
Task-Based Programming at Scale:
Challenges and New Approaches

ZIH Kolloquium
Joseph Schuchart

15.12.2022

Who am I?
• 2005–2012: Dipl-Inf. TU Dresden, ZIH
• 2012–2013: Oak Ridge National Laboratory
• 2013–2016: ZIH, EE-HPC
• 2016–2020: Dr.-Ing., Stuttgart University, HLRS
• Since 2020: University of Tennessee, Knoxville

 Innovative Computing Laboratory

2

What is ICL?
• Head: Hartwig Anzt (frmly Jack)
• Linear Algebra ([Sca]LAPACK, heFFTe, SLATE,

Mixed precision computation, …)
• Performance Analysis Tools

• PAPI
• Distributed Computing

3

Distributed Computing Group (DISCO)
• Message Passing Interface

• MPI Forum members
• Open MPI: P2P & collective operations, datatypes, RMA
• Fault Tolerance: User-Level Fault Mitigation (ULFM)

• Distributed Tasking:
• PaRSEC: distributed task-based runtime system
• DPLASMA: task-based replacement for ScaLAPACK

4

• Sequential control flow
• Easier to write, harder to scale
• Limited latency hiding potential

• Oversubscription of work
• Scheduler-managed control flow

• Harder to reason about
• Significant latency hiding

potential

Task-Based Programming
 Traditional MPI programs

5

Task-based programs

Levels of Task-Based Programming
Shared Memory

6

• All tasks local
• Communication between

threads on the same process
• OpenMP, OmpSs, CUDA graphs
• Coupling with distributed

models like MPI

Distributed Memory

• Data-flow across process
boundaries

• Distributed scheduling decisions
• PaRSEC, HPX, UPC++, Legion,

StarPU, TTG, DASH, …
• Different models for different

types of applications
#pragma omp parallel master
 for (step in 0:NUM_STEPS) {
 for (field in 0:NUM_LOCAL_FIELDS)
#pragma omp task depend(inout: data[field], in: data[field-1])
 compute_field_in_step(data, field, step);
 }

 for (step in 0:NUM_STEPS) {
 for (field in 0:NUM_GLOBAL_FIELDS)
 insert_task(
 &compute_field_in_step, data, field, step,
 INOUT(data[field]), IN(data[field-1]));
 }

Part One
Coupling asynchronous programming models with MPI

7

Nonblocking MPI Operations
• MPI provides nonblocking P2P, Collective, RMA, I/O

• Completion detection through
polling only
• MPI_Test, MPI_Wait and friends

• Applications manage requests
• Challenging and error-prone in asynchronous/irregular applications

• Prior proposals are not portable
• ULT integration with MPI (Qthreads, Argobots)
• TAMPI

8

• Polling is insufficient
• Not all yields are created equal

Motivation: Communicating OpenMP Tasks

9

• Polling is insufficient
• Not all yields are created equal

Motivation: Communicating OpenMP Tasks

10

• Polling is insufficient
• Not all yields are created equal

• Alternative 1:
• Central polling infrastructure

• Alternative 2:
• Return request to MPI, for good

Motivation: Communicating OpenMP Tasks

11

• Polling is insufficient
• Not all yields are created equal

• Alternative 1:
• Central polling infrastructure

• Alternative 2:
• Return request to MPI, for good

Motivation: Communicating OpenMP Tasks

12

The Hollywood Principle
• Requests are created and free’d by MPI
• Applications receive, store, and test requests
• Observations:

• Requests are only a control device
• Applications care about completion of operations

13

• Let’s stop managing requests
and focus on operations
• Return requests to MPI
• Wait for a call signalling completion

The Hollywood Principle
• Requests are created and free’d by MPI
• Applications receive, store, and test requests
• Observations:

• Requests are only a control device
• Applications care about completion of operations

14

• Let’s stop managing requests
and focus on operations
• Return requests to MPI
• Wait for a call signalling completion

Don’t call us, we’ll call you back.

The Hollywood Principle
• Requests are created and free’d by MPI
• Applications receive, store, and test requests
• Observations:

• Requests are only a control device
• Applications care about completion of operations

15

Introducing: MPI Continuations
• Continuations are attached to one or more operations
• MPI takes back request ownership*
• Invokes callback once the operation is complete
• Inputs:

• Flags
• Callback function pointer
• User-data pointer
• Status (optional)
• Continuation request

16

Introducing: MPI Continuations
• Continuations are attached to one or more operations
• MPI takes back ownership
• Invokes callback once the operation is complete
• Inputs:

• Flags
• Callback function pointer
• User-data pointer
• Status (optional)
• Continuation request

