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Who am I?
• 2005–2012: Dipl-Inf. TU Dresden, ZIH
• 2012–2013:  Oak Ridge National Laboratory
• 2013–2016:  ZIH, EE-HPC
• 2016–2020: Dr.-Ing., Stuttgart University, HLRS
• Since 2020:  University of Tennessee, Knoxville

                            Innovative Computing Laboratory
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What is ICL?
• Head: Hartwig Anzt (frmly Jack)
• Linear Algebra ([Sca]LAPACK, heFFTe, SLATE,

Mixed precision computation, …)
• Performance Analysis Tools

• PAPI
• Distributed Computing
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Distributed Computing Group (DISCO)
• Message Passing Interface

• MPI Forum members
• Open MPI: P2P & collective operations, datatypes, RMA
• Fault Tolerance: User-Level Fault Mitigation (ULFM)

• Distributed Tasking:
• PaRSEC: distributed task-based runtime system
• DPLASMA: task-based replacement for ScaLAPACK

4



• Sequential control flow
• Easier to write, harder to scale
• Limited latency hiding potential

• Oversubscription of work
• Scheduler-managed control flow

• Harder to reason about
• Significant latency hiding 

potential

Task-Based Programming
 Traditional MPI programs
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Task-based programs



Levels of Task-Based Programming
Shared Memory
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• All tasks local
• Communication between 

threads on the same process
• OpenMP, OmpSs, CUDA graphs
• Coupling with distributed 

models like MPI

Distributed Memory

• Data-flow across process 
boundaries

• Distributed scheduling decisions
• PaRSEC, HPX, UPC++, Legion, 

StarPU, TTG, DASH, …
• Different models for different 

types of applications
#pragma omp parallel master
  for (step in 0:NUM_STEPS) {
    for (field in 0:NUM_LOCAL_FIELDS)
#pragma omp task depend(inout: data[field], in: data[field-1])
      compute_field_in_step(data, field, step);
  }

  for (step in 0:NUM_STEPS) {
    for (field in 0:NUM_GLOBAL_FIELDS)
      insert_task(
        &compute_field_in_step, data, field, step,
        INOUT(data[field]), IN(data[field-1]));
  }



Part One
Coupling asynchronous programming models with MPI
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Nonblocking MPI Operations
• MPI provides nonblocking P2P, Collective, RMA, I/O

• Completion detection through 
polling only
• MPI_Test, MPI_Wait and friends

• Applications manage requests
• Challenging and error-prone in asynchronous/irregular applications

• Prior proposals are not portable
• ULT integration with MPI (Qthreads, Argobots)
• TAMPI
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• Polling is insufficient
• Not all yields are created equal

Motivation: Communicating OpenMP Tasks
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• Polling is insufficient
• Not all yields are created equal

Motivation: Communicating OpenMP Tasks
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• Polling is insufficient
• Not all yields are created equal

• Alternative 1:
• Central polling infrastructure

• Alternative 2:
• Return request to MPI, for good

Motivation: Communicating OpenMP Tasks
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• Polling is insufficient
• Not all yields are created equal

• Alternative 1:
• Central polling infrastructure

• Alternative 2:
• Return request to MPI, for good

Motivation: Communicating OpenMP Tasks
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The Hollywood Principle
• Requests are created and free’d by MPI
• Applications receive, store, and test requests
• Observations:

• Requests are only a control device
• Applications care about completion of operations
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• Let’s stop managing requests
and focus on operations
• Return requests to MPI
• Wait for a call signalling completion

The Hollywood Principle
• Requests are created and free’d by MPI
• Applications receive, store, and test requests
• Observations:

• Requests are only a control device
• Applications care about completion of operations
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• Let’s stop managing requests
and focus on operations
• Return requests to MPI
• Wait for a call signalling completion

Don’t call us, we’ll call you back.

