with

1 sequenced_task execution_policy (asynchronous version of
sequenced_execution_policy), generated with

1 In all cases the formerly synchronous functions return a future<>
1 Instruct the parallel construct to be executed asynchronously
1 Allows integration with asynchronous control flow

@ STE||AR GROUP

par(task)

se((task)

o)
=
E
S
@
S
o)
o
S
%
S
o
c
o
P —
<
O
c
=
0
@
+
+
@]
B
@
°
c
IS
%)
©
%
°
[
=
o
|_

)
0
©
X
5
IS
]
I
=
@)
o
@
Qo
(@)
D)
l_
L
)
)
XS]
o
=

08/26/2021

08/26/2021

Execution Policies (Extensions)

A Extensions: vectorizing execution policies (for Parallelism TS V2)

1 simd_execution_policy , simd_task execution_policy , generated with
simd, simd(task)
1 par_simd_execution_policy , par_simd_task execution_policy , generated with

par_simd, par_simd (task)

1 Calls iteration function with C++ types that represent vector registers (see:
std ::experimental:: simd, gccvll/clang v12, N4755 & Parallelism TS V2)

o)
=
E
S
@
S
o)
=
S
%
S
o
c
o
P —
<
O
c
=
0
@
+
+
@]
°
@
°
c
©
%)
©
%
°
[
=
o
|_

)
0
©
X
5
IS
T
I
=
@)
o
@
Qo
(@)
D)
l_
L
)
)
XS]
o
=

@ STE||AR GROUP

lasiey iInwyeH (uspsal ‘ apouwl
1202/92/30 ey nwreH (uspsaid NL ‘HIZ) 18P

Buiwwelfold snouolyduAse ++J plepuels e spJemo |

S
o
B L fo
@ g8 79
m
~
(=)
) 4 R
N - I
m ™~
n - -
>
=2
O &
1
N ¢ B
L N R P N A [l
© SERTTES
C =< , :
Lo % e
Q = 1
2
ﬂ r Im
2
b &
[~
> N
.E_ 1l S 4|1
-m- S1e0)1 71 ¢
| \72
L4 A
= £
S - -mB
= c
Q : :
» — > ‘mm
- —_—
C & =
N o
— e R W | W
e S1e0[l 11 -
O &
w =
P g
(V] =
=t
S
c i
£
O -
v}
=
N O 2.0 .
t © Y==~
@ oZun
v e e 4
&) 2 ooy a
s [°
COO% D -
e HNMSE . (o)
> o
W N @ © Mmoo o~ T o4 @ o N g © m O
___ 3 % 8B A AL F§ 888 8 ° pAn
|elzuanbas sa dn paads —_—
I
78]
o
(7))

The Future of Computation

@ STE||AR GROUP

-
AN
o
N
~
(o}
N
~
(ce)
o

What is a (the) Future?

A Many ways to get hold of a (the) future, simplest way is to use (std) async:

int universal_answer () {return 42;}

void deep thought ()

S

=
S
future< int > promised_answer = async(&universal _answer); g%
B e © —
// do other things for 7.5 million years + 5
O3
cout << promised_answer.get ()<< endl; I prints 42 5P
} s T
o N
g3
3
~ £

@ STE||AR GROUP

-
AN
o
N
~
(o}
N
~
(ce)
o

What is a (the) future

A A future is an object representing a result which has not been calculated yet

Locality 1 A Enables transparent synchronization =

1 S

Future object Locality 2 with producer %
Suspend VA S . Execute A Hides notion of dealing with threads o 8
consumer ————=14" 1 Future: 3 % X
thread i - A Represents a data -dependency 5 E
1 i 3T
Execute 2 A e e AMakes asynchrony manageable -
L L 5%
thread N A it T 9
B Result is being A Allows for composition of several 59
Resume returned asynchronous operations gF
] : : o &
thread A(Turns concurrency into parallelism) EE
cE

@ STE||AR GROUP

08/26/2021

Recursive Parallelism

o)
=
E
£
G
S
(o)
o
S
0
=
o
c
S
P —
d=
(S
=
>
(%2]
@
+
+
O
T
G
e
=
IS
7
o
2]
e,
G
=
o
|_

)
0
©
X
5
IS
T
I
=
@)
o
@
Qo
(@)
D)
l_
L
)
)
XS]
o
=

@ STE||AR GROUP

Parallel Quicksort

@ STE||AR GROUP

Parallel Quicksort: Parallel

@ STE||AR GROUP

Parallel Quicksort: Futurized

@ STE||AR GROUP

Parallel Quicksort: co await

@ STE||AR GROUP

Jasey] inwueH (uapsaig N1 ‘HIZ) [epow
Buiwwelfold snouolyduAse ++J plepuels e spJemo |

120¢/9¢/80

Synchronous

Ion

Asynchronous
Communicat
@ STE||AR GROUP

08/26/2021

Asynchronous Channels

AHIgh level abstraction of communication operations
{{Perfect for asynchronous boundary exchange

AModelled after Go -channels

ACreate on one thread, refer to it from another thread
{{Conceptually similar to bidirectional P2P (MPI) communicators

