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cancer is a complex evolving system

Deterministic proCQSS

s
Stochastic process®

Trends in Cancer

We seek to understand selection in cancer cell populations.

Lipinski et al., Trends in Cancer 2016
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modeling cancer dynamics
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FIGURE 1 | Reciprocal relation between the number of cells handled
by the models and the level of included cellular details. In each class
(on-lattice and off-lattice), the models complexity rises from cells
represented by single points to fully deformable bodies.

Image of live fluorescent colony formed after a selection experiment
Human breast cancer cell lines: SUM159/MDA231

Miroshnychenko, et al. Nature Ecology & Evolution 2021, Rejniak & Anderson, Interface focus 2010
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processes and mechanisms in cancer evolution:
stochastic processes

Branching process: realization of three time steps Moran process: realization of one time step
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processes and mechanisms in cancer evolution:

Nonlinear dynamics,

nonlinear dynamics

reaction-advection-diffusion systems

Work by Anderson, Maini & many others
Kimmel, Dane, Heiser, Altrock & Andor, Cancer Res. 2020
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cell movement (m) and growth neighborhood (w)
can lead to different growth curves
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cancer evolution leads to heterogeneity,

e.g., due to clonal interference or ecological interactions

“at the time of clinical diagnosis, the majority of human tumors display
startling heterogeneity in many morphological and physiological
features, such as expression of cell surface receptors, proliferative

and angiogenic potential”
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Fig. 1. Schematic view of monoclonal and multiclonal models of tumor progression.
Increasing color intensity correlates with tumor progression, whereas different colors
reflect different clones. (A) Traditional, linear model of clonal succession, where
progressive mutations in oncogenes and tumor suppressor genes drive linear
succession of rounds of clonal expansion, manifested as tumor progression. (B)
Multi-clonal model of tumor progression: although all cells in tumors originate from a
single initiated cell, the evolution of the tumor is more “messy”, with genetically
divergent tumor clones co-existing within tumors for substantial periods of time. The
population sizes and characteristics of clones change as tumors evolve, with some clone
populations expanding in size and others remaining unchanged or becoming extinct. In
advanced stages of tumor evolution, tumors might become dominated by single clones.

Marusyk & Polyak, Biochimica et Biophysica Acta 2010
Marusyk, Almemdro & Polyak, Nature Reviews Cancer 2012
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Dominance of clone 2

Dominance of clone 1

Figure 4 | Tumour heterogeneity in diagnostics. Similar to inter-tumour
heterogeneity, intra-tumour heterogeneity of cellular phenotypes that result from
genetic and non-genetic influences can complicate definitive diagnostics and can
obstruct therapeutic decision-making. First, spatial phenotypic heterogeneity

can lead to asituation in which a biopsy does not provide an adequate reflection of
the phenotypic composition of the whole tumour. Second, decisions made based on
scoring the dominant phenotype in a given sample might be misleading if they do not
account for minor subpopulations with clinically and biologically important distinct
features.



proliferative signaling/outgrowth are hallmarks of cancer

Sustaining proliferative
signaling

Resisting Evading growth
cell death suppressors

Inducing Activating invasion
angiogenesis and metastasis

Enabling replicative
immortality

Hanahan & Weinberg, Hallmarks of Cancer: The Next Generation, Cell 2011
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Interactions among cancer clones can
facilitate heterogeneity (vs. purifying selection)
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Figure 1 | Experimental system. a, Growth of tumours upon mammary fat

pad transplantation of indicated cell lines,

= 10 per group, combined

data from 2 independent experiments, error bars indicate s.e.m.
b, Representative images of indicated staining. Arrows indicate necrotic
areas. H&E, haematoxylin and eosin. ¢, Experimental scheme.
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Figure 4 \ Effect of IL11 on clonal dynamics. a, Outline of the linear model
that best explains polyclonal dynamics (see Supplementary Information).

b, Prediction of diversity over time without (dark) or with (light) non-cell-
autonomous driver. ¢, Tumour growth kinetics, n = 10 per group.

d, Representative images. e, Mass/volume ratios of tumours in c-e excluding

cyst fluid, each dot represents an individual tumour, **P < 0.01, ***P < 0.001;
error bars indicate s.e.m. f, Final population frequencies of IL11" cells in the
indicated tumours. g, h, Models of cell-autonomous (g) and non-cell-
autonomous (h) driving of tumour growth. Data shown are representative of at
least 2 independent experiments.

