
Hardware, Software, and 
Application Co-Design on the 
Frontier and Lumi Systems
Jakub Kurzak, Gina Sitaraman, Leopold Grinberg, Asitav Mishra, 
Nicholas Malaya, Paul Bauman, George Markomanolis, Samuel 
Antao

ZIH Colloquium – TU Dresden
27/04/2023



2 |

[Public]

Enabled by AMD Instinct™ GPUs

• OLCF Frontier reached 1.1 ExaFLOPS on the High 
Performance Linpack (HPL) benchmark becoming the first 
system ever to reach an ExaFLOP of 64-bit (Double 
Precision) performance on the June 2022 Top500 list.

• Most FLOPs coming from AMD Instinct™ GPU accelerators
• It is officially the world’s first Exascale Supercomputer
• It is officially the most power efficient Supercomputer in 

the world at scale: More science per watt



3 |

[Public]

Enabled by AMD Instinct™ GPUs

• LUMI is hosted in Finland by CSC with many 
other countries in the consortium alongside the 
EuroHPC Joint Undertaking initiative

• Most FLOPs coming from AMD Instinct™ GPU 
accelerators



4 |

[Public]

AMD Instinct™ GPUs

COMPUTE 
ENGINE

COMPUTE 
ENGINE

COMPUTE 
ENGINE

COMPUTE 
ENGINE

MATRIX CORES 
ENHANCED FOR HPC

SPECIAL FP32 OPS FOR 
DOUBLE THROUGHPUT



5 |

[Public]

Agenda 1. Cases about packed FP32 operations

2. Matrix Cores and MPI scalability

3. Optimizing CP2K for AMD GPUs

4. Tuning and profiling around SHOC

5. Evolving programming models

6. Communication tunning in ML workloads



6 |

[Public]

Packed FP32

0

10

20

30

40

50

60

70

Base Float2

TF
LO
P
/s

MI250X

https://www.amd.com/en/technologies/infinity-hub/mini-hacc



7 |

[Public]

https://www.amd.com/en/technologies/infinity-hub/mini-hacc



Biomedical Knowledge Base Analysis



9 |

[Public]

1 ExaFLOPS Biomedical Knowledge Base Analysis

• COAST / SnapShot project at ORNL
• mining large datasets of biomedical literature (PubMed, SPOKE)
• tens of millions of publications
• hundreds of thousands of concepts

• discovering unknown connections, e.g.
• new link between a symptom and a toxin
• new candidate drug for a disease

• classic graph-theoretical approach to data mining
• solving the All-Pairs-Shortest-Path problem
• Floyd-Warshall algorithm (classic example of dynamic programming)
• semiring algebra (GEMM / matrix multiply-like kernels)

• SC22 Gordon Bell finalist
• focus on COVID research
• https://dl.acm.org/doi/abs/10.5555/3571885.3571892
• https://www.computer.org/csdl/proceedings-article/sc/2022/544400a061/1I0bSLlULiU

https://dl.acm.org/doi/abs/10.5555/3571885.3571892
https://www.computer.org/csdl/proceedings-article/sc/2022/544400a061/1I0bSLlULiU


10 |

[Public]

1 ExaFLOPS Biomedical Knowledge Base Analysis

• key architectural extension – packed FP32 math
• double-throughput of FP32 operations
• without the use of Matrix Engines

• main kernel – implementing a semiring operation
• GEMM-like kernel using addition and minimum
• implementation in HIP using the float2 type
• 15.3 TF per GCD
• 30.6 TF per MI250X OAM



11 |

[Public]

1 ExaFLOPS Biomedical Knowledge Base Analysis

• 1.004 EF using 9,200 nodes of Frontier
• 36,800 MI250X GPUs
• 73,600 GCDs

• compared to 136 PF on Summit
• 7x faster



Matrix Cores



13 |

[Public]

https://developer.amd.com/wp-content/resources/CDNA2_Shader_ISA_18November2021.pdf



14 |

[Public]

• Current support for using MFMA instructions:
• AMD libraries: rocBLAS
• AMD rocWMMA library
• LLVM™ builtin compiler intrinsic functions
• Inline assembly

https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-matrix-cores-readme/
https://github.com/ROCmSoftwarePlatform/rocWMMA



15 |

[Public]

◢ High Performance Conjugate Gradient (HPCG)

◢ Solves the 3d Poisson equation (heat diffusion) via iterative solve 
(conjugate gradient)

◢ Sparse linear solver (SpMV), low arithmetic intensity

◢ Broadly representative of many HPC codes

◢ Memory bandwidth scaling (SpMV, Gauss-Seidel)

◢ MPI collectives (all-reduce) 

◢ MPI sendrecvs (halo exchange)

◢ Weak scaling benchmark

27-pt stencil



16 |

[Public]

◢ HPCG

◢ Weak scaling benchmark

◢ Nearly ideal scalability 

◢ From 1 -> 9000+ nodes

◢ Implemented via MPI

◢ HPE Cray MPI 

◢ Slingshot interconnect

◢ GPU-aware MPI

◢ Why does it scale well? 

