
Malleability for HPC
ZIH-Colloquium | June 23, 2022 | Josef Weidendorfer

1Malleability for HPC | Josef Weidendorfer

2

Includes Work by

Vincent Bode, Dai Yang, Amir Raoofy,
Tilman Küstner, Carsten Trinitis, Martin Schulz

Isaias Compress Urena, Michael Gerndt

Malleability for HPC | Josef Weidendorfer

3Malleability for HPC | Josef Weidendorfer

Analyse, Predict Recommend

Understand best options – not just for the next system
Recommendations internally (for system purchase and operation)

and externally (for supporting LRZ users)

Technology HW & SWUser Requirements
Compute Demands | Ease of Use Cost-Effective | Sustainable/Green

The Role of the Future Computing Group at LRZ

4Malleability for HPC | Josef Weidendorfer

Future
Computing

Group

Includes research on
how to improve the

operation and usage
model, e.g. by adding

Malleability

Outline

• Definition / Motivation
• LAIK: a runtime for elastic HPC codes

• Overview
• Examples
• Directions

• Ongoing efforts

5Malleability for HPC | Josef Weidendorfer

Definition “Malleable”

American Heritage Dictionary

Capable of being shaped or formed

For this talk (HPC context)

The property of a parallel code
to be able to take advantage of

changes in available compute resources
during run time

6Malleability for HPC | Josef Weidendorfer

Benefits of Malleable Codes for Compute Centers

Improved usage model
• Quick job submission (for interactivity) by on-demand shrinking of running jobs
• Shrinking instead of killing running jobs if a high-priority jobs comes in

Better resource utilization
• Reduce fragmentation on a system (alternative to back-filling to use idle resources)
• Dynamic migration to more adequate resources when they become available

Better operation
• Dynamic migration to enable quick maintenance (similar to VMs)
• Ability to react on predicted node failures (”pro-active” fault tolerance)

7Malleability for HPC | Josef Weidendorfer

Outline

• Definition / Motivation
• LAIK: a runtime for elastic HPC codes

• Overview
• Examples
• Directions

• Ongoing efforts

8Malleability for HPC | Josef Weidendorfer

Original Context

• Envelope: German research project on self-organizing systems (2017 – 2019)
KIT, TUM, JGU Mainz, RWTH Aachen

• Pro-active fault tolerance
• Retreat application from node

before (predicted) failure
• Application-integrated approach:

needs support for malleability

Malleability for HPC | Josef Weidendorfer 9

Original Focus

• Enable “easy” porting of MPI codes for malleability

• Shrink / expand based on external requests
• Process IDs (ranks) not integral part of API

• Library controls number of processes, knows how to distribute data
(application specifies partitioner algorithm)

• Constrain to iterative codes using “owner computes” paradigm
• Automatic re-partitioning on resource size changes

• Enable fault tolerance
• pro-active (react to predicted failure in the future)
• reactive (cope with spontaneous failure)

10Malleability for HPC | Josef Weidendorfer

Basic Idea

• Data is stored in multiple global (multi-dimensional) arrays, distributed over processes
• Processes declare local access wish for array elements for compute phases
• Value changes are globally propagated on demand

• Any communication = value updates of array elements

• We want to specify the communication requirements in an abstract way
• Not based on MPI ranks, but: what data needs to be locally available for computation
• Requirements declared once è calculate communication schedules

• executed multiple times on demand

Malleability for HPC | Josef Weidendorfer 11

LAIK

• SPMD, can co-exist with MPI / OpenMP
• a LAIK entity (process) is a Unix Process

• C API, runs on Linux & MacOS
• github.com/envelope-project/laik
• Communication backends as plugins: currently MPI, TCP

Malleability for HPC | Josef Weidendorfer 12

Index Spaces, Partitionings, Partitioners

• Example: disjunctive partitioning

• General partitioning: multiple processes per index

• Custom partitioner algorithms supported
• can use another partitioning as input (e.g. with ghost layer)

Malleability for HPC | Josef Weidendorfer 13

Communication Schedule on Update, same Container

14Malleability for HPC | Josef Weidendorfer

Communication Schedule on Update, same Container (2)