17

Request

Continuations Control Flow

18

MPI_Isend
Request

Op1

Application MPI

Continuation

Request

Continuations Control Flow

19

MPI_Isend

MPI_Continue

Request
Op1

Op1

C1

Application MPI

Continuation

Request

Continuation

Request

Continuations Control Flow

20

MPI_Isend

MPI_Continue

MPI_Continue

MPI_Irecv

Request
Op1

Op1

C1

Op2

Op2

C2

Application MPI

Continuation

Request

Continuation

Request

Continuations Control Flow

21

MPI_Isend

MPI_Continue

MPI_Continue

MPI_Irecv

MPI_Wait

Request
Op1

Op1

C1

Op2

Op2

C2

C1

C2

Application MPI

Attaching a Continuation: MPI_Continue
• Attaches a continuation to one operation
• Flags control behavior
• Status filled before callback is invoked

22

Attaching a Continuation: MPI_Continueall
• Attaches a continuation to multiple operations
• Flags control behavior
• Status filled before callback is invoked

23

Callback Functions
• Inputs:

• Error code: MPI_SUCCESS (or error if operation failed)
• User-data provided during creation

• Returns:
• Error code: MPI_SUCCESS or error code

• May call MPI procedures
• Blocking procedures

discouraged

24

Evaluation: ExaHype
• Compressible Navier Stokes equations for cloud simulation
• Dynamic load balancing via task migration
• Continuations simplified request handling, leading to 25%

higher offload rates and improved balancing

25

Reference implementation Using MPI Continuations
Joseph Schuchart, Philipp Samfass, Christoph Niethammer, José Gracia, George Bosilca, Callback-based completion notification using MPI Continuations, Parallel
Computing, 2021

Part One: Summary
• MPI must better support asynchronous programming models
• Requests are merely a device
• Callbacks are flexible and allow for fast reaction to state

changes
• Fine-grain control over execution behavior

26

Part Two
A new task model for distributed memory task programming

27

Why distributed task models?
• Shared memory tasking models have serious limitations

• Local-only scheduling decisions
• Communication managed by user
• Separation problematic

• Distributed Models provide
• Managed communication
• Global view scheduling decisions
• Minimal synchronization

28

Distributed Task Graph Requirements

1. Task graph discovery (DAGs of tasks)
2. Data flow (moving data between processes)
3. Task Execution (along the critical path)

29

Distributed Task Graph Discovery
• Insert task:

• Sequential discovery of global task graph on all processes
• Limited scalability

• Continuation-based programming:
• Explicit spawning of activities at places
• Handle for each data flowing through the graph

• Abstract Task Graphs
• Compact representation of potential data flow
• Scoped discovery of tasks

30

Insert Task
OpenMP
StarPU
OmpSs
Legion

PaRSEC DTD

Abstract Task
Graphs

PaRSEC PTG
TTG

Dagger
CUDA Graphs

Intel TBB

Continuation
Based

Programming
C++ Futures

HPX
MADNESS
Charm++

UPC++

Task
Based

Program

TTG: Template Task Graphs
• Abstract task graph unfolds into DAG during execution

• Template Tasks: instantiated at execution
• Terminals: input/output points
• Edges: connecting input/output terminals

• Data-dependent selection of successors

31

Task A
const double a

double o0

Task B
double i1

double o1

Edges

Input
Terminals

Output
Terminals

J. Schuchart, P. Nookala, M. Javanmard, T. Herault, E. Valeev, G. Bosilca, R. Harrison. Generalized Flow-Graph Programming Using
Template Task-Graphs: Initial Implementation and Assessment. IPDPS 2021.

TTG: Template Task Graphs
• Abstract task graph unfolds into DAG during execution

• Template Tasks: instantiated at execution
• Terminals: input/output points
• Edges: connecting input/output terminals

• Data-dependent selection of successors

32 J. Schuchart, P. Nookala, M. Javanmard, T. Herault, E. Valeev, G. Bosilca, R. Harrison. Generalized Flow-Graph Programming Using
Template Task-Graphs: Initial Implementation and Assessment. IPDPS 2021.

Data Moves through the Graph
• Tasks send data to successors

• Become eligible for execution once all input terminals received value
• Unaware of predecessors

• Scalable distributed task discovery
• Flexible backend implementation

• Available: PaRSEC, MADNESS
• MPI main communication backend

33

Pthreads

TTG

MPILCIUCX

MADNESSPaRSEC

Data Movement
• Data traverses through unfolding task graph
• Goal: minimize number of data copies

• Utilize C++ move and const semantics
• Avoid copying data if we know its is immutable

• Zero-copy transfer mechanism
• Serialize meta-data, copy payload directly

34

TTG Task Functions
• Function object invoked once all inputs are satisfied.
• Key is optional (for task templates with single task instance)

35

 [=](const keyT &k) {
 ttg::print(“This is task B(“ , k, “)”);
 }

control flow (= flow of “void” data)

immutable data [=](const keyT &k, const T& val) {
 ttg::print(“This is task B(“ , k, “, “ val, “)”);
 }

 [=](const keyT &k, T&& val) {
 ttg::print(“This is task B(“ , k, “, “ val, “)”);
 }

mutable data

 [=](const keyT &k, auto& val) {
 ttg::print(“This is task B(“ , k, “, “ val, “)”);
 }

immutable generic data

 [=](const keyT &k, auto&& val) {
 ttg::print(“This is task B(“ , k, “, “ val, “)”);
 }

mutable generic data

We need C++ introspection!