◢ Low-latency

◢ Low tail-latency 

Data Gathered By: Paul Bauman, AMD



Optimizing CP2K for AMD GPUs



18 |

[Public]

CP2K Introduction

• CP2K Project: https://www.cp2k.org

• Quantum Chemistry and Solid-State Physics package
⁃ Performs simulations of solid state, liquid, molecular and biological systems

• Written in Fortran 2008, a little C++

• 16 dependencies and counting (several with GPU backends)

• Parallelized with multi-threading (OpenMP®), MPI, and HIP/CUDA

https://www.cp2k.org/


19 |

[Public]

Key Contributions

• Contributions from CP2K developer community:
⁃ Several HIP backends: GRID, PW, DBCSR, COSMA

• Setting CPU thread affinity and GPU affinity based on node topology
• Using GPU aware MPI or RCCL for collectives in COSMA

⁃ Fast interconnects between GPU devices lower communication latency
⁃ With NICs directly connected to the GPUs, inter-node communication latency is lower

• Using GPU aware MPI in DBCSR
⁃ Keeping data in GPU memory and moving some computations from CPU to GPU reduced contention 

on CPU resources and sped up other asynchronous CPU activity
• OpenMP® parallelization of CPU intensive regions

⁃ Better utilization of CPU cores



20 |

[Public]

Lessons Learned

• Use NPS4 configuration as opposed to NPS1 and set CPU thread affinity and GPU affinity 
⁃ Maximized use of system resources such as memory controllers, CPU cores, GPUs, and NICs
⁃ Improved CPU memory bandwidth utilization
⁃ Threads of a process are mapped to the same NUMA domain, thereby sharing L3 cache
⁃ Processes' threads should be mapped to CPU cores closest to the device assigned to that process in order to improve 

H2D and D2H data transfers rates
• Use GPU aware MPI where applicable

⁃ NICs attached directly to the GCDs lower inter-node communication latency
⁃ Fast Infinity Fabric™ links between GCDs on MI250X GPUs lower communication latency between GPU devices

• Use multiple processes sharing the same device (GCD)
⁃ Improved CPU resource utilization

• Use __launch_bounds__ to reduce register spills
• Application Specific Tuning

⁃ Select a square grid of processes, for example, running 16 ranks vs 8 ranks on 8 MI250X GCDs
⁃ Lower communication overhead and improved CPU memory bandwidth utilization in COSMA

⁃ Using larger tile sizes in COSMA resulted in fewer calls to rocBLAS and higher computational load in each call
• Avoid use of complicated schemes involving numerous streams and event-based synchronization across CPU threads -keep 

code simple



Optimizing SHOC for AMD GPU



[Public]

§ Scalable HeterOgeneous Computing Benchmarks

§ Collection of HPC specific benchmarks to test a system for:
⁃ performance (stress tests)
⁃ stability (correctness)

§ Levels of Parallelization:
⁃ Serial (per device)
⁃ Embarrassingly Parallel (multi-node/devices but no communication)
⁃ Truly Parallel (multi-node/devices with communication)

§ Accelerator Programming Models:
⁃ CUDA
⁃ OpenCLTM

§ Multi-node, multi-devices, MPI

§ Classes of Benchmarks
⁃ Level0 (baseline synthetic tests): BusSpeed, DeviceMemory, MaxFlops
⁃ Level1 (fundamental algorithms): bfs, fft, gemm, md, spmv, and more
⁃ Level2 (proxy applications): s3d, qtclustering

SHOC – What is it?



[Public]

§ Optimization Process
1. Roofline Analysis

⁃ Omniperf to place current performance of your 
kernels on the roofline and if you’ve reached peak 
expected numbers for your hardware

2. Profile hotspots
⁃ First find where runtime is being spent to focus 

optimization efforts (largest ROI)
⁃ Two options: 

⁃ rocprof with tracing flags turned on
⁃ Omnitrace

3. Profile HW counters
⁃ Find what pieces of the hardware are stressed the 

most. What piece of hardware is limiting 
performance?

⁃ Two options:
⁃ rocprof
⁃ Omniperf

4. Adjust algorithm or make changes
5. Test performance of changes. 
6. Repeat

Optimization Approach



[Public]

§ Scan performs the 'parallel prefix sum'
⁃ Serial O(n) => Parallel O(n/p + log(p)) with p=procs, 

n=problem size

§ Memory bound kernels
⁃ Reduction kernel

⁃ Blocks read coalesced array, but in non-
contiguous pattern (strided by grid size)

⁃ Shared memory for intrablock summation
⁃ Bottom Scan kernel

⁃ Shared memory for intrablock summation

SHOC – Scan



[Public]

§ Kernels timestamps using rocprof stats

§ Low LDS Utils: 277 Gb/s (1.5% peak)

§ Memory bound region
§ Largely latency bound

§ HBM: 69.3 GB/s

SHOC – Scan Performance Analysis

https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html


[Public]

§ Kernels time trace using rocprof --hip-trace or Omnitrace

§ GPU kernels busy (no gaps)

§ Delays in hipLaunchKernels

SHOC – Scan timelines

Zoomed

https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html
https://github.com/AMDResearch/omnitrace


[Public]

§ More performance data from Omniperf

SHOC – Scan Analysis Continued...