Needed: reduction operation (can be custom)

15Malleability for HPC | Josef Weidendorfer

Data Containers

• Memory for data arrays, known to LAIK
• Same type for each index in a container

• Type needed for reductions
• Layout: how are indexes locally ordered in memory

• Application can specify custom layouts

• Explicit allocation
• Specify set of partitionings to reserve space for, LAIK allocates
• Get memory address for a local index (application knows layout)
• Trigger Update: can only involve partitionings specified in allocation

• Repartitioning: allocate new, copy (= Update), free old

Malleability for HPC | Josef Weidendorfer 16

Application Structure (suggested, not enforced)

• Sequence of compute phases
• Trigger adequate updates on phases changes

• Mark program points where resource size changes are allowed
• Global synchronization
• Results in re-runs of partitioner algorithms

• Take joining / leaving processes into account
• Data redistribution is “just” an update from old to new partitioning

17Malleability for HPC | Josef Weidendorfer

Example: 2D Jacobi

• Two matrices, 5 point stencil
• Partitionings: “Init”, “Read with halos”, “Write” (disjunctive)
• Phases

init1

read

write

write

read

time

Init

Iter 1

Iter 2

P1 P2 P3 P4

Task Graph

Malleability for HPC | Josef Weidendorfer 18

LAIK Update Object

• Declaration
• Before/after partitionings of same index space
• Do update into same or different allocation?
• Reduction operation

• Contains calculated communication schedule as instruction stream
• Different abstractions possible: <RunUpdate>, <MPISend, …>
• To be run by the communication backend (or stack of backends)

• Pre-optimize as much as possible
• Can include code generation
• Can be done off-line using pre-calculated partitionings in files (Metis runs)

Malleability for HPC | Josef Weidendorfer 19

LAIK Update Object (2)

Partial Specialization
• Information which may not be known at declaration time

• backend to use, hardware available, machine topology
• data container (from/to), type info, layout, memory addresses

• whenever new info becomes available, run optimization
• can be done locally, as long as all LAIK processes agree on basics

Malleability for HPC | Josef Weidendorfer 20

LAIK Update Object (3)

Benefits of instruction stream approach
• Optimization passes are decoupled code
• Application-specific passes possible
• easy selection via external configuration
• Instructions can be backend-specific (backend executes instruction stream)

• Enables layers of backends, which pass instruction stream down
e.g. Smart NIC-support: reduction offloading, resource reservation

• Variants of instruction streams to react dynamically
• Change of job priority from job scheduler

Malleability for HPC | Josef Weidendorfer 21

LAIK Update Object (4): Optimization Passes

Examples
• Lower abstraction:

“send indexes 1-5 from container X” à “send 5 ints at 0xX”
• Merge multiple sends between same peers into one send
• Copy pieces into pre-allocated network buffers
• Different reduction algorithms depending on size / topology
• Detect Pattern & replace with MPI collective (All-to-All)

Provided functionality for Passes
• Can create backend-specific calls to early resource alloc/free
• Reordering via attaching ordering labels

Malleability for HPC | Josef Weidendorfer 22

Porting of LULESH (Shock Hydrodynamics)

• Incremental porting from MPI code
• Small steps, easy to check for correctness
• Eliminate 2800 lines of comm code (~50%)
• Almost no changes in main loop of reference code

• Performance/scalability similar to MPI
• Added elasticity and external control

Malleability for HPC | Josef Weidendorfer

LULESH: Weak Scaling

24Weidendorfer: Programming Models for HPC Systems

• Normalized time
per Iteration

MPI Communication for Kernels

• Kernel 2: communicate neighbors’ corner data, and do local reduction (sum)

Malleability for HPC | Josef Weidendorfer 25

LAIK Model: Just Update

• Kernel 2: one partitioning with overlapping access at edges: triggers reduction on update

use SUM
reduction

Malleability for HPC | Josef Weidendorfer 26

Fault Tolerance for spontaneous Failures

Regular “in-memory” checkpointing, to neighbor node
Extend partitioning for redundancy, copy into “checkpoint” containers