non-cell-autonomous driving of tumor growth, together with
clonal interference, stabilizes sub-clonal heterogeneity,
thereby enabling inter-clonal interactions that can lead to new
tumor-phenotypic traits

Marusyk et al., Non-cell-autonomous driving of tumour growth
supports sub-clonal heterogeneity, Nature 2014
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kinds of interactions in the tumor eco system

Non-cell-autonomous interactions
in the primary tumour

Paracrine
( O
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growth
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Figure 1 | Non-cell-autonomous interactions between populations can affect
tumorigenesis, metastasis and therapeutic resistance. Non-cell-autonomous
interactions may contribute to increasing the robustness of the tumour, leading to
increased tumour growth, enhanced metastasis and the emergence of resistance. As
exemplified by two distinct cellular populations communicating in a unidirectional
manner, such interactions may occur directly through paracrine?”% or juxtacrine effects
of ligands****** that are produced by one cell and received by the second, or these
interactions could also be indirectly mediated via components of the microenvironment,
such as blood vessels,immune cells and fibroblasts?®****-*', FIGF, c-fos induced growth
factor; IL-11, interleukin-11; JNK, JUN N-terminal kinase.

Tabassum & Polyak, Nature Reviews Cancer 2015
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cells grow, move, some produce,
public good diffuses and decays

(a) model schematic (b) snapshot of the spatial distribution
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Spectral decomposition of cell densities to derive conditions of the expected growth rate advantage
Exactly describes the dynamics of a randomly assorted population, and serves as good general approximation

Key assumptions: time scale separation, limited dispersal. Gerlee & Altrock, Physical Review E (2019)
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growth factors influence competition between
producers (C) and non-producers (D)
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Fig. 1.
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Archetti et al., PNAS 2015. IGF: Insulin-like Growth Factor
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Fitness function

nonlinear growth as a function
of (locally) available public good
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Frequency of producer cells but the local concentration of G might differ

Multiple works by Marco Archetti. Gerlee, Kimmel, Brown & Altrock (2019).
Of note: Hauert, Michor, Nowak, Doebeli. "Synergy and discounting of cooperation in social dilemmas", JTB, 2006.

16



public good can be shared among a ‘neighborhood’ of size n,
a producer cells experience a benefit-to-self
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Kimmel et al., Communications Biology, 2019
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bifurcations in nonlinear public good

A 0=2, 3=5: growth rate difference
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our approach can be used to explain
previously measured growth rate differences
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stochastic dynamics due to demographic noise
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A 0=2, B=5: growth rate difference

D 0=3, B=2: growth rate difference
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the role of population partition: emerging neighborhood size
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see also works by Cremer, Frey et al. on selection-redistribution models
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origins of producers and free-riders
In nonlinear public goods games
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adaptive dynamics in 2D trait space
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evolutionary branching depends on
population size
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summary

Public goods games as a potential mechanism for cancer robustness/progression:
non-autonomous expansion (context-dependent selection)

Shared (costly) resources can act as public goods in growing cell populations
Coexistence/producer success is impacted by nonlinearity

Population assortment and demographic noise can lead to producer invasion

Current challenge: how to make these insights more useful for clinical applications?
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we want to understand diversity in outcomes
based on understanding ecological tumor diversity

a) defining the “neighborhood” of b) protection from growth factors (GFs)
interactions from clinical samples during therapy
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leukemia evolution could be impacted by
mutations that evoke public good-like properties

e ‘classical’ drivers: KRAS, NRAS,... may act cell autonomously

* transcription-modifying genes may act non-autonomously

* IDH 1/2 cells can alter self and other cells’ aberrant epigenetic programming
(changes methylation, usually increasing), e.g., leading to higher fithess during

inflammation
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selection dynamics could inform our understanding of
inflammation-driven progression dynamics
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UMAP: Uniform Manifold Approximation and Projection.

CMML: Chronic Myelomonocytic Leukemia.
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public goods In space

Wakano, Nowak & Hauert, PNAS 2009
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coupled equations for producers (U), free-riders
(V), and public good (G)

U=T,VU+[MG) —«][1l — (U+ V)|U — u,U,
V=T,V’V+ MGl - (U+V)]V—u,V,

G =T V’G+ pU - 6G(U + V).

Table 1. Dimensional parameters used in the model given by Egs (1)-(3). The unit cc™' means per cell cycle.