Example: Data Movement
• Data is sent or broadcast through the graph
• POTRF kernel:

• Invoke kernel
• Populate successor keys
• Broadcast keys and data

36

Cholesky Factorization: Weak Scaling
• Hawk, 1 – 256 nodes
• Matrix: 30k per node, tiles size 512

37

Performance of
TTG matches
DPLASMA

Task Graph Composition

38

● Assume N consecutive functions implemented using the same
task programming model
○ N forks and joins without composition
○ Write-back to data structures instead of direct flow
○ Gene Amdahl says that’s bad

https://upload.wikimedia.org/wikipedia/commons/1/1a/Gene_Amdahl_o
n_a_classic_grey_Ferguson_tractor_at_Amdahl.JPG

https://en.wikipedia.org/wiki/Amdahl%27s_law#/media/File:AmdahlsLa
w.svg

Example: Cholesky Matrix Inversion

39

● Cholesky Factorization (POTRF) followed by matrix inversion
○ Given A, compute A-1

○ A: Hermitian positive-definite matrix

● Inversion: Given L from POTRF
○ Compute L-1 from L (TRTRI)
○ Compute A-1 = (L-1)T L-1 (LAUUM)
○ POTRI = TRTRI ⨁ LAUUM

● POINV = POTRF ⨁ POTRI
 = POTRF ⨁ TRTRI ⨁ LAUUM

Connecting Graphs: Edges as Composition Devices

● Use Edges to connect algorithm graphs
○ Algorithms as black bloxes
○ Data flows in through Edge, comes out through Edge

40

Composition

Task Graph Composition at Work

41

POINV Composition
● 16 nodes on Hawk, 64 threads each
● Full composition beneficial for small tile sizes

○ Fine-grain composition helps hide communication latency
○ Beats both DPLASMA (based on PaRSEC PTG) and SLATE

42T. Herault, J. Schuchart, G. Bosilca, E. Valeev. Composition of Algorithmic Building Blocks in Template Task Graphs. PAW-ATM 2022.

POTRI: Comparison with Chameleon
● 128 nodes on Hawk
● Chameleon (v1.1.0, using StarPU 1.3.9)
● POTRI : TRTRI ⨁ LAUUM
● TTG performance benefits

○ Depth-first execution
○ Parallel distributed task

discovery

43

Part 2: Summary
• Global task discovery limits scalability
• Template Task Graphs provide

• Scoped task discovery, with C++ semantics
• Without the baggage of futures

• Edges represent sets of values and simplify composition
• Future work includes

• Integrated device support (using C++ coroutines)
• Porting of MADNESS/TiledArray on top of TTG

44

Part Three
Why are asynchronous models so hard to use?

45

Challenges and Benefits of Tasks
• S3D using MPI vs Legion

46 https://hpc.pnl.gov/conf/wolfhpc/2015/talks/aiken.pdf

https://hpc.pnl.gov/conf/wolfhpc/2015/talks/aiken.pdf

Challenges of Programming in Tasks
• Porting existing applications to new programming models is a

significant investment (>1PY)
• Higher level abstractions → more constraints:

• Less flexible than MPI
• Likely to run into (non-MPI) barriers at some point

• Clear separation of concerns with MPI/OpenMP
• Flag-ship task applications vs broad acceptance?

• Octotiger (HPX)
• S3D (Legion)
• ExaGeoStat (PaRSEC)

47

A Plethora of Models
• Which is the right model for my application?
• How long will that model be supported?
• How much flexibility do I need?
• How many constraints can I accept?
• Can I maintain the code once the PhD student

is gone?

48

Insert Task
OpenMP
StarPU
OmpSs
Legion

PaRSEC DTD

Abstract Task
Graphs

PaRSEC PTG
TTG

Dagger
CUDA Graphs

Intel TBB

Continuation
Based

Programming
C++ Futures

HPX
MADNESS
Charm++

UPC++

Task
Based

Program

The Complexity of Models
• Are developers able to grasp the complexity of fully

asynchronous programming?
• Just a matter of teaching?

• We typically think sequentially
• Task-based programming like juggling

• We need better tools for debugging &
performance analysis

49

Conclusions
• Task-based programming comes with significant benefits and

challenges
• We need better support from MPI to support async models
• Better tool support for application & runtime developers
• There is (likely) no single model to rule all applications
• But: Can we establish interoperability between models?

• Past efforts had limited success

50

A Shameless Plug
• ICL is hiring

• PhD students
• PostDocs
• Visitors (3-12 months)

• Talk to me if you’re interested :)

51

Discussion

52