27Malleability for HPC | Josef Weidendorfer

Fault Tolerance for spontaneous Failures

1) Regular “in-memory” checkpointing, to neighbor node
Extend partitioning for redundancy, copy into “checkpoint” containers

2) Node failure: Transition execution only partially completed
• Values do not get updated correctly
• Still, application can proceed (just “wrong values”)

• Failure handling can be delayed to later point
(or skips computation)

28Malleability for HPC | Josef Weidendorfer

Fault Tolerance for spontaneous Failures

1) Regular “in-memory” checkpointing, to neighbor node
Extend partitioning for redundancy, copy into “checkpoint” containers

2) Node failure: Transition execution only partially completed
Failure handling can be delayed to later point

3) Rollback to previous checkpoint
Copy back, only working if redundancy was enough
• Without failed processes, data distribution may be different, but can proceed
• Eventually with Re-balancing step

Evaluated via (1) “TCP backend”, (2) ULFM MPI implementation

29Malleability for HPC | Josef Weidendorfer

Memory Consumption

30

• ”Standard Release”: delete old checkpoint only after next checkpoint successful
• “Early Release”: delete old checkpoint before creating next checkpoint (higher risk!)

Malleability for HPC | Josef Weidendorfer

At SC19

31© Eva GellnerMalleability for HPC | Josef Weidendorfer

Other Directions LAIK

• Automatic load balancing
• Alternative for virtual topology

• LAIK knows communication matrix for updates
• Developer can specify which updates should be as fast as possible

• Other communication backends
• Shared memory: 2-copy à 1-copy à 0-copy
• RDMA on libfabric (allows direct resource reservation):

less handshakes, better asynchronity
• Show that API works with requirements from real-world applications

• More ports

Understand what is needed in MPI to best support these features

32Malleability for HPC | Josef Weidendorfer

Outline

• Definition / Motivation
• LAIK: a runtime for elastic HPC codes

• Overview
• Examples
• Directions

• Ongoing efforts

33Malleability for HPC | Josef Weidendorfer

Efforts

MPI
• TRR Invasic / EU DEEP-SEA

Research on extending MPI for elasticity, proposal to MPI forum
(by Isaias Compress Urena, Michael Gerndt)

• Ongoing discussion in MPI WG Malleability
• Very flexible, covers different use cases

PMIx
• Updates for malleability
• Pushed by work in EU DEEP-SEA

34Malleability for HPC | Josef Weidendorfer

Process Interactions on Malleable Allocations

35Malleability for HPC | Josef Weidendorfer

Existing Allocation Expansion Allocation

Consolidated Allocation

slurmctld

slurmd

slurmstepd

slurmd

slurmstepd

scheduler

sr
un0

slurmd
slurmstepd
openpmix

1

2

3

4

5

6

7

HPC Network

Management Network

D3
Adaptation Step 1

36

D3
Adaptation Step 2

37

D3
Adaptation Step 3

38

D3
Adaptation Step 4

39

D3
Adaptation Step 5

40

D3
Adaptation Step 6

41

Efforts

MPI
• TRR Invasic

Research on extending MPI for elasticity, proposal to MPI forum
(by Isaias Compress Urena, Michael Gerndt)

• Ongoing discussion in MPI WG Malleability
• Very flexible, covers different use cases

PMIx
• Updates for malleability
• Pushed by work in EU DEEP-SEA

42Malleability for HPC | Josef Weidendorfer

• PMIx enables interoperability
– Programming models:

§ MPI, GPI2, GPI-Space, OmpSS

– Tools support:
§ Trace analyzers, memory analyzers,

monitors

– Network endpoints setup:
§ Tools over management network
§ HPC network

– Heterogeneous task mappings
• Integration primarily with Slurm

PMIx in DEEP-SEA System Software

43Malleability for HPC | Josef Weidendorfer

43

Application / Workflow

Component-
specific node-
level support

Component-
specific node-
level support

Component-
specific node-
level support

Operating System
CPU +DDR

+NVM
GPU

+HBM
Accel. N
+ mem

…

Runtime

GPIOpenMP OmpSs MPI

44Malleability for HPC | Josef Weidendorfer