AAsynchronous in nature
{fchannel::get() and channel::set() return futures

Channel (pipe)

j@@@? 2
@ STE||AR GROUP

o)
=
E
S
@
S
o)
=
S
%
S
o
c
o
P —
<
O
c
=
0
@
+
+
@]
B
@
°
c
IS
%)
©
%
°
[
=
o
|_

)
0
©
X
5
IS
T
I
=
@)
o
@
Qo
(@)
D)
l_
L
)
)
XS]
o
=

08/26/2021

Futurized 2D Stencil: Timestep |

B Timestep: |

@ Channels

2
LT TTTTTT]

Partitions

(@)
=
e
£
S
S
(@]
o
o
2}
=)
o
o
o
P
=
S}
=
e
2}
©
=+
+
O
o)
P
S
©
=
S
(2]
@
(2]
o)
]
S
=
o
=

)
0
©
X
5
IS
T
I
=
Q
o
@
L
o
)
}_
L
)
)
XS]
o
=

@ STE||AR GROUP

08/26/2021

Futurized 2D Stencil: Timestep i+1

B Timestep: |

B Timestep: i+l

o
=
&
S
@®
S
>
<
a

synchronous

model (ZIH, TU Dresden) Hartmut Kaiser

EI"

Towards a standard C++ a

@ STE||AR GROUP

Futurized 2D Stencll

B Timestep: |
B Timestep: i+l

@ STE||AR GROUP

E

o)
=
E
S
@
S
o)
=
S
%
S
o
c
o
P —
<
O
c
=
0
@
+
+
@]
©
P —
@
°
c
©
%)
©
%
°
[
=
o
|_

)
0
©
X
5
IS
T
I
=
@)
o
@
Qo
o
)
}_
L
)
)
XS]
o
=

08/26/2021

08/26/2021

2D Stencll

APartitions are distributed across machine

AMore partitions per node (locality) than cores
{'Oversubscription

ACode equivalent regardless whether neighboring
partition is on the same node

AOverlap of communication and computation
{More parallelism (work) than compute resources (cores)

o)
=
E
S
@
S
o)
=
S
%
S
o
c
o
P —
<
O
c
=
0
@
+
+
@]
B
@
°
c
IS
%)
©
%
°
[
=
o
|_

)
0
©
X
5
IS
T
I
=
@)
o
@
Qo
(@)
D)
l_
L
)
)
XS]
o
=

@ STE||AR GROUP

Futurized 2D Stencil: Main Loop

@ STE||AR GROUP

One Timestep : Update Boundaries

@ STE||AR GROUP

One Timestep : Interior

@ STE||AR GROUP

lasiey InwueH (uspsaid NL ‘HIZ) [epow 2
Buiwwelboid snouoiysuAse ++9 plepuels e spremo | 3

T20¢2/9¢/80

Asynchrony Everywhere

@ STE||AR GROUP

08/26/2021

Futurization

ATechnique allowing to automatically transform code
{Delay direct execution in order to avoid synchronization
fTurns O0str ai tutorizedl 6c cdal ei nt o O

fCode no longer calculates results, but generates an execution tree
representing the original algorithm

{1f the tree is executed it produces the same result as the original
code

{1 The execution of the tree is performed with maximum speed,
depending only on the data dependencies of the original code

AEXxecution exposes the emergent property of being auto -
parallelized

(@)
£
&
S
@
S
(@)
9
o
%))
=
o
=
o
P —
d=
(&)
=
>
0
©
+
+
O
©
P —
)
©
(=
IS
0
©
1%2]
o
c
=
o
|_

)
0
©
X
5
IS
T
I
=
@)
o
@
Qo
(@)
D)
}_
L
)
)
XS]
o
=

@ STE||AR GROUP

lasiey iInwyeH (uspsal ‘ apouwl
1202/92/30 ey nwreH (uspsaid NL ‘HIZ) 18P

Buiwwelfold snouolyduAse ++J plepuels e spJemo |

L
-
)
D
nd
)
-
D
O
D
nd

@ STE||AR GROUP

Merging White Dwarfs

@ STE||AR GROUP

Orbits: 4.13005

Primary Star Donor Star
Density Density

3e+3 Max 2e+l Max
le-3 Refine
le=3-Refine
le-5
- le-5

.“ié:ﬁ“.“”»u

le-7

o)
=
E
S
@
S
o)
=
S
%
S
o
c
o
P —
<
O
c
=
0
@
+
+
@]
©
P —
@
°
c
©
%)
©
%
°
[
=
o
F_

)
0
©
X
5
IS
T
I
=
@)
o
@
Qo
(@)
D)
F—
L
)
)
XS]
o
=

08/26/2021

lasiey] InwueH (uapsal ‘ apouwl
1202/92/80 ey JnwieH (uspsaid NL ‘HIZ) 19p 6

Buiwwelboid snouoiysuAse ++9 plepuels e spremo | 3

T

"

1T

NN RN
T
Tt

HAT
1
T
L1
1

INE NN R

Time:1e-98

DB: X.0.silo
Cycle: 0

Mesh
Var. mesh

Adaptive Mesh Refinement

.
o
o
o
(-
<
™)
=
(7))
~

lasiey iInwyeH (uspsal ‘ apouwl
1202/92/30 ey nwreH (uspsaid NL ‘HIZ) 18P

Buiwwelfold snouolyduAse ++J plepuels e spJemo |

@ STE||AR GROUP