The Hollywood Principle
• Requests are created and free’d by MPI
• Applications receive, store, and test requests
• Observations:

• Requests are only a control device
• Applications care about completion of operations
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Introducing: MPI Continuations
• Continuations are attached to one or more operations
• MPI takes back request ownership*
• Invokes callback once the operation is complete
• Inputs:

• Flags
• Callback function pointer
• User-data pointer
• Status (optional)
• Continuation request
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Request

Continuations Control Flow
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MPI_Isend
Request

Op1

Application MPI



Continuation

Request

Continuations Control Flow
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Application MPI
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Continuation

Request

Continuation

Request

Continuations Control Flow
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Attaching a Continuation: MPI_Continue
• Attaches a continuation to one operation
• Flags control behavior
• Status filled before callback is invoked

22



Attaching a Continuation: MPI_Continueall
• Attaches a continuation to multiple operations
• Flags control behavior
• Status filled before callback is invoked
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Callback Functions
• Inputs:

• Error code: MPI_SUCCESS (or error if operation failed)
• User-data provided during creation

• Returns:
• Error code: MPI_SUCCESS or error code

• May call MPI procedures
• Blocking procedures 

discouraged
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Evaluation: ExaHype
• Compressible Navier Stokes equations for cloud simulation
• Dynamic load balancing via task migration
• Continuations simplified request handling, leading to 25% 

higher offload rates and improved balancing
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Reference implementation Using MPI Continuations
Joseph Schuchart, Philipp Samfass, Christoph Niethammer, José Gracia, George Bosilca, Callback-based completion notification using MPI Continuations, Parallel 
Computing, 2021



Part One: Summary
• MPI must better support asynchronous programming models
• Requests are merely a device
• Callbacks are flexible and allow for fast reaction to state 

changes
• Fine-grain control over execution behavior
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Part Two
A new task model for distributed memory task programming
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Why distributed task models?
• Shared memory tasking models have serious limitations

• Local-only scheduling decisions
• Communication managed by user
• Separation problematic

• Distributed Models provide
• Managed communication
• Global view scheduling decisions
• Minimal synchronization
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Distributed Task Graph Requirements

1. Task graph discovery (DAGs of tasks)
2. Data flow (moving data between processes)
3. Task Execution (along the critical path)
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Distributed Task Graph Discovery
• Insert task:

• Sequential discovery of global task graph on all processes
• Limited scalability

• Continuation-based programming:
• Explicit spawning of activities at places
• Handle for each data flowing through the graph

• Abstract Task Graphs
• Compact representation of potential data flow
• Scoped discovery of tasks
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TTG: Template Task Graphs
• Abstract task graph unfolds into DAG during execution

• Template Tasks: instantiated at execution
• Terminals: input/output points
• Edges: connecting input/output terminals

• Data-dependent selection of successors
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Task A
const double a

double o0

Task B
double i1

double o1

Edges

Input 
Terminals

Output 
Terminals

J. Schuchart, P. Nookala, M. Javanmard, T. Herault, E. Valeev, G. Bosilca, R. Harrison. Generalized Flow-Graph Programming Using 
Template Task-Graphs: Initial Implementation and Assessment. IPDPS 2021.



TTG: Template Task Graphs
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• Data-dependent selection of successors
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Data Moves through the Graph
• Tasks send data to successors

• Become  eligible for execution once all input terminals received value
• Unaware of predecessors

• Scalable distributed task discovery
• Flexible backend implementation

• Available: PaRSEC, MADNESS
• MPI main communication backend
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Data Movement
• Data traverses through unfolding task graph
• Goal: minimize number of data copies

• Utilize C++ move and const semantics
• Avoid copying data if we know its is immutable

• Zero-copy transfer mechanism
• Serialize meta-data, copy payload directly
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TTG Task Functions
• Function object invoked once all inputs are satisfied.
• Key is optional (for task templates with single task instance)
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  [=](const keyT &k) {
    ttg::print(“This is task B(“ , k, “)”);
  }

control flow (= flow of “void” data)

immutable data  [=](const keyT &k, const T& val) {
    ttg::print(“This is task B(“ , k, “, “ val, “)”);
  }

  [=](const keyT &k, T&& val) {
    ttg::print(“This is task B(“ , k, “, “ val, “)”);
  }

mutable data

  [=](const keyT &k, auto& val) {
    ttg::print(“This is task B(“ , k, “, “ val, “)”);
  }

immutable generic data

  [=](const keyT &k, auto&& val) {
    ttg::print(“This is task B(“ , k, “, “ val, “)”);
  }

mutable generic data

We need C++ introspection!