Parameter Symbol Typical ranges (values) Reference
Producer’s diffusion coefficient 'y 10°% - 107" cm?/s [31]
Free-rider’s diffusion coefficient I'y 10°%-10"" cm?/s [31]
Public good’s diffusion coefficient I'c 1077 - 107* cm?%/s [32, 33]
Cellular intrinsic growth rate a lcc!
Producer’s death rate Yy <lcc!
Free-rider’s death rate Wy <lcc!
Public good production cost K < lcc! [34]
Public good production rate p 100-1000 cc™’ [35]
Public good consumption rate o 100-1000 cc™’
Public good benefit (conc. independent) o 1-3 (27]
Public good benefit (conc. dependent) B 2-6 [conc.]™ [27]
Characteristic length of spatial domain L 1-10 cm

https://doi.org/10.1371/journal.pcbi.1007361.t001
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rescaling to dimensionless quantities
U=9y9,V’U+ (MG) —1+a)[l — (U+ V)]U - cU,
V=9, V2V+AMG)1 — (U+ V)]V —crV,

G =VG+U—-GU+ V).

Table 2. Definition of non-dimensional parameters used in the model given by Eqs (5)-(7). Ranges are given as well as the typical values used throughout the text. £.,;
is used to determine the £-extinction or fixation events.

Dimensionless parameter Symbol Identity Range Typical value
Producer’s diffusion coefficient Yu % 10°* - 10? 0.5
Free-rider’s diffusion coefficient Vv % 107* - 10° 0.5

Producer (PG independent) birth rate a 1-x 0.75-0.9 0.9
Producer death rate c U 0-1 0.5
Ratio of free-rider to producer death rate r Z_:/} >0 1.0
Ratio of cell birth rate to consumption rate € 2 107 -1072 2x107°
Neighborhood of a fixed point Eexit 1078

https://doi.org/10.1371/journal.pcbi.1007361.t002
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dynamics in highly structured initial populations
(domain of free-riders taking over producers)

1 Producers =— Free-riders === Public good 2 Producers=— Free-riders === Public good
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the system is dominated by a slow manifold,
for which we can neglect space

A. Producers win B. Free-riders win
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Extinction time
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the system is dominated by a slow manifold
and extinction times can be calculated
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Analytical approximation of g-extinction time for producer cells to take over.
r = ratio of death rates. ¢ = death to birth ratio.
For weak nonlinearity 8, another singularity emerges at higher c.

Kimmel, Gerlee & Altrock, PLoS Computational Biology, 2019
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what can we say for highly structured initial conditions?

= DVu+ru(l—u)
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estimating the speed leveraging that
only propagation times change

ttotal = tformation T tpropagation(d) =+ tboundary

0.6 T T T 0.46 | — — . =
—— Standard
- = Actual 044 Pulled Pushed oo
0.55 | , !
0.42 |
0.5 0471
§e, - 0.38
B 0.45 3
(% (%0.36 ’
0.4 0.34 |
0.32 |
0.35 03] 1
. o Linear theory prediction
0 T T T TE ffTs=ss=ss s s == E
0.3_ 1 1 1 1 1 1 1 J ol L L L aal s N PP | i ' o aall
0 50 100 150 200 250 300 350 400 107 10° 10! 102
Length of domain Strength of nonlinearity

The degree of nonlinearity in the public good drives wave speeds
that can be predicted using a simple numerical approach, using
same IC (say a wall at L/2) but two domain lengths.

Kimmel, Gerlee & Altrock, PLoS Computational Biology, 2019. See also: Birzu, Hallatschek & Korolev, PNAS, 2018
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Stability of the non-spatial system

Extinction state: (0,0,GY) where GY € [0,1]. This state is stable if
MGY) < min(er,1 —a+ c).

Producers win: (1 . 0, 1). This state is stable if a > 1 — A(1) +

A1) —1+4a’
(")
max T,C .

Free-riders win: (0,1 — cr,0). This state is stable if &+ > max(a, c).

[solated coexistence point (always unstable):

(o (1-2=0) amany (1-0=D) ).

=5l (Cama )

Non-isolated coexistence line: (G*,1 — G*,G*). At least some finite part
of this interval containing G* = 0 is stable.

where
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public good evolutionary games
among cancer cells,
collective benefit (at individual cost?)
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Image credit: Doris Tabassum

In heterogeneous MDA-MB-468 xenografts, IL11+ cells
(secreted IL11 in red) act as non-cell autonomous driver of
tumor growth by influencing pSTAT3 signaling (cyan) in
the neighboring carcinoma and stromal (yellow) cells;
nuclei are marked in grey. (Montage of 6 images on a 60X
objective).