[Public]

§ Increase global problem size

§ LDS utilization improvements
⁃ Increase workgroup size (blocksize)
⁃ Launch bounds

§ Total number of blocks

SHOC – Scan Optimization/Tuning

BaselineOptimized



[Public]

§ Scan
⁃ Optimized kernels

§ Better LDS Utils: 2217 Gb/s (9% peak)

§ Occupancy improved
⁃ 106/110 active CUs (96% peak)
⁃ 2970 Wavefronts (84% peak)

§ HBM: 333.5 GB/s

SHOC – Optimized Scan Rooflines



[Public]

§ Reduced kernel duration and launch times

SHOC – Optimized Scan timelines

Baseline Scan

Optimized Scan



[Public]

§ Improved VALU FLOPs/IOPs

§ Increased LDS BW

§ Increased occupancy (Active CUs, Wave occupancy)

SHOC – Optimized vs Baseline Scan

System Speed of Light



Evolving programming models



33 |

[Public]

CPU CODE GPU CODE COHERENT CODE

double* in_h = (double*)malloc(Msize);
double* out_h = (double*)malloc(Msize);

for (int i=0; i<M; i++) //initialize
in_h[i] = …;

cpu_func(in_d, out_d, M);

for (int i=0; i<M; i++) // CPU-process
… = out_h[i];

double* in_h = (double*)malloc(Msize);
double* out_h = (double*)malloc(Msize);
hipMalloc(&in_d, Msize);
hipMalloc(&out_d, Msize);

for (int i=0; i<M; i++) //initialize
in_h[i] = …;

hipMemcpy(in_d,in_h,Msize);
gpu_func<< >>(in_d, out_d, M);
hipDeviceSynchronize();
hipMemcpy(out_h,out_d,Msize);

for (int i=0; i<M; i++) // CPU-process
… = out_h[i];

double* in_h = (double*)malloc(Msize);
double* out_h = (double*)malloc(Msize);

for (int i=0; i<M; i++) //initialize
in_h[i] = …; 

gpu_func<< >>(in_h, out_h, M);
hipDeviceSynchronize();

for (int i=0; i<M; i++) // CPU-process
… = out_h[i];

• GPU memory allocation on Device
• Explicit memory management between CPU & GPU
• Synchronization Barrier



34 |

[Public]

• GPU memory allocation on Device
• Explicit memory management between CPU & GPU
• Synchronization Barrier

Operation MI250X (MCM)

Coherent access over 
Infinity Fabric

56 GB/s

COHERENT CODE

double* in_h = (double*)malloc(Msize);
double* out_h = (double*)malloc(Msize);

for (int i=0; i<M; i++) //initialize
in_h[i] = …; 

gpu_func<< >>(in_d, out_d, M);
hipDeviceSynchronize();

for (int i=0; i<M; i++) // CPU-process
… = out_h[i];



35 |

[Public]

®

• Runtime knows it can omit copies and map clauses
• (Implicit) Synchronization Barrier

COHERENT CODE

double* in_h = (double*)malloc(Msize);
double* out_h = (double*)malloc(Msize);

for (int i=0; i<M; i++) //initialize
in_h[i] = …; 

#pragma omp requires unified_shared_memory

#pragma omp target
{
…
}

for (int i=0; i<M; i++) // CPU-process
… = out_h[i];



§

§

§

§

§

§

MI300



Improving communication in distribute ML



38 |

[Public]

https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf



39 |

[Public]



40 |

[Public]

https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html



41 |

[Public]

Frontier/Lumi network stack
• Libfabric/OFI (Open Fabrics Interface) RCCL plug in
• https://github.com/ROCmSoftwarePlatform/aws-ofi-rccl



42 |

[Public]

Frontier/Lumi network stack
• Libfabric/OFI (Open Fabrics Interface) RCCL plug in – over 3-4x speedup

No plugin – sockets-based implementation

Plug-in enabled – leveraging Libfabric implementation



[Public]

Questions?



[Public]

DISCLAIMERS AND ATTRIBUTIONS 

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken 
in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to 
update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or 
completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, 
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described 
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations 
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and 
Conditions of Sale. GD-18

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND 
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY 
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL 
AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF 
ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2023 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Radeon™, Instinct™, Infinity Fabric, ROCm™, and combinations thereof are trademarks of Advanced Micro Devices, Inc. 
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

HPE is a registered trademark of Hewlett Packard Enterprise Company and/or its affiliates.

LLVM is a trademark of LLVM Foundation

OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board





46 |

[Public]

Back-up