Example: Data Movement
• Data is sent or broadcast through the graph
• POTRF kernel:

• Invoke kernel
• Populate successor keys
• Broadcast keys and data
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Cholesky Factorization: Weak Scaling
• Hawk, 1 – 256 nodes
• Matrix: 30k per node, tiles size 512
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Performance of 
TTG matches 
DPLASMA



Task Graph Composition
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● Assume N consecutive functions implemented using the same 
task programming model
○ N forks and joins without composition
○ Write-back to data structures instead of direct flow
○ Gene Amdahl says that’s bad

https://upload.wikimedia.org/wikipedia/commons/1/1a/Gene_Amdahl_o
n_a_classic_grey_Ferguson_tractor_at_Amdahl.JPG

https://en.wikipedia.org/wiki/Amdahl%27s_law#/media/File:AmdahlsLa
w.svg



Example: Cholesky Matrix Inversion
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● Cholesky Factorization (POTRF) followed by matrix inversion
○ Given A, compute A-1

○ A: Hermitian positive-definite matrix

● Inversion: Given L from POTRF
○ Compute L-1 from L              (TRTRI)
○ Compute A-1 = (L-1)T L-1         (LAUUM)
○ POTRI = TRTRI ⨁ LAUUM

● POINV = POTRF ⨁ POTRI
                = POTRF ⨁ TRTRI ⨁ LAUUM



Connecting Graphs: Edges as Composition Devices

● Use Edges to connect algorithm graphs
○ Algorithms as black bloxes
○ Data flows in through Edge, comes out through Edge
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Composition



Task Graph Composition at Work
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POINV Composition
● 16 nodes on Hawk, 64 threads each
● Full composition beneficial for small tile sizes

○ Fine-grain composition helps hide communication latency
○ Beats both DPLASMA (based on PaRSEC PTG) and SLATE

42T. Herault, J. Schuchart, G. Bosilca, E. Valeev. Composition of Algorithmic Building Blocks in Template Task Graphs. PAW-ATM 2022.



POTRI: Comparison with Chameleon
● 128 nodes on Hawk
● Chameleon (v1.1.0, using StarPU 1.3.9)
● POTRI : TRTRI ⨁ LAUUM
● TTG performance benefits

○ Depth-first execution
○ Parallel distributed task

discovery
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Part 2: Summary
• Global task discovery limits scalability
• Template Task Graphs provide

• Scoped task discovery, with C++ semantics
• Without the baggage of futures

• Edges represent sets of values and simplify composition
• Future work includes

• Integrated device support (using C++ coroutines)
• Porting of MADNESS/TiledArray on top of TTG
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Part Three
Why are asynchronous models so hard to use?
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Challenges and Benefits of Tasks
• S3D using MPI vs Legion

46 https://hpc.pnl.gov/conf/wolfhpc/2015/talks/aiken.pdf 

https://hpc.pnl.gov/conf/wolfhpc/2015/talks/aiken.pdf


Challenges of Programming in Tasks
• Porting existing applications to new programming models is a 

significant investment (>1PY)
• Higher level abstractions → more constraints:

• Less flexible than MPI 
• Likely to run into (non-MPI) barriers at some point

• Clear separation of concerns with MPI/OpenMP
• Flag-ship task applications vs broad acceptance?

• Octotiger (HPX)
• S3D (Legion)
• ExaGeoStat (PaRSEC)
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A Plethora of Models
• Which is the right model for my application?
• How long will that model be supported?
• How much flexibility do I need?
• How many constraints can I accept?
• Can I maintain the code once the PhD student

is gone?
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The Complexity of Models
• Are developers able to grasp the complexity of fully 

asynchronous programming?
• Just a matter of teaching?

• We typically think sequentially
• Task-based programming like juggling

• We need better tools for debugging &
performance analysis
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Conclusions
• Task-based programming comes with significant benefits and 

challenges
• We need better support from MPI to support async models
• Better tool support for application & runtime developers
• There is (likely) no single model to rule all applications
• But: Can we establish interoperability between models?

• Past efforts had limited success
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A Shameless Plug
• ICL is hiring

• PhD students
• PostDocs
• Visitors (3-12 months)

• Talk to me if you’re interested :)
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Discussion
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